
EPiC Series in Computer Science

Volume 34, 2015, Pages 73–79

ARCH14-15. 1st and 2nd International Workshop on
Applied veRification for Continuous and Hybrid Systems

Benchmark: Stratified Controllers of Tank Networks ∗

Stanley Bak1, Sergiy Bogomolov2, Marius Greitschus3, and Taylor T. Johnson4

1 Air Force Research Laboratory, Rome, NY, USA
stanleybak@gmail.com
2 IST Austria, Austria

sergiy.bogomolov@ist.ac.at
3 University of Freiburg, Germany

greitsch@informatik.uni-freiburg.de
4 University of Texas at Arlington, USA taylor.johnson@gmail.com

Abstract

We present a new model of a tank network used to transfer liquid. Tanks are connected by channels.

The throughput velocity of every particular channel is governed by the controller. We consider a

special class of stratified controllers which are organized in several phases. Every phase can be further

partitioned into multiple options. This structure makes it easy to generate a variety of benchmark

instances ranging in the size, branching factor and generally analysis complexity. We provide a flexible

benchmark generator for this class of benchmarks and a sample benchmark suite built by the generator.

Finally, we use the Hyst model transformation framework to convert the original model into the formats

of several reachability tools.

Category: academic Difficulty: medium

1 Context and Origins

The area of hybrid automata [10] has undergone a rapid development in the last decade. In
particular, several extensible frameworks [7, 4] for the analysis of hybrid automata are now
available. Such frameworks provide an excellent environment to develop new analysis algorithms
in a timely manner. However, an extensive testing suite is necessary to ensure the correctness
of the developed algorithms and furthermore evaluate their performance against other available
algorithms and tools. Unfortunately, only a few benchmark suites are publicly available [6].
Furthermore, the available benchmark instances are hard-coded and cannot be easily adjusted.
In this paper, we suggest a new extensible class of benchmarks inspired by the work of Frehse
et al. [8].

In addition, we provide a benchmark generator that automatically builds SpaceEx [7] models
based on the provided benchmark instance description and a sample benchmark suite built

∗v0.1, 2015-03-01, DISTRIBUTION A. Approved for public release; Distribution unlimited. (Approval AFRL
PA #88ABW-2015-1313, 20 MAR 2015)

G.Frehse and M.Althoff (eds.), ARCH15 (EPiC Series in Computer Science, vol. 34), pp. 73–79 73

Benchmark Generator for Stratified Controllers of Tank Networks Bak, Bogomolov, Greitschus, and Johnson

by the generator1. This benchmark class is of particular interest because of its scalability:
benchmark instances can be scaled both in discrete and continuous dimensions. We can generate
controllers that exhibit multiple branching points and several types of continuous dynamics.
Therefore, by increasing the branching factor and varying the continuous dynamics of the
controller we can easily adjust the complexity of benchmark instances.

Finally, we leverage the Hyst model transformation tool [2] in order to convert the generated
model into a number of formats compatible of recent hybrid systems reachability tools. This
gives tool developers the option of extending Hyst to support their tool, rather than manually
converting each specific benchmark to their tool’s format. Furthermore, Hyst features like
automatic automaton flattening can be leveraged in order to ease benchmark conversion.

We base our work on the switched buffer network benchmark [8]. In order to provide bench-
mark instances that scale both in discrete and continuous dimensions, we consider controllers
that exhibit multiple branching points and several types of continuous dynamics. Therefore,
by increasing the branching factor and varying the continuous dynamics of the controller we
can easily adjust the complexity of benchmark instances. We provide a benchmark suite in
the SpaceEx [7] format, and through Hyst, also analyze the benchmark in Flow* [4], HyCre-
ate2 [1], and dReach [9]. Of these, each of Flow*, dReach, and HyCreate2 have challenges when
analyzing this benchmark class.

2 Benchmark Description

Our system consists of a network of tanks connected by channels. The liquid flows into the
network through the initial tank. The controller adjusts the throughput rates of the channels
in order to ensure the liquid delivery to the sink tank. We consider properties that reason over
the fill level of the sink tank. The system can be seen as a composition of a plant (consisting
of a number of components modeling tanks and channels) and a controller which governs the
liquid flow throughout the network.

