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Abstract

We present a generalisation of the Event Calculus, specified in classical logic and implemented in ASP,

that facilitates reasoning about non-binary-valued fluents in domains with non-deterministic, triggered,

concurrent, and possibly conflicting actions. We show via a case study how this framework may be

used as a basis for a “possible-worlds” style approach to epistemic and causal reasoning in a narrative

setting. In this framework an agent may gain knowledge about both fluent values and action occurrences

through sensing actions, lose knowledge via non-deterministic actions, and represent plans that include

conditional actions whose conditions may be initially unknown.

1 Introduction

The Event Calculus (EC) [15, 23] is a well-established technique within AI for representing
causal and narrative information about dynamic domains. However, compared to other action
formalisms, little work has been done in developing epistemic extensions to the EC to facilitate
reasoning about an agent’s changing state of knowledge and the state of its environment. An
exception is [27], which develops an epistemic extension to the Discrete Event Calculus of [26],
using a deduction-oriented rather than possible-worlds based model of knowledge. In this
paper we propose an alternative epistemic EC variant, the Epistemic Functional Event Calculus
(EFEC), that builds on a generalization of the EC of [23]. Differentiating characteristics of the
EFEC are that (i) time can be either discrete or continuous (real-valued), (ii) it generalizes the
EC to include non-binary (i.e. non-truth-valued) fluents, (iii) it uses a possible-worlds notion
to model knowledge, following [29] and others, (iv) it facilitates reasoning about domains with
concurrent, non-deterministic, and possibly conflicting actions, (v) it enables reasoning about
domains with “triggered” or “natural” actions, and can model states of knowledge about action
occurrences as well as fluent values, and (vi) it is able to represent knowledge states about past
and future times relative to the agent’s “now” as well as the present. EFEC is implemented
in Answer Set Programming (ASP), based on the translation [14] from circumscription into
general stable model semantics. The ASP encoding is described in Section 3.7, and a full
listing is given at http://www.ucl.ac.uk/infostudies/efec, along with other resources to aid
the reader. Section 4 gives comparison to related work.

Notation: We use sorted classical predicate calculus with equality. All variables are univer-
sally quantified with maximum scope unless otherwise indicated.

2 Functional Event Calculus

As a foundation for our epistemic EC, we first give a generalization FEC of the non-deterministic
EC of [23] to include non-binary-valued fluents. This sets the EC on a par with formalisms
such as the Situation Calculus in this respect.
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The FEC has a sort A for actions (variables a, a′, a1, . . .), a sort F for fluents (f, f ′, f1, . . .),
a sort V for values (v, v′, v1, . . .) and a sort T for timepoints (t, t′, t1, . . .). For this section only,
the reader may assume that time is modeled as a total ordering (e.g. R, R≥0, N or Z). The key
predicates and functions are Happens⊆A×T , ValueOf :F×T →V, CausesValue⊆A×F×V×T ,
PossVal ⊆ F×V, and < ⊆ T ×T . To describe the general relationship between these predi-
cates it is convenient to first define two auxiliary predicates, ValueCaused ⊆ F × V × T and
OtherValCausedBetween ⊆ F × V × T × T . ValueCaused(F, V, T ) means that some action
happens at T that gives cause for F to take value V . OtherValCausedBetween(F, V, T1, T2)
means that some action happens at some point in the half-open interval [T1, T2) that gives
cause for F to take a value other than V . Note that gives cause is a weaker notion than the
standard causes: non-deterministic actions do not cause specific predictable effects. E.g. (see
the example at the end of this section), rolling a die gives cause for each number to show, but
we cannot predict which number will show.

ValueCaused(f, v, t)
def≡ ∃a[Happens(a, t) ∧ CausesValue(a, f, v, t)]. (FEC1)

OtherValCausedBetween(f, v, t1, t2)
def≡ (FEC2)

∃t, v′[ValueCaused(f, v′, t) ∧ t1≤ t<t2 ∧ v 6=v′].

The notions of cause, effect, and inertia are captured in two FEC axioms. (FEC3) states that
a fluent has a particular value at a particular time if either (i) it already had that value at an
earlier time or (ii) was given cause to take that value from an earlier time, and in the meantime
(including that earlier time) nothing has happened that might give cause for it to take an alter-
native value. Conversely, (FEC4) states that fluent f cannot have value v at time t2 if its most
recent causal influences prior to t2 do not include a cause for v. Finally, (FEC5) additionally
constrains each fluent’s value to be at all times among the set of values defined by PossVal :

ValueOf (f, t2)=v ← [(ValueOf (f, t1)=v ∨ ValueCaused(f, v, t1)) (FEC3)

∧ t1<t2 ∧ ¬OtherValCausedBetween(f, v, t1, t2)].

ValueOf (f, t2) 6=v ← [t1<t2 ∧ OtherValCausedBetween(f, v, t1, t2) ∧ (FEC4)

¬∃t(t1≤ t<t2 ∧ ValueCaused(f, v, t))].

