
EPiC Series in Computing
Volume 65, 2019, Pages 81–93

GCAI 2019. Proceedings of the 5th Global
Conference on Artificial Intelligence

Projection in a Description Logic of Context with Actions
Satyadharma Tirtarasa and Benjamin Zarrieß

Theoretical Computer Science, TU Dresden
01062 Dresden, Germany

firstname.lastname@tu-dresden.de

Abstract
Projection is the problem of checking whether the execution of a given sequence of

actions will achieve its goal starting from some initial state. In this paper, we study a
setting where we combine a two-dimensional Description Logic of context (ConDL) with
an action formalism. We choose a well-studied ConDL where both: the possible states of
a dynamical system itself (object level) and also different context-dependent views on this
system state (context level) are organised in relational structures and can be described using
usual DL constructs. To represent how such a system and its views evolve we introduce a
suitable action formalism. It allows one to describe change on both levels. Furthermore,
the observable changes on the object level due to an action execution can also be context-
dependent. We show that the formalism is well-behaved in the sense that projection has
the same complexity as standard reasoning tasks in case ALCO is the underlying DL.

1 Introduction
The role-based paradigm of modelling languages has been introduced for the design of adaptive
and context-sensitive software systems. The concept of roles has been used at different levels
of abstraction, for example in data models [6], in a formal high-level modelling language [11]
for dynamical systems, and as an extension of more low-level object-oriented programming lan-
guages [12]. Unlike in a classical object-oriented setting, where an object has a fixed number
of methods attached to it, in a role-based setting an object adapts its behaviour dynamically
according to the roles it can play in different contexts. For example, in the conference manage-
ment system used for this conference the concept of roles is quite prominent. In the context of
this conference a researcher might play the role of an author whereas in context of some other
conference also the role of a program committee member can be played by the same researcher.
Both the view on submissions and the abilities to change something are context-dependent and
may vary over time in this scenario.

How to deal with explicit context extensions of modelling languages efficiently is a well-
studied research topic in different areas (e.g. [13, 10, 12, 7]). In [8], Böhme and Lippmann
studied a family of contextualized Description Logics (ConDLs). For this family, a reasoning
tool has been implemented, and has been used for translating and checking consistency of
models of a role-based modelling language for software systems [11, 7].

However, ConDLs are only suitable for expressing static context-dependent knowledge. In
this paper, we focus on an extension with dynamic aspects and introduce a ConDL-based action

D. Calvanese and L. Iocchi (eds.), GCAI 2019 (EPiC Series in Computing, vol. 65), pp. 81–93

Projection in ConDL with Actions Tirtarasa and Zarrieß

formalism for reasoning about change in context models. To talk about particular states we
consider the ConDL ALCOJALCOK from [8]. It is a two-sorted logic with a meta level signature
for describing contexts and an object level signature for the object domain. ALCO is the outer
meta level logic and is used to describe sets of contexts and relations among them. Each context
element of the meta level domain corresponds to a relational structure of the inner object level,
which is represented using ALCO as well. Both levels are connected with a modality that
allows one to access the object level from the meta level. In the example of the conference
management system one could think of a model, where we talk about researcher accounts with
their properties (for example, being PC member or author) and relations (like conflict of interest
with someone else) on the meta level, and where each account corresponds to an individual view
on concrete submissions and reviews on the object level. The action formalism we introduce
makes it possible to describe changes on both levels. For example, the meta level can change if
someone becomes a PC member or declares conflict of interest with someone. An object level
action might represent the changes when a particular review is entered for a submission. The
observable changes of this action from the perspective of a particular account depend on its
meta level properties. As a reasoning task we consider the projection problem. Projection is the
problem of checking whether the execution of a given sequence of actions will achieve its goal
starting from some initial state. In our example, a typical projection query could ask whether,
after a subreviewer has accepted to review some submission sub1 due to an invitation by a PC
member and after a review has been entered by some other PC member for this submission sub1,
the subreviewer is able to see this review or not. To solve projection we reduce it polynomially
to consistency in the underlying logic ALCOJALCOK by adapting techniques that have been
used before for reasoning in DL-based action formalisms [5].