In the following, we describe the way the tanks and channels are modeled. The rate of
change of the fill level fT of a tank T , depends on the rates of inflow vin i and the rates of
outflow vout j of the liquid, where vin i is the velocity at which the liquid flows into the tank of
the i-th input channel, and vout j is the velocity at which the liquid flows out of the tank for
the j-th output channel. Thus, the evolution of the fill level of the tank T is described by the
differential equation ˙fT =

∑
i vin i−

∑
j vout j , where i and j range over incoming and outgoing

channels of T , respectively.
Here, we mainly focus on the controller structure. In particular, we consider a class of

stratified, i.e., layered, controllers. In this setting, the controller iterates over a number of
phases. The controller can open, close or generally modify the throughput values of network
channels in every phase. Every phase has a particular duration. Furthermore, a phase can
contain a number of options which allow for the fine-granular throughput adjustment in every
phase. All the options in one phase agree on the channel throughput they modify, i.e., if a
particular channel is to be opened in one option, this will also be the case in all other options.
However, the resulting throughput velocity may vary among the options. In other words, the
throughput adjustments in every phase are organized in strata. Those ideas are illustrated in
Fig. 1.

1The benchmark generator and suite can be downloaded from http://swt.informatik.uni-freiburg.de/

tool/spaceex/benchgen.

74

http://swt.informatik.uni-freiburg.de/tool/spaceex/benchgen
http://swt.informatik.uni-freiburg.de/tool/spaceex/benchgen

Benchmark Generator for Stratified Controllers of Tank Networks Bak, Bogomolov, Greitschus, and Johnson

Open . . .

Open1,1 . . . Openn,1

.

Open1,m . . . Openn,m

End
t := 0

o(c1)

o(c2) o(cn)

[t = tmax1
]

...

...

...

...
o(c1)

o(c2) o(cn)

[t = tmaxm]

Close Close1 . . . Closen End

t := 0

c(c1) c(c2) c(cn)

[t = tmaxc
]

. . . t := 0

Figure 1: Controller consisting of “open” and “close” phases. The “open” phase has m options.
Every option refers to n channels. The controller and the plant communicate through the
shared labels o(ci) and c(ci) which correspond to opening and closing channel ci, respectively.
The “close” phase always have at most one option. Variable t measures the time spent in a
phase.

. . .

Openn,i

c1min = α1min

∧ c1max = α1max

...
∧ cnmin

= αnmin

∧ cnmax
= αnmax

∧ t ≤ tmax i

ṫ = 1

. . .
o(cn−1) [t = tmaxi

]

Figure 2: Location Openn,i of the controller in the mode “No dynamics”. This location finalizes
the impact of the option i. In particular, the values of shared variables cjmin

and cjmax
are

updated with the constant values αjmin
and αjmax

, respectively. We enforce this update by
encoding it as a part of the location invariant. This in turn impacts the channels which also
refer to cjmin and cjmax . Variable t measures the time spent in the phase which is reflected by
the differential equation ṫ = 1.

The system behavior crucially depends on the way the controller adjusts the channel through-
put. We distinguish three modes:

(1) No dynamics: As soon as the channel is opened, its throughput v is given by the inequality
vmin ≤ v ≤ vmax.

(2) Constant dynamics: The throughput is governed by the differential equation v̇ = c for some
constant c.

(3) Affine dynamics: The channel opens gradually with the opening speed decaying towards
the target velocity vtarget , where the throughput evolution is provided by the differential
equation v̇ = c(vtarget − v) for a constant c.

Note that in case of “No dynamics” the throughput is changed instantaneously when the
channel is opened, whereas the channel is opened gradually in the other cases. In Fig. 2,

75

Benchmark Generator for Stratified Controllers of Tank Networks Bak, Bogomolov, Greitschus, and Johnson

0 100 200 300 400 500
0

20

40

60

80

100

TANKS:
d e f i n e tank ”MainTank” capac i ty=10
d e f i n e tank ”SubTank1” capac i ty=10
d e f i n e tank ”LastTank” capac i ty =100 s ink=”true ” output =0.5

CHANNELS:
d e f i n e channel ”RootChannel” root=”true ” gen f low=2
d e f i n e channel ” channel1 ”
d e f i n e channel ” channel2 ”