ValueOf (f, t)=v → PossVal(f, v). (FEC5)

Definitions of the predicates Happens, CausesValue and PossVal are given in the domain-
dependent part of the theory (or partially defined and then minimised to address the Frame
Problem and related issues). The reader may note that if PossVal(f, v) ≡ [v = True ∨ v =
False] for all fluents, axioms (FEC1)-(FEC5) are effectively equivalent to axioms (EC1)-(EC6)
from [23]. Translating (FEC1)-(FEC5) to ASP is straightforward following [14] (see Section 3.7).

The following domain example of rolling a die illustrates that FEC can capture non-
determinism by expressing with CausesValue that an action can give cause for more than
one value for a given fluent. The effect of rolling a 6-sided die twice (at times 10 and 20) after
it initially shows “2” is described as follows:

f =DieFaceShowing ∧ a=RollDie. (D1)

v=1 ∨ v=2 ∨ v=3 ∨ v=4 ∨ v=5 ∨ v=6. (D2)

PossVal(DieFaceShowing , v). (D3)

CausesValue(RollDie,DieFaceShowing , v, t). (D4)

ValueOf (DieFaceShowing , 0)=2. (D5)

Happens(RollDie, t) ≡ [t=10 ∨ t=20]. (D6)

(D1) and (D2) are domain closure axioms. (D4) expresses that rolling a die gives cause for
each of its six faces to show uppermost. (In a more complex domain (D4) might be written
as the circumscription of a set of CausesValue clauses.) (D5) and (D6) express narrative in-
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formation. Again, (D6) could alternatively be expressed as the circumscription of the clauses
Happens(RollDie, 10) and Happens(RollDie, 20). If time is represented by R≥0 or N, this exam-
ple gives rise to 62 models. In each model the die has face “2” showing throughout the interval
[0, 10], and an arbitrary one of its six faces showing throughout each of the intervals (10, 20]
and (20,+∞).

3 Epistemic Reasoning

A Motivating Example – the Shopping Outlet: To obtain an item from a catalogue
shopping outlet, a customer first purchases the item using a terminal. This causes the customer
to be (non-deterministically) assigned to one of three collection points color-coded “red”, “blue”
and “green”. The customer can ascertain which collection point she has been assigned to from
a display, and collect the item accordingly. To discourage unnecessary queuing, an attempt to
collect the item from the wrong collection point cancels the purchase. Additionally, customers
assigned to “red” receive a free gift on successful item collection. This scenario can be regarded
as having an action (purchasing the item) for which one effect is non-deterministic, a “sensing”
or knowledge-producing action (ascertaining the collection point), conditional actions (collect
from a particular collection point if assigned there), and a conditionally “triggered” action
(giving a gift at the red collection point). The example is pertinent because it is impossible for
the customer to obtain the item for certain without the sensing action (assuming she cannot
collect from all collection points simultaneously).

Other than “epistemic fluents” (described later) our representation of this example uses
the three fluents: CollectionPoint (possible values {Red ,Blue,Green}), Bought and Collected
(truth-valued). Other than sensing actions (described later) we use actions Purchase,
GiveFreeGift , CollectFromRed , CollectFromBlue and CollectFromGreen. GiveFreeGift is a
“triggered” action performed by the environment automatically in the circumstances described.
The UNA axioms for values and definition of PossVal for the non-epistemic fluents are:

PossVal(Bought , v) ≡ [v=True ∨ v=False]. (S1)

PossVal(CollectionPoint , v) ≡ [v=Red ∨ v=Blue ∨ v=Green]. (S2)

PossVal(Collected , v) ≡ [v=True ∨ v=False]. (S3)

Red 6=Blue 6=Green 6=True 6=False. (S4)

To fully represent this domain, we need a time structure, predicates and axioms to facilitate
reasoning about knowledge.

3.1 EFEC Knowledge Axioms

Our approach to epistemic reasoning is inspired by the “possible-worlds” approaches of [29,
24, 10] and others, but has some ontological differences necessitated by the fact that the EC
is a narrative framework, and typically uses linear (not branching) time. Intuitively, each
model of an epistemic FEC (EFEC) theory contains a number of parallel “possible time lines”
and a notion of accessibility (modeled via “epistemic fluents”) between these. The time lines
accessible to an agent at any given moment are those that contain a narrative (fluent values
and action occurrences) compatible with the agent’s current state of knowledge. In other
words, at any instant the agent “knows” whatever holds in every narrative accessible at that
instant. Sensing actions terminate the accessibility of time lines whose narratives do not match
the sensed information. Once terminated, there is no mechanism for re-initiating accessibility.
Knowledge loss due to non-deterministic action occurrences is instead captured by ensuring (in
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each model) that, for every possible history of previous fluent values and action occurrences
up to the given point of non-determinism, there is a sufficient number of identical, duplicate
accessible narratives to ensure that at least one such narrative is available to be extended to
reflect each possible non-deterministic outcome.

