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Abstract

Algebraic specification methods, well-known in the area of programming languages, are
adapted to present a tailored framework for hyperdocuments and hyperdocument systems.
In this framework, a hyperdocument is defined via its abstract syntax, which is a variable-
free term of a suitable constructor-based signature. Both the representation in a markup
language and the graphical presentation on the screen as well as further representations
are elements of particular algebraic interpretations of the same signature. This technique
allows the application of well-known methods from the field of compiler construction to
the development of hyperdocument systems. Ideas for its implementation in the functional
language Haskell are roughly drafted. It is shown how XML-based markup languages
with schemas and stylesheets can be defined in terms of this framework and how this
framework can be extended so that it can deal with partially specified documents, called
semi documents. These semi documents can be automatically adapted to the users’ needs,
which e.g. is helpful to ensure accessibility.

1 Introduction

A hyperdocument1 is a particular electronic document, which one does not have to read in a
linear way. Parts of the document, referenced by anchors, are connected with other documents
or parts of them via hyperlinks, which induce a hyper structure on the text. Hyperdocument
engineering is a special discipline of software engineering [17]. Instead of general programming
languages and assembly languages, markup and layout languages are used; instead of context-
free grammars, there are schemas; instead of compilers, browsers transform source documents
from a markup language into a layout language. The life cycle for hyperdocuments is much
shorter than for most other kinds of software products [14], and in no other field of software
engineering have programmers, designers and users become more closely related over the last
decade than in hyperdocument engineering. The differences between producers and consumers
blur so much that the term prosumer [13] is sometimes used.

Software engineering in general [27] and compiler construction in particular ([25], [26])
benefit from the rigorous use of algebraic specification techniques, with e.g. concepts like
constructor-based signatures, syntax trees, morphisms, semantic interpretations, specifications
and refinement [5], which originate mainly in the area of mathematical logic and universal
algebra [10]. A clean separation between the level of modeling and the level of implementation
is always recommended. With a precise and clear model, implementation becomes much easier
and more reliable.

This work adapts general algebraic methods to define a tailored framework for hyperdoc-
uments and hyperdocument systems and shows how hyperdocument engineering can benefit
from this approach.

1The term hyperdocument is used here as a generalization of the terms hypertext document and hypermedia
document.
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2 Preliminaries

Research and industry have created many different approaches for modeling hyperdocuments,
starting with Vannevar Bush’s concepts in 1945, continuing with the Dexter model and the
tower model in the nineties of the last century, and leading to the document object model and
area model of the WWW era. The models can be categorized into two classes, the information-
centered models, which focus on the structure of a hyperdocument, and the screen-based models,
which focus on its presentation.

From a technical point of view, hyperdocuments are a particular kind of electronic docu-
ments. With the growing success of the WWW, markup languages have practically become
the standard for the concrete description of the information-centered aspect of hyperdocuments.
The screen-based aspects are usually described by layout languages. Both are subclasses of the
context-free languages. A hyperdocument system is a tool that transforms a hyperdocument
from one representation into another. Today, the most commonly used hyperdocument systems
are browsers. They take a hyperdocument, coded in a markup language, and transform it into
a visual presentation of this document.

Figure 1: Hyperdocuments

An (algebraic) specification SP = (Σ,A) consists of a (many-sorted) signature Σ, which
captures the abstract syntax, and a set of Σ-algebras A2, which capture the allowed semantics.
The Σ-algebras can either be given explicitly by writing them as tuples of carrier sets and
functions, or implicitly by a set of Σ-Horn formulas.

A (many-sorted) signature Σ = (S, F,R) consists of a set S of sorts, an S∗×S-sorted set F
of function symbols, and an s-sorted set R of relation symbols. If R = ∅, we write Σ = (S, F )
for short. Instead of f ∈ F(e,s), we write f : e → s ∈ F . If e = ε, then f is called a constant.
Function symbols that only build up data are called constructors and are denoted by CO, other
function symbols are called defined functions and are denoted by DF . If F = CO, that means
all function symbols are constructors, then the signature is called a constructor signature; if
F = CO∪DF , it is called a constructor-based signature. If X is an s-sorted set of variables, the
s-sorted set TΣ(X) of Σ terms is defined inductively, so that for all s ∈ S holds Xs ⊆ TΣ(X)s,
and for all w ∈ S∗, s ∈ S, f : w → s ∈ Σ and t ∈ TΣ(X)w holds f(t) ∈ TΣ(X)s. The set
of variable-free terms, called Σ ground terms, is denoted by TΣ. The s-sorted set AtΣ(X) of
Σ atoms is defined inductively, so that for all w ∈ S+, r : w ∈ Σ and t ∈ TΣ(X)w holds
r(t) ∈ AtΣ(X). The set of variable-free atoms, called Σ-ground atoms, is denoted by AtΣ.