CONNECTIONS:
d e f i n e connect ion ”RootChannel” t a r g e t=”MainTank”
d e f i n e connect ion ” channel1 ” source=”MainTank” t a r g e t=”SubTank1”
d e f i n e connect ion ” channel2 ” source=”SubTank1” t a r g e t=”LastTank”

PHASES:
d e f i n e phase ” openphase ”
d e f i n e opt ion ” opt ion1 ” durat ion=40
d e f i n e opt ion ” opt ion1 ” ”RootChannel” ac t i on=”open”
d e f i n e opt ion ” opt ion1 ” ” channel1 ” ac t i on=”open”

lowest throughput=1 highes t throughput=1
d e f i n e opt ion ” opt ion1 ” ” channel2 ” ac t i on=”open”

lowest throughput=1 highes t throughput=1

d e f i n e opt ion ” opt ion2 ” durat ion=40
d e f i n e opt ion ” opt ion2 ” ”RootChannel” ac t i on=”open”
d e f i n e opt ion ” opt ion2 ” ” channel1 ” ac t i on=”open”

lowest throughput =0.9 h ighes t throughput =0.9
d e f i n e opt ion ” opt ion2 ” ” channel2 ” ac t i on=”open”

lowest throughput =0.9 h ighes t throughput =0.9

d e f i n e phase ” c l o s e ”
d e f i n e opt ion ” opt ion1 ” durat ion=20
d e f i n e opt ion ” opt ion1 ” ”RootChannel” ac t i on=”c l o s e ”
d e f i n e opt ion ” opt ion1 ” ” channel1 ” ac t i on=”c l o s e ”
d e f i n e opt ion ” opt ion1 ” ” channel2 ” ac t i on=”c l o s e ”

Figure 3: Fill level evolution of the sink tank for the network consisting of four tanks with linear
topology, i.e., initial tank, sink tank and two further tanks in between vs. time on the left hand
side. On the right hand side, the definition file used by the generator to produce a SpaceEx
model for this model is shown. The controller works in a cyclic manner, i.e., it proceeds with
the “open” phase as soon as the “close” phase is over.

we explain the structure of the controller with no dynamics in more detail. The modes with
constant and affine dynamics are built similarly by incorporating the differential equations
reflecting the appropriate throughput dynamics. The treatment of continuous dynamics poses
a major challenge for hybrid model checkers. By introducing those three modes, we provide
benchmark instances with gradually increasing continuous dynamics complexity which in turn
leads to increased verification effort.

Fig. 3 exemplifies the behavior of a sample tank network consisting of four tanks with linear
topology, i.e., initial tank, sink tank and two further tanks in between assuming a controller
with no dynamics.

3 Conversion

In order to make use of the proposed benchmark it is essential to be able to create a working
model in the tool of choice. Since tools have different input formats, we extend and make use
of the Hyst [2] tool. Hyst is a model transformation and translation tool, which takes input
in the SpaceEx format and generates models in the formats of Flow* [4], HyCreate2 [1], and
dReach [9]. For this work, the tool was extended by adding support for automaton flattening,
as well as nondeterministic flows and guards, and urgent transitions (which are all used in the
benchmark).

Additionally, in order to validate model import, we create a printer back to the SpaceEx
format so the flattened and modified automaton could be re-run with SpaceEx to validate
that the reachable set of states was unchanged during flattening. Using the sample network
system previously used is given in Figure 3, the reachable set of states was confirmed to match,
increasing confidence in the correctness of the flattening process. The file size during this
process grew from 29 kB (original) to 445 kB (flattened).

Computing reachability for this benchmark is particularly hard for the other tools to which

76

Benchmark Generator for Stratified Controllers of Tank Networks Bak, Bogomolov, Greitschus, and Johnson

Hyst can convert, as will be elaborated on shortly. To get some output, a minimal version
of the benchmark was generated (2 tanks) and the reach set was computed in SpaceEx. The
model was then flattened and converted to the format of Flow*, and the number of discrete
transitions was restricted to 20. The resultant output with SpaceEx and Flow* is shown in
Figure 4, and appears to overlap for both tools.