To represent time as a system of parallel time lines, we add two new sorts to the logic, a
sortW for worlds, to be understood as identifiers for possible time lines (variables w,w′, w1, ...),
and a sort I for instants (variables i, i′, i1, ...). The constant Wa of sort W signifies the “actual
world”, and ≺ ⊆ I×I is a partial (possibly total) ordering over I. The function 〈 〉:W×I→T
maps world/instant pairs to time points, so that time point 〈W, I〉 represents “instant I in
possible world W”. 〈I〉 is shorthand for 〈Wa, I〉. Axioms for the time structure are:

∀t∃w, i.(t = 〈w, i〉). (EFEC1)
〈w, i〉 = 〈w′, i′〉 ≡ (w = w′ ∧ i = i′). (EFEC2)

〈w, i〉 < 〈w′, i′〉 ≡ (w = w′ ∧ i ≺ i′). (EFEC3)

≤, > and ≥ have their usual meanings in terms of = and <. For ease of exposition, we assume
here that I is interpreted as R≥0 or N with usual ordering ≺.

To specify the dynamic accessibility relation between possible worlds, we adapt Scherl and
Levesque’s notion of epistemic fluents, introducing a function K :W→F . The epistemic fluent
K(W ) represents the “accessibility” property of W , so that ValueOf (K(W ), 〈W ′, I〉) = true
means that “W is accessible from W ′ at instant I”. K is a truth-valued fluent, and, since we
are modeling knowledge, the relationship it represents between worlds is reflexive, symmetric
and transitive (i.e. an equivalence relation):

PossVal(K(w), v) ≡ [v=True ∨ v=False]. (EFEC4)
ValueOf (K(w), 〈w, i〉)=True. (EFEC5)
ValueOf (K(w), 〈w′, i〉)=True ≡ ValueOf (K(w′), 〈w, i〉)=True. (EFEC6)

ValueOf (K(w3), 〈w1, i〉)=True ← [ValueOf (K(w2), 〈w1, i〉)=True (EFEC7)

∧ ValueOf (K(w3), 〈w2, i〉)=True].

For simplicity, we assume that each fluent F in the domain can be sensed via an action
Sense(F ) (although nothing in our approach dictates that this must be so1). Sensing F termi-
nates the accessibility of possible worlds in which the value of F is different from that in the
agent’s world:

CausesValue(Sense(f),K(w′),False, 〈w, i〉) (EFEC8)

← ValueOf (f, 〈w, i〉) 6= ValueOf (f, 〈w′, i〉).

EFEC includes six knowledge predicates regarding actions and non-epistemic fluents, whose
arity and argument sorts can be seen from the following list of intended meanings:
• KnowsValueIsNot(〈W, I〉, F, I ′, V ) - When in world W at instant I, the agent knows that the
value of fluent F at instant I ′ was not / is not / will not be V .
• KnowsValueIs(〈W, I〉, F, I ′, V ) - When in W at instant I, the agent knows that the value of
F at I ′ was / is / will be V .
• KnowsValue(〈W, I〉, F, I ′) - When in W at instant I, the agent knows the value of F at instant
I ′.
• KnowsHappens(〈W, I〉, A, I ′) - When in W at instant I, the agent knows that action A has
happened / happens / will happen at instant I ′.

1We could for example specify when an action a senses a fluent f using a predicate Senses along with
a general rule such as CausesValue(a,K(w′),False, 〈w, i〉) ← [Senses(a, f, 〈w, i〉) ∧ ValueOf (f, 〈w, i〉) 6=
ValueOf (f, 〈w′, i〉)].
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• KnowsNotHappens(〈W, I〉, A, I ′) - When in W at instant I, the agent knows that A has not
/ does not / will not happen at I ′.
• KnowsIfHappens(〈W, I〉, A, I ′) - When in W at instant I, the agent knows whether or not A
has happened / happens / will happen at I ′.
The corresponding definitional axioms are:2

KnowsValueIsNot(〈w, i〉, f, i′, v) ≡ ∀w′(f 6=K(w′) ∧ (EFEC9)
[ValueOf (K(w′),〈w,i〉)=True→ValueOf (f,〈w′,i′〉)6=v]).

KnowsValueIs(〈w, i〉, f, i′, v) ≡ (EFEC10)
∀v′[(PossVal(f, v′) ∧ v′ 6=v)→ KnowsValueIsNot(〈w, i〉, f, i′, v′)].

KnowsValue(t,f,i′) ≡ ∃v.KnowsValueIs(t,f,i′,v). (EFEC11)
KnowsHappens(〈w, i〉, a, i′) ≡ (EFEC12)

∀w′[ValueOf (K(w′), 〈w, i〉)=True → Happens(a, 〈w′, i′〉)].
KnowsNotHappens(〈w, i〉, a, i′) ≡ (EFEC13)

∀w′[ValueOf (K(w′), 〈w, i〉)=True → ¬Happens(a, 〈w′, i′〉)].
KnowsIfHappens(t, a, i′) ≡ (EFEC14)

[KnowsHappens(t, a, i′) ∨KnowsNotHappens(t, a, i′)].