A Σ-algebra is a tuple A = (A,OP ), where for all s ∈ N there exists exactly one non-empty
carrier set As ∈ A, for all (co : s) ∈ CO there exists exactly one element coA ∈ As, and for
all (co : e → s) ∈ CO there exists exactly one function coA : Ae → As ∈ OP . A function σ,
which assigns an algebra to a given signature, is called a semantic function. A Σ-algebra Ainit

is said to be initial in the class of all Σ-algebras if there is for each Σ-algebra A exactly one

2If A is a singleton, the name of the set of algebras and the name of the algebra are identical.
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Σ-homomorphism init : Ainit → A, called initial homomorphism. A Σ-homomorphism is an
s-sorted mapping h : A1 −→ A2 between two Σ-algebras A1 and A2, so that for all function
symbols f : w −→ s ∈ Σ holds hs ◦ fA1 = fA2 ◦ hw [10]. The initial algebra, if it exists, is
unique up to isomorphism. So in Fig. 2, σinit is the semantic function, which assigns the initial
Σ-algebra Ainit to the signature Σ, and each hi is an initial morphism. Because σinit is unique
if it exists, and, according to the definition, there is exactly one hi, it holds σi = σinit ◦ hi,
and so it is possible to define the semantics of a signature via the initial algebra. It can be
proven that for each constructor signature, the set of all ground terms is initial in the class of
all Σ-algebras [10].

Figure 2: Syntax and semantic

Σ-Horn formulas [24] are of the form f(t1, . . . , tn) ≡ u ⇐ G or r(t1, . . . , tn) ⇐ G, where
f ∈ DF , t1, . . . , tn, u are constructor terms, G is a conjunction of Σ atoms, called goal, and
var(u) ⊆ var(t1, . . . , tn, G), where var : TΣ → P(X) denotes the set of variables in a constructor
term.

A specification can be built hierarchically. Given a specification SP ′ = ((S′, F ′), (A′, OP ′)),
a set S of sort symbols disjoint from S′, and a set of (S∪S′)∗×(S∪S′)-sorted function symbols
F disjoint from F ′, the specification SPSP ′ = (ΣSP ′ ,ASP ′) with ΣSP ′ = (S ∪ S′, F ∪ F ′) and
ASP ′ = (A ∪ A′, OP ∪ OP ′) is a ΣSP ′ -algebra called the specification over basic specification
SP ′.

A compiler translates source code, written in a concrete syntax of a source language, usually
described by a context-free grammar, into a semantically equivalent artifact of a target language.
The first part of a compiler is called front-end or parser, denoted by parseL(G). It analyses
the source code, singles out erroneous words regarding the given language L(G), and assigns to
each valid word w ∈ L(G) a tree-structured representation t, called (abstract) syntax tree. The
second part is called back-end or evaluator, denoted by evalL

′
. It assigns to each syntax tree t,

possibly enriched with additional attributes, artifacts of the target language L′. For particular
classes of context-free grammars, it can be shown that parseL(G) can be automatically generated

from the grammar G. In these cases, it suffices to define a compiler by a tuple (G, evalL
′
).
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A context-free grammar is a tuple G = (N,T, P, S), where N is a finite set of non-terminal
symbols, T is a finite set of terminal symbols, P is a finite set of production rules, S ∈ N
is the start symbol, and all production rules are of the form X −→ w, where X ∈ N and
w ∈ (N ∪ T )∗. It is called a (linear) tree grammar if all production rules have the form
X −→ tw, where X ∈ N , t ∈ T and w ∈ N∗, and for all production rules X → tw and
X ′ → tw′, X,X ′ ∈ N,w,w′ ∈ N∗, t ∈ T holds X = X ′.