The generated benchmarks stress the supported tools in several ways. The largest issue with
most of the tools was a lack of fixpoint detection when processing discrete transitions. In the
benchmark, there is a large number of urgent modes in the flattened automaton which describe
the discrete logic. These urgent modes contain cycles which lead to infinite discrete-jump loops
(Zeno behavior) for tools which do not support fixpoint detection. In the HyCreate2 simulator,
these loops would be entered and then never exit until the discrete jump limit was reached, all
before any time elapsed in the simulation. This was also the reason why we needed to restrict
the number of discrete jumps to get an output from Flow* in Figure 4. Using a larger jump
bound in Flow* caused the number of possible paths to be so large that the computation ran into
memory issues before an output was produced. Several regularization [11] model transformation
passes were added to Hyst which attempted to eliminate this problem. One of the passes would
enforce a maximum number of jumps per time interval. This did not solve the problem, as if
the number of jumps was too low, then a time-progressing state would never be reached, and
if the number was too high, the number of paths would remain intractable. Enforcing dwell
times in non-urgent modes did not solve the problem, since it is the networks of urgent modes
which caused problems. Enforcing dwell times on urgent modes changes the semantics, which
led to models where all executions would end.

Another limitation discovered in the tools was that, since the generated mode names are
created from a concatenation of the mode names in the subsystems, the names of the modes
in the flattened automaton could get quite long. In Flow*, mode names longer than 100
characters were not accounted for, which required recompilation of the tool from source to
fix. In HyCreate2, each mode and transition has a file generated which is compiled within the
reachability engine. The filenames were too long for the filesystem, causing the OS to raise
an error. A model transformation pass was added to Hyst which shortened mode names to
overcome these limitations.

Since the number of variables (dimensions) was quite large, this led to poor performance
for the mixed-face lifting approach employed by HyCreate2. In dReach, the number of discrete
jumps must be specified exactly when checking for property violations. This is problematic be-
cause the model contains many urgent modes where no time elapses, although a discrete jump
occurs. After flattening, it is difficult to manually reason about the exact number of jumps
which should be considered. Finally, even the original model in SpaceEx needs to work around
limitations of the SpaceEx input format. Specifically, the format only supports a single syn-
chronization label per transition (which mandates using multiple successive urgent transitions
if multiple labels are desired, leading to the networks of urgent modes). All of these limitations
can be recast as desired enhancements to the corresponding tools, and their improvement can
be demonstrated with the proposed benchmark.

The benchmark also led to enhancements in the Hyst model transformation tool. Enhance-
ments were made to the tool to permit automated flattening of models, which was necessary
since SpaceEx was the only tool that supported a networked automaton input format. Flat-
tening has the effect of quickly growing the state space of the system, so model transformation
passes were added to Hyst in order to trim the number of states generated. Two model trans-
formation passes were added to eliminate unreachable modes. First, a pass was added which,
based on the discrete transitions and initial set of states, would remove any states that are

77

Benchmark Generator for Stratified Controllers of Tank Networks Bak, Bogomolov, Greitschus, and Johnson

0 200 400 600 800 1000
0

20

40

60

80

100

Figure 4: The reachable set of states for the minimal model in SpaceEx (left), and Flow* (right)
appears similar, increasing confidence in the translation process. Notice that the Flow* result is
over a significantly shorter time period, due to the explosion in runtime due to lack of fixpoint
detection.

discretely unreachable. Second, a model transformation pass was added in Hyst which removes
modes and associated transitions where the invariants are clearly unsatisfiable. This would
come up in cases in the tank system, for example, where a tank was in the starved state (which
means the tank is empty and its input flow is less than its maximum output flow), whereas
the previous tank had an output flow that was greater than the first tank’s maximum output
flow. The composed invariant for such cases would have constraints like x ∈ [0, 3] && x = 5,
where x is the output of the tank, 3 is its maximum output rate, and 5 is the input rate from
the previous tank. Such invariants can never be true, and these modes would be removed from
the model. Further passes could be imagined which make use of a more powerful procedure to
check if invariants are satisfiable, such as an SMT solver [5]. Additional features were added to
Hyst to support nondeterministic flows, reset assignments, and the detection and conversion of
urgent transitions, which are all present even in the simplest tank benchmark system. Passes
were also created to perform regularization in order to try to overcome the problems with Zeno
behaviors, which may be reused on other models in the future.