3.2 Representing Action Occurrences

To represent the class of domains exemplified by the shopping outlet scenario, we need to be
able to represent three kinds of action occurrence. First, the agent may perform an action
unconditionally (e.g. purchase an item). Second, the agent may perform an action if (and only
if) it knows a particular condition holds (e.g. collect from the red collection point if assigned
there). Third, an action might be automatically triggered in the environment (e.g. the giv-
ing of a free gift on item collection). Accordingly, we introduce three occurrence predicates,
Perform⊆A×I, PerformIfValueKnownIs⊆A×F×V×I and Triggered⊆A×T and relate them
to Happens as follows.

Perform(a, i) → Happens(a, 〈w, i〉). (EFEC15)
PerformIfValueKnownIs(a, f, v, i) → (EFEC16)

[Happens(a, 〈w, i〉) ≡ KnowsValueIs(〈w, i〉, f, i, v)].

Triggered(a, t) → Happens(a, t). (EFEC17)

Definitions of these predicates are given in the domain-dependent theory, or, in the case of the
“Perform...” predicates, generated via a planning process. The “Perform...” predicates have
last argument of sort I (rather than T ) because the occurrences they refer to are by assumption
under the control of the agent. In contrast the conditions under which triggered actions occur
may or may not be known at particular times.

Rather than minimising Happens directly, we state that all occurrences of actions (at any
instant in any possible world) are accounted for by “Perform...” or Triggered :

Happens(a, 〈w, i〉) → [∃f, v.PerformIfValueKnownIs(a, f, v, i) (EFEC18)

∨ Perform(a, i) ∨ Triggered(a, 〈w, i〉)].

3.3 An Axiomatization of the Shopping Example

We next give the domain-dependent shopping axioms. Their ASP translations are at http:

//www.ucl.ac.uk/infostudies/efec. In addition to (S1)–(S4) we have domain closure and

2KnowValueIs (KVI) is defined here in terms of the arguably more basic KnowValueIsNot (KVIN). KVIN
is particularly useful for expressing complete ignorance (i.e., for all possible values v of a fluent, one does not
know that the fluent does not have value v). But note that KVI could instead be defined directly in terms of
possible worlds; in that case, the current formulation of (EFEC10) could be derived as a corollary of (EFEC9)
and the direct definition of KVI.
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uniqueness-of-names axioms for actions and fluents:

f =CollectionPoint ∨ f =Bought ∨ f =Collected ∨ ∃w.f =K(w). (S5)

CollectionPoint 6=Bought 6=Collected 6=K(w) ∧ [K(w)=K(w′)→ w=w′]. (S6)

a=Purchase ∨ a=CollectFromRed ∨ a=CollectFromBlue (S7)
∨ a=CollectFromGreen ∨ a=GiveFreeGift ∨ ∃f.a=Sense(f).

Purchase 6=GiveFreeGift 6=CollectFromRed 6=CollectFromBlue 6= (S8)

CollectFromGreen 6=Sense(f) ∧ [Sense(f)=Sense(f ′)→ f =f ′].

We assume sort I is interpreted as R≥0. We express knowledge about initial instant 0 in
terms of KnowsValueIsNot (which gives more expressivity than KnowsValueIs), and completely
specify KnowsValueIsNot at instant 0 (recall from Section 3.1 that 〈0〉 is shorthand for 〈Wa, 0〉):

KnowsValueIsNot(〈0〉, f, 0, v) ≡ [(f =Bought ∨ f =Collected) ∧ v=True]. (S9)

Causal domain information is captured by a collection of clauses such as

CausesValue(CollectFromRed ,Collected ,True, t)←
[ValueOf (CollectionPoint , t)=Red ∧ ValueOf (Bought , t)=True].

and the frame problem is addressed by circumscribing this collection together with (EFEC8)
to give

CausesValue(a, f, v, t) ≡ (S10)

[(a=Purchase ∧ f =CollectionPoint ∧ PossVal(CollectionPoint , v))

∨ (a=Purchase ∧ f =Bought ∧ v=True)

∨ (a=CollectFromRed ∧ f =Collected ∧ v=True

∧ValueOf (CollectionPoint , t)=Red ∧ValueOf (Bought , t)=True)

∨ (a=CollectFromRed ∧ f =Bought ∧ v=False ∧ValueOf (CollectionPoint , t) 6=Red)

∨ (a=CollectFromBlue ∧ f =Collected ∧ v=True

∧ValueOf (CollectionPoint , t)=Blue ∧ValueOf (Bought , t)=True)

∨ (a=CollectFromBlue ∧ f =Bought ∧ v=False ∧ValueOf (CollectionPoint , t) 6=Blue)

∨ (a=CollectFromGreen ∧ f =Collected ∧ v=True

∧ValueOf (CollectionPoint , t)=Green ∧ValueOf (Bought , t)=True)

∨(a=CollectFromGreen ∧ f=Bought ∧ v=False ∧ValueOf (CollectionPoint , t)6=Green)

∨ ∃f ′,w,w′,i(a=Sense(f ′) ∧ f =K(w′) ∧ v=False ∧ t=〈w, i〉 ∧
ValueOf (f ′, 〈w, i〉) 6=ValueOf (f ′, 〈w′, i〉))].