A grammar over a basic specification is a tuple G(SP ′) = (N ∪ S′, T ∪ A′, P, S), where N
is a finite set of non-terminal symbols disjoint from S′, T is a finite set of terminal symbols
disjoint from A′, P and S are as previously defined, and SP ′ = ((S′, F ′), (A′, OP ′)). In a
context-free grammar over a basic specification, all rules have the form X −→ ε or X −→
w1X1 . . . wnXnwn+1 with X,Xi ∈ N and wi ∈ (N ∪ S′ ∪ T ∪ A′)∗ for 1 ≤ i ≤ n. In a tree
grammar over a basic specification, all rules have the form X −→ tw, with X ∈ N , t ∈ T ∪ A′
and w ∈ (N ∪ S′)∗ for 1 ≤ i ≤ n.

Context-free grammars are usually described in a metasyntax named Backus-Naur Form
(BNF cf. [16]), or in Extended Backus-Naur Form (EBNF cf. [9]). Also, the Augmented Backus-
Naur Form (ABNF cf. [1]) is commonly used for internet-technical specifications. Each of the
enhanced forms can be converted into the basic BNF.

Figure 3: Two ways to define the abstract syntax

The abstract syntax for each context-free grammar G, denoted by AST (G), can be con-
structed in two ways (Fig. 3). The first way, originating from logic and more common
in the area of compiler construction and verification, is by a signature Σ(G) = (N,CO),
where N is now seen as a finite set of sort symbols, and CO is a set of constructors with
CO = {cp : X1 × . . . ×Xn −→ X | ∃ : p = (X −→ w1X1w2 . . . wnXnwn+1) ∈ P,wi ∈ T ∗, 1 ≤
i ≤ n + 1, Xj ∈ N, 1 ≤ j ≤ n}. The set of all ground terms TΣ(G) is the abstract syntax of
L(G). Because TΣ(G) results from Σ(G), and Σ(G) can be uniquely constructed from G, we
use the term G-algebra instead of Σ(G)-algebra and TG instead of TΣ(G) in the following. The
second way, originating from reasoning about formal languages itself and mainly found in the
area of complexity and efficiency analysis, is by an abstract grammar Gabs, which is a (linear)
tree grammar. The language L(Gabs) is the abstract syntax of L(G). It can be shown that TG
is equal to L(Gabs).

The language of a context-free grammar G = (N,T, P, S), denoted by L(G), can be con-
structed in two ways (Fig. 4). The first is via derivation from the start symbol in G,
L(G) = {w ∈ T ∗ | S ⇒∗G w}. The second is via a homomorphism evalWord, which maps each
syntax tree to a string of T ∗ in the following way. Each constructor coXw0X1w1...Xnwn

∈ Σ(G),
that is, the constructor resulting from the production rule X −→ w0X1w1 . . . Xnwn ∈ P with

w0, . . . , wn ∈ Z∗ and X1, . . . , Xn ∈ N , is interpreted as co
Word(G)
Xw0X1w1...Xnwn

: T ∗ × . . .× T ∗ → T ∗
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Figure 4: Two ways to define L(G)

with (v1, . . . , vn) 7→ w0v1w1 . . . vnwn for all v1, . . . , vn ∈ T ∗. Let L(TG) = evalWord(G)(TG),
then the resulting tuple (T ∗, L(TG)) is a G-algebra, named word algebra, and L(G) is the sub-
set of L(TG) that only contains strings resulting from syntax trees of sort S. Fig. 5 gives an
overview. Areas of concrete syntax are highlighted in the figures by a red background, and
areas of abstract syntax by a green background3.

Figure 5: Concrete and abstract syntax

3 Algebraic Framework for Hyperdocument Systems

This new framework for hyperdocuments and hyperdocument systems is restricted to hyperdoc-
uments that can be described with markup languages, amalgamates central aspects of existing
hyperdocument models, and strips off a lot of model-specific ballast and proprietary notation.

3The notation stems from SeeMe [12] and is mainly used in knowledge management. Blue-filled rectan-
gles represent entities, and yellow-filled rectangles with rounded corners represent functions, which are called
activities there.
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Markup languages can be characterized via particular context-free grammars, so-called XML
grammars. Let G(SP ′) = ((N ∪ Ñ) ∪ (AT ∪ ÃT ) ∪ S′, T ∪A′, P, S) be a grammar over a basic
specification. G(SP ′) is an XML grammar4 if all production rules p are either of the form
X −→ 〈t Ỹ 〉( X̃1 | . . . | X̃n)〈/t〉 for X ∈ N or X → u = ”v” with u ∈ String5, v ∈ A′ for
X ∈ AT or X̃ −→ XX̃ | ε for X ∈ Ñ ∪ ÃT . Converting the rule for X ∈ N from the shorter
EBNF into a basic BNF notation results in n rules, where each rule pi, 1 ≤ i ≤ n, has the
form X −→ 〈t Ỹ 〉 X̃i 〈/t〉. With the previously shown abstraction mechanism, this leads to a
constructor cpi