Even with the enhancements, the larger tank benchmarks stress the reachability tools and
further improvements may be required before they can successfully be used to compute reach-
ability for longer time periods. The flattened models contained thousands of states and transi-
tions. Users of verification tools who wanted to evaluate the benchmark would be unlikely to
accurately perform such a conversion by hand.

4 Outlook

We have presented a challenging benchmark study and a generation tool to create instances of
the benchmark with different structure. We have also provided a conversion tool that can take
the benchmark, flatten it, and convert it to the input format of various tools for analysis. Key
challenges with running the different tools on the converted benchmark were then explored,
providing direction for potential tool enhancements. Our benchmark suite can be used to test
hybrid model checking algorithms with respect to multiple criteria:

(a) Accuracy - generally, it is more challenging to treat affine dynamics compared to piece-wise
constant ones. By considering both options in our benchmarks, we enable the user to test
and compare algorithms in different settings. Nonlinear models of dynamics arising from
the physical tank could also be explored, but would require extensions to the benchmark
generator.

(b) Termination of reachability algorithms - if no global time horizon is provided in the

78

Benchmark Generator for Stratified Controllers of Tank Networks Bak, Bogomolov, Greitschus, and Johnson

controller, a fix-point may not be reached. However, in our setting, we assume a given
upper-bound on time that leads to the existence of a fix-point. Therefore, the benchmarks
provide the ability to test different algorithms’ termination conditions.

(c) Guidance sensitivity - the rich discrete structure makes our benchmark suite particularly
appropriate to test algorithms for search guidance in the system state space, such as guided
exploration methods [3].

(d) Scalability - the benchmark structure can easily be adjusted to a given structural com-
plexity by introducing additional phases/options and varying controller dynamics.

5 Acknowledgments

This work was partly supported by the Air Force Office of Scientific Research (AFOSR) Systems
and Software grant “Perpetual Model Validation”, by the European Research Council (ERC)
under grant 267989 (QUAREM), by the Austrian Science Fund (FWF) under grants S11402-
N23 (RiSE) and Z211-N23 (Wittgenstein Award), and by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

References

[1] S. Bak. HyCreate: A tool for overapproximating reachability of hybrid automata. In
http://stanleybak.com/projects/hycreate/hycreate.html.

[2] S. Bak, S. Bogomolov, and T. T. Johnson. Hyst: A source transformation and translation tool for
hybrid automaton models (tool paper). In Hybrid Systems: Computation and Control (HSCC),
2015.

[3] S. Bogomolov, A. Donze, G. Frehse, R. Grosu, T. T. Johnson, H. Ladan, A. Podelski, and
M. Wehrle. Abstraction-based guided search for hybrid systems. In E. Bartocci and C. Ramakrish-
nan, editors, Model Checking Software, volume 7976 of Lecture Notes in Computer Science, pages
117–134. Springer Berlin Heidelberg, 2013.

[4] X. Chen, E. Abraham, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid
systems. In Computer Aided Verification, 2013.

[5] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. of 14th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems, TACAS ’08/ETAPS
’08, pages 337–340. Springer-Verlag, 2008.

[6] A. Fehnker and F. Ivančić. Benchmarks for hybrid systems verification. In Hybrid Systems:
Computation and Control, pages 381–397, 2004.

[7] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. SpaceEx: Scalable verification of hybrid systems. In Computer Aided Verification,
pages 379–395, 2011.

[8] G. Frehse and O. Maler. Reachability analysis of a switched buffer network. In Hybrid Systems:
Computation and Control (HSCC), pages 698–701, 2007.

[9] S. Gao, S. Kong, W. Chen, and E. M. Clarke. Delta-complete analysis for bounded reachability
of hybrid systems. CoRR, abs/1404.7171, 2014.

[10] T. A. Henzinger. The theory of hybrid automata. In Logic in Computer Science, pages 278–292,
1996.

[11] K. H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry. On the regularization of zeno hybrid
automata. Systems & Control Letters, 38(3):141–150, 1999.

79

http://www.avacs.org/

	Context and Origins
	Benchmark Description
	Conversion
	Outlook
	Acknowledgments