Various EC mechanisms compatible with the framework described here have been developed
to represent triggered actions (see e.g. [23]). For triggering a free gift in the shopping example,
the following is sufficient:

Triggered(a, t) ≡ [ValueOf (Bought , t)=True ∧Happens(CollectFromRed , t) (S11)

∧ a=GiveFreeGift ∧ValueOf (CollectionPoint , t)=Red ].

Finally, actions the agent has done or (conditionally) intends to do can be represented by
definitions of Perform and PerformIfValueKnownIs. For example, a plan for obtaining the item
by instant 4 might be described by:

Perform(a, i) ≡ [(a=Purchase ∧ i=1) ∨ (a=Sense(CollectionPoint) ∧ i=2)] (S12)

PerformIfValueKnownIs(a, f, v, i) ≡ (S13)

[(a=CollectFromRed ∧ f =CollectionPoint ∧ v=Red ∧ i=3)

∨(a=CollectFromBlue ∧ f =CollectionPoint ∧ v=Blue ∧ i=3)

∨(a=CollectFromGreen ∧ f =CollectionPoint ∧ v=Green ∧ i=3)].
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3.4 Existence of Possible Worlds

The domain-independent EFEC axiomatization is not yet complete. We need to ensure there is
a sufficiently large collection of accessible possible worlds in each model to adequately represent
lack of knowledge, both about what holds at the initial instant and about what holds after the
occurrence of a set of simultaneous non-deterministic actions.

For example, if we have no knowledge about the initial values of N truth-valued fluents,
our axiomatization should ensure there are at least 2N initially accessible worlds, one for each
possible N -combination of truth values. If we were to allow models with less than 2N such
worlds, then in these models some sensing actions would (by terminating accessibility – see
(EFEC8)) give unwarranted knowledge about the values of fluents other than that being sensed.

To eliminate such models in the general case we first axiomatize the notion that two worlds
differ at instant 0 in respect of non-epistemic fluents by at most one such fluent, by defining a
predicate InitiallyDifferAtMostBy⊆W×W×F :

InitiallyDifferAtMostBy(w1, w2, f) ≡ ∀f ′[(f ′ 6=f ∧ ¬∃w′.f ′ =K(w′)) (EFEC19)

→ ValueOf (f ′, 〈w1, 0〉)=ValueOf (f ′, 〈w2, 0〉)].

Domain descriptions will typically include at least a partial specification for KnowsValueIsNot
at instant 0 (see e.g. (S9)). Axiom (EFEC20) states that for every value v not known not to
be the initial value of some non-epistemic fluent f , and for every initially accessible world w,
we can find an initially accessible world w′ in which f has initial value v and which is initially
identical to w in all other respects:

[¬∃w′.f =K(w′) ∧ PossVal(f, v) ∧ ¬KnowsValueIsNot(〈0〉, f, 0, v) ∧ (EFEC20)

ValueOf (K(w), 〈0〉)=True]→ ∃w′[ValueOf (K(w′), 〈0〉)=True ∧
ValueOf (f, 〈w′, 0〉)=v ∧ InitiallyDifferAtMostBy(w,w′, f)].

For domains with a finite number of fluents, it is possible to show that any combination of
fluent values, each of which are not known not to hold, corresponds to an initially accessible
world, by repeated application of (EFEC20).

To guarantee the existence of a sufficient number of worlds accessible after the occurrence
of a set of simultaneous non-deterministic actions, we first need to be able to identify time pe-
riods “immediately after” such occurrences. To do this we include the function Next : T → T
from [22]. For time point T axioms (EFEC21)–(EFEC23) constrain Next(T ) as follows. If T is
before the last action occurrence in T ’s timeline, then Next(T ) is the point of the next action
occurrence (or simultaneous occurrences) after T . Otherwise, Next(T ) is any arbitrary time
point after T .

t< Next(t). (EFEC21)

[t<t1 ∧ t1<Next(t)] → ¬Happens(a, t1). (EFEC22)

[Happens(a1, t1) ∧ t<t1]→ ∃a.Happens(a,Next(t)) (EFEC23)

(FEC3) therefore guarantees that for any T , values of fluents remain unchanged in the half-open
interval (T,Next(T )]. In particular, if actions occur at T then the immediate effects of those
actions remain apparent throughout (T,Next(T )].