: Ỹ × X̃i → X. As the terminal symbol t provides us with a unique identifier,
we name the constructor tXi

instead of cpi
. Each rule p of the form Y −→ u = ”v” with

u ∈ String, v ∈ S′ leads to a constructor cp : String × S′ → Y , which we name avY instead of
cp. Therefore, an abstract syntax and a validating parser, which reads a correct document in
a particular markup language into its abstract representation, can be generated automatically,
and a hyperdocument can be defined via a variable-free term of a constructor-based signature.
This is the first part of the hyperdocument system depicted on the left-hand side of Fig. 6.

Figure 6: Algebraic framework for hyperdocument systems

We now have different possibilities to interpret or evaluate the syntax tree into a view,
depicted on the right-hand side of Fig. 6. A view in this context is every non-textual represen-
tation, most often a graphically rendered output on a screen. A language that describes views
is called layout language, and the graphical representation is created by a rendering engine6.
We can identify at least three typical kinds of views. First, the document view on the screen,
well known from each browser. Second, the document tree view as defined by the W3C and
often used for theoretical examination of hyper structures (cf. e.g. [15]). A document tree is
an unranked, sibling-ordered, labeled tree that has two different kinds of leaves, called content
nodes and attribute nodes. And third, the site map view that focuses on the links and rela-
tions between documents or parts of documents. Additionally, output for special devices, such
as screen readers or Braille terminals, can be simply seen as another algebraic interpretation.
Therefore, browsers can also be classified by different algebras.

A real-world hyperdocument usually does not consist of a single word of a markup language,
but is a bundle consisting of a schema, written in a schema language S, a document description,
written in a markup language ML(S) that depends on the schema, and a stylesheet, written in

4This is an attributed extension of the XML grammars introduced by [4] or the similar balanced grammars
of [6].

5String is assumed to be a sort in each basic specification.
6How rendering engines work in detail is beyond the scope of this work.
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Figure 7: Real-world hyperdocuments

a stylesheet language SL, depicted by the entity at bottom left in Fig. 7.

The most popular schema languages are the document-based XML Schema (c.f. [30]), the
Document Type Definition (DTD), and the pattern-based RelaxNG (c.f. [23]), where each DTD
language definition can easily be transformed into an XML Schema language definition.

Document-based means that a schema S is in principle a tree grammar, coded in a meta
syntax similar to EBNF notation. This tree grammar does not directly describe the markup
language we want to define, but is the abstract syntax for this markup language. The markup
language itself is a particular interpretation, named the ML(S)-algebra, of the abstract syntax
defined by the schema. Moreover, the schema defines additional attributes and some constraints,
e.g. for the number of times an element can occur. For the simple special cases that it can
occur either zero or one times, exactly once or infinitely often, we can find a context-free
representation, but characterizing a range in between is not possible, at least not with reasonable
effort. Also, the fact that an attribute is required and that it has a default value cannot be
captured by a context-free grammar. So we need an additional constraint base that does not
influence the syntax of the markup language but influences the parser. The parser must reject
badly-formed documents, but also documents that do not fulfill the additional constraints given
by the schema.

Pattern-based means that the set of document trees, not that of syntax trees, is characterized
via allowed patterns of the paths of the document trees. In the framework presented, pattern-
based approaches are harder to handle. The reason is that there is no canonical way to build
an abstract syntax for the markup language for the algebra of documents trees. So usually one
has to find a morphism between the document tree algebra and the markup language algebra.
Each document-based schema can be translated into a pattern-based one ([18]), and a subset
of RelaxNG, called BonXai, [18], can be translated into a document-based form.

As a running example, we use MiniGPX, a shortened version of the GPS Exchange Format
for exchanging geodata7. Though this is not a typical markup language for hyperdocuments, it
has a comparatively short and understandable schema definition8, and nearly all features can
be demonstrated with this language.

All elements and types of the schema are represented in the abstract syntax as constructors.
Attributes that belong to complex types are represented as constructors of the corresponding
attribute sort. Constraints, such as minOccurs or maxOccurs, have the default value 1. This

7http://www.topografix.com/gpx.asp
8http://www.topografix.com/gpx/1/1/gpx.xsd
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Figure 8: Schema and stylesheet languages

means that e.g. metadata should appear either exactly once or not at all. Basic types, such as
xsd:string, are assumed to have a predefined interpretation.

<xsd:element name="gpx" type="gpxType"/>

<xsd:complexType name="gpxType">

<xsd:sequence>

<xsd:element name="metadata" type="metadataType" minOccurs="0"/>

<xsd:element name="wpt" type="wptType" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="trk" type="trkType" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="version" type="xsd:string" use="required" fixed="MiniGPX"/>

<xsd:attribute name="creator" type="xsd:string" use="required"/>

</xsd:complexType>

This complex type from the schema SGPX given above can be represented by a signature
Σ(SGPX) = (N,OP ) with

OP = { root :: gpxType av × gpxType → gpx

gpxType :: metadataAlt × wptList × trkList → gpxType

gpx MiniGPX :: → gpxType av

gpx creator :: xsd:string → gpxType av

: :: gpxType av × gpxType avList → gpxType avList

[] :: → gpxType avList . . . }

To show that the proposed framework works reasonably well, we have prototypically imple-
mented some core features in the functional programming language Haskell9 [11]. Both markup
languages and functional programming languages are declarative, but programming languages
are better suited for structuring problems and building abstractions than markup languages.
The goal of structural markup, where documents are specified in terms of their logical features
rather than of particular rendering procedures, is similar to the ideals of functional program-
ming, where computations are specified in mathematical rather than machine-oriented terms.
Hyperdocuments can be seen as trees, and functional languages usually offer extensive facilities

9http://www.haskell.org
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for representing and manipulating trees. Moreover, if a typed functional language is used, the
type system can provide additional structure and integrity.

To make the gap between the concept and the implementation as large as necessary and as
small as possible, a signature is implemented as a polymorph data type10. Let Σ = (S,OP ) be
a signature with S = {s1, . . . , sn} and OP = {f11 : w11 → s1, . . . , f1n1

: w1n1
→ s1, . . . , fk1 :

wk1 → sk, . . . , fknk
: w1nk

→ sk}. Each sort is now implemented as a type variable, and
each function symbol is implemented as an attribute. Let (f : ε → s)′ =def f::S and
(f : s1 . . . sn → s)′ =def f::s 1 -> ... -> s n -> s. We get the following data type:

data SIG s 1 ... s k = SIG {(f11 :: w11 → s1)′, . . . , (f1n1
:: w1n1

→ s1)′, . . . ,
(fk1 :: wk1 → sk)′, . . . , (fknk

:: wknk
→ sk)′ }

The signature Σ(SGPX) is implemented by the following data type:

data GpxSIG gpx gpxType gpxType_av ... =

GpxSIG {root_mt :: [gpxType_av] -> gpx,

root_ :: [gpxType_av] -> gpxType -> gpx,

gpxType_ :: (Maybe metadata) -> [wpt] -> [trk] -> gpxType,

gpx_MiniGPX :: gpxType_av,

gpx_creator :: XSD_string -> gpxType_av, ...}

A framework is called schema-aware if the data binding and the processing, manipulating
or generation of documents depend on a given schema. E.g. the special purpose functional
languages XSLT11 and FXT [3], implemented in SML [22], transform arbitrary document trees
independently of the schema, and so they need no implementation of XML types. The Web
Authoring System Haskell (WASH) [28] represents the XHTML schema as a Haskell data type.
HaXml [21] gives a translation of DTDs to Haskell types [31], and UUXML [2] gives a type-
preserving XML Schema/Haskell data binding. As far as we know, all schema-aware approaches
for hyperdocuments embed XML values by finding a suitable translation between XML types,
described by schemas and types of the programming language. Our implementation first trans-
lates schemas into constructor signatures and then uses a translation between constructor sig-
natures and Haskell types.

Each algebra is then implemented by simply instantiating the type variables with the con-
crete types of the carrier sets, and each attribute is instantiated by the corresponding function
of the given algebra. So the algebra that interprets a document as an abstract syntax tree of
ASTML(S) looks like this in the Haskell notation:

gpxALG :: GpxSIG Gpx GpxType GpxType_av ...

gpxALG = GpxSIG Root_Mt Root_ GpxType_ Gpx_MiniGPX Gpx_creator ...

data Gpx = Root_Mt [GpxType_av] | Root_ [GpxType_av] GpxType

data GpxType = GpxType_’ (Maybe Metadata’) [Wpt] [Trk]

data GpxType_av = Gpx_MiniGPX | Gpx_creator XSD_string

A second algebra, which interprets a document as an object of the Scalable Vector Graphics
(SVG)12, can look like this:

10This implementation technique is proposed by [26] in the context of compiler construction and is still under
development.