Two other predicates are needed, DifferAfterAtMostBy⊆W×W×I×F and EqualUpTo⊆
W×W×I. DifferAfterAtMostBy(W1,W2, I, F ) means that in the periods immediately fol-
lowing instant I on each of the timelines W1 and W2 – i.e. in the half open intervals
(〈W1, I〉,Next(〈W1, I〉)] and (〈W2, I〉,Next(〈W2, I〉)] – all non-epistemic fluents except possi-
bly F take the same value. The meaning of EqualUpTo(W1,W2, I) is that in the period from 0
up to and including I on each of the timelines W1 and W2 – i.e. in the intervals [〈W1, 0〉, 〈W1, I〉]
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and [〈W2, 0〉, 〈W2, I〉] – all non-epistemic fluents take the same value:

DifferAfterAtMostBy(w1, w2, i, f) ≡ ∀f ′[(f ′ 6=f ∧ ¬∃w′.f ′ =K(w′)) (EFEC24)
→ ValueOf (f ′,Next(〈w1,i〉))=ValueOf (f ′,Next(〈w2,i〉))].

EqualUpTo(w1, w2, i) ≡ (EFEC25)

∀f, i′[(i′� i ∧ ¬∃w′.f =K(w′)) → ValueOf (f, 〈w1, i
′〉)=ValueOf (f, 〈w2, i

′〉)].

Axiom (EFEC26) is the counterpart of (EFEC20) for periods immediately following (possibly
non-deterministic) action occurrences. It states that if a non-epistemic fluent f is given cause
to have value v at instant i in the accessible world w, then there exists another accessible world
w′ identical to w up to Next(〈w, i〉) except that at Next(〈w′, i〉) f has value v (whereas f may
or may not have value v at Next(〈w, i〉)):

[ValueCaused(f, v, 〈w, i〉) ∧ ¬∃w1.f =K(w1) (EFEC26)

∧ ValueOf (K(w),Next(〈i〉))=True]

→ ∃w′[ValueOf (K(w′),Next(〈i〉))=True ∧ ValueOf (f,Next(〈w′, i〉))=v

∧ EqualUpTo(w,w′, i) ∧ DifferAfterAtMostBy(w,w′, i, f)].

Note that these axioms rest on the assumption that all pairs of fluents are orthogonal (i.e.,
there are no state constraints).

3.5 Example Inferences

EFEC allows us to describe epistemically feasible plans. For example, the goal of obtaining
an item at instant 4 might be expressed as GoalS ≡ KnowsValueIs(〈0〉, Collected , 4,True)
and a plan to achieve this as PlanS ≡ [(S12) ∧ (S13)]. Taking an abductive view of plan-
ning, Proposition 1 below shows that: (FEC1) ∧ ... ∧ (FEC5) ∧ (EFEC1) ∧ ... ∧ (EFEC26) ∧
(S1) ∧ ... ∧ (S11) ∧ PlanS |= GoalS , or equivalently (under a deductive view of plan-
ning) (FEC1) ∧ ... ∧ (FEC5) ∧ (EFEC1) ∧ ... ∧ (EFEC26) ∧ (S1) ∧ ... ∧ (S11) |= PlanS →
GoalS . Proposition 1 also shows that the agent is able to infer and preserve knowl-
edge about instances that have passed, both regarding action occurrences (in particu-
lar triggered occurrences, e.g. KnowsIfHappens(〈5〉,GiveFreeGift , 3)) and fluent values (e.g.
KnowsValue(〈3〉,CollectionPoint , 2)). Consequently, the agent can plan to discover currently
unknown facts about past times.

Proposition 1. The theory (FEC1)∧ ...∧(FEC5)∧(EFEC1)∧ ...∧(EFEC26)∧(S1)∧ ...∧(S13)
entails the sentences:

KnowsValueIs(〈0〉,Collected, 4,True).
¬KnowsValue(〈2〉,CollectionPoint, 2).
KnowsValue(〈3〉,CollectionPoint, 2).
KnowsValue(〈3〉,CollectionPoint, 3).

KnowsHappens(〈5〉,Purchase, 1).

KnowsIfHappens(〈5〉,GiveFreeGift, 3).

3.6 Another Brief Example Showing the Sensing of Evidence About
The Past

A disease triggers the production of antibodies that cure the disease and remain in the blood-
stream afterwards. A person knows she did not have the antibodies at time 0 but wonders if
she had just contracted the disease at that time. At time 1 she can ascertain this by testing
(sensing) for the antibodies. Assuming I=N, fluents are truth-valued, and domain closure and
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uniqueness-of-names axioms DCA and UNAA (analagous to (S1)-(S8)) our representation is:

KnowsValueIsNot(〈0〉, f, 0, v) ≡ [f =Antibodies ∧ v=True]. (A1)
CausesValue(a, f, v, t) ≡ (A2)

[(a=MakeAntibodies ∧ f =Antibodies ∧ v=True)
∨ (a=MakeAntibodies ∧ f =Disease ∧ v=False)
∨ ∃f ′,w,w′,i(a=Sense(f ′) ∧ f =K(w′) ∧ v=False ∧ t=〈w, i〉 ∧