11http://www.w3.org/TR/xslt
12http://www.w3.org/Graphics/SVG/
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svgALG = GpxSIG gpx_ gpxType_ gpxType_av_ ... =

where root_mt _ = "<svg />"

root_ avlist gpxType = "<svg xmlns=\"http://www.w3.org/2000/svg\"

xmlns:svg=\"http://www.w3.org/2000/svg\"

xmlns:xlink=\"http://www.w3.org/1999/xlink\">"

++ gpxType ++ "</svg>"

gpxType_ metadata wpt trk = "<g>" ++ (conc wpt) ++

(conc trk) ++ "</g>"

gpx_MiniGPX = "MiniGPX"

gpx_creator c = c

The stylesheet is the formatter for a hyperdocument. It defines path expressions to locate a
particular place in the document tree, and actions that modify the selected part of the tree. In
practice, a stylesheet is usually described by CSS (c.f. [29]) or XSLT13. CSS stylesheets can only
modify values of attributes, but not the document tree itself. XSLT is a tree-transformation
language that can also change the structure of the tree. Because the hyperdocument is repre-
sented by a syntax tree doc ∈ ASTML(S), the stylesheet must be interpreted by paths on doc,
and the action by tree transformations at the located place. After executing the actions, we get
a modified syntax tree, which is then interpreted by a layout language, depicted by the entity
at bottom right in Fig. 7.

The parser that can be generated from the grammar can be realized in Haskell in a monadic
style. It not only parses the document itself, but is parameterized, so that it can be used to
compile a source document directly into a target interpretation.

parseGpx :: GpxSIG gpx gpxType gpxType_av metadata metadataType wpt wptType

wptType_av trk trkType name time bounds boundsType_av ele

sym number trkseg trksegType trkpt -> MParser Char gpx

parseGpx alg = do result <- (parseE ‘parM‘ parseC); return result

where parseE = do avlist <- (opencloseAV "gpx" (parseGpxType_av alg));

return (root_mt alg avlist)

parseC = do avlist <- (openAV "gpx" (parseGpxType_av alg))

content <- (parseGpxType alg)

close "gpx"

return (root_ alg avlist content)

parseGpxType :: ... -> MParser Char gpxType

parseGpxType alg = do result1 <- qmM’ (parseMetadata alg)

result2 <- starM (parseWpt alg)

result3 <- starM (parseTrk alg)

return (gpxType_ alg result1 result2 result3)

parseGpxType_av :: ... -> MParser Char gpxType_av

parseGpxType_av alg = parL [parseGpx_MiniGPX alg, parseGpx_creator alg]

where parseGpx_MiniGPX alg = do isTag "version"

isChar ’=’

result <- parseDQ

return (gpx_MiniGPX alg)

parseGpx_creator alg = do isTag "creator"

13http://www.w3.org/TR/xslt
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isChar ’=’

result <- parseDQ

return (gpx_creator alg result)

If parseGPX is called with gpxALG and applied to a document from L(ML(S)),

<gpx version="MiniGPX" creator="JOSM GPX export">

<metadata>

<bounds minlat="51.4813" minlon="7.3855"

maxlat="51.5019" maxlon="7.4255"/>

</metadata>

<trk>

<name>H-Bahn</name>

<trkseg>

<trkpt lat="51.4921" lon="7.4166">

<time>2008-03-28T17:02:06Z</time>

</trkpt>

<trkpt lat="51.4922" lon="7.4167">

<time>2008-03-31T22:29:55Z</time>

</trkpt>

<trkpt lat="51.4922" lon="7.4168">

<time>2008-11-27T12:47:33Z</time>

</trkpt>

</trkseg>

</trk>

</gpx>

then the result is a syntax tree from ASTML(S).