ValueOf (f ′, 〈w, i〉) 6=ValueOf (f ′, 〈w′, i〉))].
Triggered(a, t) ≡ [a=MakeAntibodies ∧ValueOf (Disease, t)=True]. (A3)
Perform(a, i) ≡ [a=Sense(Antibodies) ∧ i=1]. (A4)

¬PerformIfValueKnownIs(a, f, v, i). (A5)

Proposition 2. The theory (FEC1)∧ ...∧(FEC5)∧(EFEC1)∧ ...∧(EFEC26)∧DCA∧UNAA∧
(A1) ∧ ... ∧ (A5) entails the following sentences:

¬KnowsValue(〈0〉,Disease, 0).
KnowsValue(〈2〉,Disease, 0).

¬KnowsIfHappens(〈0〉,MakeAntibodies, 0).

KnowsIfHappens(〈2〉,MakeAntibodies, 0).

3.7 ASP Implementation

For I ⊂ N we have encoded the FEC/EFEC domain independent axioms in ASP, along with
the shopping and antibodies examples. Coding (see http://www.ucl.ac.uk/infostudies/efec)
is based on the reformulation of circumscription into stable model semantics given by Kim et
al. [14]. The ASP solver Clingo [12] is used for computation.

For example, (FEC1) can be first rewritten into

valueCaused(F, V, T) :− happens(A, T), causesValue(A, F, V, T).

and then a choice formula [14] (e.g., ∀X(p(X)∨¬p(X))) is added (as a rule, e..g, ∀X(¬p(X)←
not p(X))):

−valueCaused(F, V, T) :− possVal(F, V), time(T), not causedValue(F, V, T).

where “−” and “not” are the classical negation and negation as failure in ASP, respectively.
possV al(F, V ) are given as facts (e.g., possVal(bought, true), possVal(bought, false)) based
on (S1)–(S3), and time(T ) represents the time sort (described shortly). These two predicates
are added to the body of the rule to ensure the rule is safe – all variables appearing in a rule
must appear in a domain predicate – a condition for grounding.

In the translation of EFEC into ASP, we need to guarantee that the sort T of timepoints
is finite. This is achieved by using positive integers for the sort W of worlds and the sort I of
instants, with two constants maxworld and maxinstant whose meanings are indicated by their
names3. The ASP sort definitions are:

time((W, I)) :− world(W), instant(I).

world(1..maxworld).

instant(0..maxinstant).

3Although classical EFEC allows infinite worlds, if the action, fluent, value and instant sorts are all finite,
then the set of non-isomorphic worlds is also finite.
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The value of maxinstant depends on the queries, i.e. how far ahead the agent needs to
reason about. But finding the right (smallest but sufficient) value for maxworld is not obvious
given an EFEC specification and query. On the one hand we must ensure that there are enough
possible worlds, but on the other hand we do not want duplicate possible worlds that do not
affect the answers but may increase the computational complexity. The former requirement is
guaranteed by (EFEC20) and (EFEC26), and the latter can be achieved by adding an extra
axiom (an integrity constraint in ASP) to disallow duplicate worlds:

:− world(W1), world(W2), W1 != W2, equalUpTo(W1, W2, maxinstant).

Thus in the implementation, we can incrementally increase maxworld until Clingo reports
“satisfiable”. Note that although the value of maxworld found in this way is unique to a given
EFEC specification, Clingo may return multiple stable models because of permutations4 of
possible world labeling (e.g., we can swap the names of worlds “1” and “2” in one stable model
to obtain another). But any one of these isomorphic stable models can be used for answering
EFEC queries.

In particular, we have sound and complete reasoning as regards the knowledge predicates
defined in (EFEC9)-(EFEC14). For example, let Th = (FEC1) ∧ ... ∧ (FEC5) ∧ (EFEC1) ∧
... ∧ (EFEC26) ∧ (S1) ∧ ... ∧ (S13), let sm(Th) be a stable model returned by Clingo, let
θa, θn ∈ {0, . . . , maxinstant}, and let ζ and ν be ground fluent and value terms. Then
Th |= KnowsValueIs(〈θa〉, ζ, θn, ν) if and only if knowsValueIs(〈ω, θa〉, ζ, θn, ν) is in sm(Th)
for every world ω ∈ {1, . . . , maxworld}. Similarly, Th |= ¬KnowsValueIs(〈θa〉, ζ, θn, ν) if
and only if −knowsValueIs(〈ω, θa〉, ζ, θn, ν) is in sm(Th) for every ω ∈ {1, . . . , maxworld},
where “−” represents classical negation in Clingo. This is because the actual world Wa

must be isomorphic to exactly one such ω in any model. A UNIX script is given at
http://www.ucl.ac.uk/infostudies/efec for testing a representative sample of 88 such entail-
ments in Clingo, including all those in Proposition 1.