Root_ [Gpx_MiniGPX,Gpx_creator "JOSM GPX export"]

(GpxType_

(Just (Metadata_ (MetadataType_

Nothing

Nothing

(Just (Bounds_mt [Bounds_minlat 51.4813,Bounds_minlon 7.3855,

Bounds_maxlat 51.5019,Bounds_maxlon 7.4255])))))

[]

[]

[Trk_ (TrkType_ (Just (Name_ "H-Bahn"))

[Trkseg_ (TrksegType_ [

Trkpt_ [WptType_lat 51.4921,WptType_lon 7.4166]

(WptType_ Nothing (Just (Time_ "2008-03-28T17:02:06Z"))

Nothing Nothing),

Trkpt_ [WptType_lat 51.4922,WptType_lon 7.4167]

(WptType_ Nothing (Just (Time_ "2008-03-31T22:29:55Z"))

Nothing Nothing),

Trkpt_ [WptType_lat 51.4922,WptType_lon 7.4168]

(WptType_ Nothing (Just (Time_ "2008-11-27T12:47:33Z"))

Nothing Nothing)])])]))
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If it is called with svgALG, the result is an SVG term:

<svg>

<g>

<line fill="none" stroke="#000000" stroke-width="2" x1="51.4921"

x2="51.4922" y1="7.4166" y2="7.4167"/>

<line fill="none" stroke="#000000" stroke-width="2" x1="51.4922"

x2="51.4922" y1="7.4167" y2="7.4168"/>

</g>

</svg>

4 Hyperdocument Engineering

Hyperdocument engineering can benefit from this framework in multiple ways, e.g. in the areas
of adaptable hyperdocuments, cf. [8], and universal design. There, it must be possible to design
documents that can be to a great extent tailored to the reader’s needs and wishes. So it would
be a great help for the developer to have a mechanism for specifying a set of documents for
which the specified aspects are fixed, and the rest is open to a user’s adaption. This can be done
by using syntax trees with variables as an abstract representation of so-called semi documents
[19]. Given a markup language ML(S) and assuming that the interpretation of ASTML(S) is
known, a syntax tree with variables describes a subset of ASTML(S), whereas a syntax tree
without variables describes a single element of it. Of course, in the end, the hyperdocument
system must deliver only a single element and not a set of elements to the rendering engine.
So, in addition, we need a user profile that characterizes the documents the user allows. In
contrast to developers, users more often think in terms of views. To describe profiles, we use
a particular profile description language P that can specify views in the way schemas describe
documents (cf. the bottom right part of Fig. 9). Now the adaptable hyperdocument system must
search for an assignment of the variables with which the interpretation of the corresponding
variable-free syntax tree fits the constraints of the user profile. This can also be a first step
towards a hyperdocument description language that specifies documents in a screen-oriented
setting, which is useful because producers and consumers are increasingly the same persons.

Figure 9: Modifications of the framework

Instead of obtaining the necessary information from a user profile, it is also possible to collect
design goals in a requirements engineering phase. We then enrich the signature Σ = (S, F ) with
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suitable relations that we need to express the requirements. With Σ = (F, S,R), it is possible to
capture the requirements by axioms AX, and the specification SP = (Σ, AX) specifies a set of
allowed algebras. With this technique, it is possible to semi-automatically generate documents
out of semi documents.

Because the markup language is an algebra of the abstract syntax, it is possible to use
syntax trees or a language that specifies syntax trees as an executable specification language
for hyperdocuments (cf. [20]). As in programming languages, it is easier to test constraints
and requirements on the abstract level than on the level of the concrete representation. The
concrete hyperdocument is then just an interpretation with the ML(S) algebra.

5 Conclusion and Future Work

The algebraic approach presented gives a precise and clear model for understanding XML-based
hyperdocuments and hyperdocument processing. It shows new techniques for hyperdocument
systems, especially browsers, resulting from research in compiler construction. Known tech-
niques and results from this area can be adapted. The abstract syntax trees are used to store
XML-based hyperdocuments unambiguously, a great advantage over document trees. It is
demonstrated how real-world hyperdocuments, described by a schema, a document description,
and a stylesheet, can be handled by our approach. Benefits for hyperdocument engineering
are only sketched, but not elaborated to their full potential. For example, it has not yet been
examined how these techniques can improve hyperdocument editors, where the source docu-
ments are specified via a layout language, and the document structure in a markup language is
the target. The functionality of the core elements of our framework is proven by prototypical
Haskell implementations, and it shows the usability of the model, but it is far from being a
software system that can be used in real-world hyperdocument engineering. To exhaust the
full potential of the framework, the term-rewriting language Maude [7] could be an interesting
alternative to Haskell.
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