4 Summary, Related and Future Work

The contributions of this paper are (i) to generalize the EC of [23] to multi-valued (non-binary)
fluents, (ii) to build upon this generalization to provide an EC framework for combined nar-
rative, epistemic and causal reasoning under a possible-worlds approach, and (iii) to illustrate
how, for discrete time, our representation may be given a sound and complete ASP encod-
ing. EFEC is able to deal with triggered, concurrent, non-deterministic and conflicting action
occurrences in a uniform manner under both discrete and continuous models of time. It facili-
tates reasoning about knowledge of both action occurrences and fluent values at past, present
and future times, as well as epistemically feasible plan validation, where conditional actions’
conditions are guaranteed to be known by the time of potential execution. To the best of our
knowledge, no other existing epistemic action formalism is able to deal with this combination of
features. In particular, triggered events (and knowledge about them) have not previously been
incorporated in epistemic reasoning frameworks. This is in spite of their recognised importance
in modelling many domains, e.g. involving complex ramifications [26], or reasoning about bi-
ological, physical or mechanical systems [35, 22], and many modes of reasoning, e.g. evidence
gathering and diagnosis.

Our work is related to, and inspired by, the work of Scherl and Levesque [30, 29], who used
possible situations to specify how the mental state of an agent should change with ordinary

4In the shopping example, the unique value of maxworld is 9 and Clingo computes 9! = 362880 models.
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and sense actions, providing a solution to the frame problem for knowledge. It evolved from
Moore’s [24] Kripke-like formulation of epistemic notions of modal logic in action theories by
reifying possible worlds as situations. Since then several other studies have extended this model
with new features: [34] adapted the model in the context of the Fluent Calculus, [31] covered
concurrent actions, [13] introduced epistemic modalities for groups of agents, and [32] extended
the model to account for belief revision. The notions used in Section 3.4 to compare narratives
across different possible worlds are somewhat related to the notion of a history structure in [3].

To our knowledge little work has previously been done in extending possible-worlds epis-
temic action theories to deal with non-deterministic actions (resulting in knowledge loss). (An
exception is Ak [20] that also accounts for conditional sensing, but not functional fluents, con-
current actions, narrative reasoning or triggered events.) This may in part be explained by
the technical difficulty of ensuring that in each model there are sufficient possible worlds to
model the lack of knowledge that ensues after a non-deterministic event. In our framework this
has been made possible partly because non-deterministic effects are represented as conjuncts
(of CausesValue) rather than disjuncts, so that in each model each conjunct can be associated
with an accessible world. We see no reason why this solution should not be translated into
Situation Calculus-related approaches.

Non-determinism has been studied in non-possible-worlds approaches [1, 8]. Epistemic ac-
tion frameworks that use alternative knowledge models also include [25, 5, 33, 28, 19, 36, 18, 27].
This last EC-based work is limited to discrete time and binary fluents, but can model ramifi-
cations, a feature we have not yet looked at.

Circumscription and stable model semantics have both been used widely in action theories.
Of particular relevance here is [7], which discusses computational aspects of the frame, ramifica-
tion and qualification problems. Recent studies such as [11, 17] have identified syntactic classes
where circumscription and stable model semantics coincide, permitting the reformulation of
circumscriptive action theories, such as the Situation Calculus and the Event Calculus, into
ASP [16]. Their implementations are both fast and expressive in comparison to previous SAT-
or Prolog-based encodings, as exemplified by the ASP encoding introduced in [16, 14] and built
upon in the present study.

Denecker et al. [6] distinguish two general styles in programming ASP applications, the ASP-
belief methodology and the ASP-world methodology. In the former, a stable model represents
the belief state of an epistemic agent, which can be viewed to some extent as capturing the
beliefs obtained from a collection of possible worlds. In the latter, the different stable models
correspond to possible worlds, resembling the KR methodology of general logic programming.
The majority of ASP applications follow the ASP-world methodology. For instance [2] uses
ASP to encode the traditional Kripke-based modelling of the epistemic notions of an agent for
the multi-agent case, presenting a way to implement a variety of commonly met scenarios in
the field, such as the muddy children problem.

Most recently [9] gives an ASP implementation of a theory HPX that can refer to knowledge
about past world states. It uses an approximation of possible-worlds semantics for solving
postdiction problems. HPX has reduced computational complexity in comparison to previous
theories, for deterministic domains where sensing can also occur concurrently with acting.

Our future plans include more formal or general methods of showing the correctness and
limitations of our approach (other than case studies) and its correspondence with other frame-
works. Additionally, we aim to generalise our framework in various ways. For example, [21]
gives some preliminary ideas on how to include complex fluent conditions within conditional
actions. We will also work further on modeling both hypothetical and explicit knowledge about
the future (e.g. drawing on [4]), as well as on considerations of belief (and belief revision) rather
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than knowledge, nested knowledge/belief structures, and multi-agent domains.
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