The remainder of this paper is structured as follows. In the next section we recall the defi-
nitions of ALCOJALCOK. Section 3 introduces our action formalism and defines the projection
problem. In Section 4, we present our reduction method for deciding projection. We finish with
a conclusion in Section 5.

2 The Description Logic of Context ALCOJALCOK
For representing context-dependent knowledge we choose ALCOJALCOK, a simple member of
the family of ConDLs studied in [8]. To keep this part as simple as possible we focus only on
the standard DL ALCO on both levels. Before defining the two dimensional DL ALCOJALCOK
we first briefly recall the basic definitions of standard ALCO. For a thorough introduction to
DLs we refer to [2, 3].

Definition 1 (Syntax and semantics of ALCO). Let N = (NC,NR,NI) be a signature of disjoint
sets of concept names, role names and individual names, respectively. Let A ∈ NC, r ∈ NR and
a ∈ NI. An ALCO-concept C is built according to the following syntax rule

C ::= > | A | {a} | C u C | ¬C | ∃r.C.

Let C and D be ALCO-concept. A general concept inclusion (GCI) is of the form C v D. An
ALCO-KB ϕ is a Boolean combination of GCIs.

The semantics is defined in terms of an interpretation I = (∆I , ·I) over N, where ∆I is the
non-empty domain of I and ·I is a mapping that maps each A ∈ NC to a set AI ⊆ ∆I , each
r ∈ NR to a relation rI ⊆ ∆I×∆I and each a ∈ NI to an element aI ∈ ∆I . We make the unique
name assumption, that is, all individual names refer to different domain elements. Furthermore,
the mapping ·I is extended to complex concepts C,D as follows: >I := ∆I , ({a})I := {aI},

82

Projection in ConDL with Actions Tirtarasa and Zarrieß

(C uD)
I

:= CI ∩DI , (¬C)
I

:= ∆I \ CI , (∃r.C)
I

:= {d ∈ ∆I | there is e ∈ ∆I with (d, e) ∈
rI and e ∈ CI}. The interpretation I is a model of a GCI C v D iff CI ⊆ DI . The definition
of a model of a KB ϕ as a Boolean combination of GCIs is defined as usual.

Assume in an example domain about conference management we have a concept name Subs
(set of submissions), a role name has-review and an individual sub1. We can describe the set
of submissions without a review as the ALCO-concept: Subs u ¬(∃has-review .>) and a GCI
like {sub1} v Subs u ¬(∃has-review .>) expresses that the individual sub1 is an instance of this
concept. In the extended logic ALCOJALCOK we are going to define next, one can add an
additional level on top which in our example domain could be the level where we talk about PC
members, authors, their potential conflicts and their different views on the level of submissions
and reviews.

The logic ALCOJALCOK is two-sorted with a meta level signature M = (MC,MR,MI) and
an object level signature O = (OC,OR,OI). We call MC, MR and MI the set of meta concept
names, role names, and individual names respectively. Analogously, OC, OR, OI is called the
set of object concept names, role names, and individual names respectively. All these sets are
assumed to be pairwise disjoint. We use m- to denote expressions that use both signatures (e.g.
m-concept).

Definition 2 (Syntax of ALCOJALCOK). Let ϕ be an ALCO-KB over the object level signature
O and A ∈ MC, r ∈ MR and a ∈ MI meta level names. An ALCOJALCOK-meta level concept
description C over M and O (m-concept for short) is built according to the following syntax
rule

C ::= A | {a} | JϕK | C u C | ¬C | ∃r.C.

Further constructors are defined as abbreviations: > := ¬(A u ¬A) and ⊥ := (A u ¬A) (for
some A ∈ MC), C tD := ¬(C u ¬D) and ∀r.C := ¬∃r.¬C.

Let C and D be m-concepts. An ALCOJALCOK-Boolean meta level knowledge base ψ over
M and O (m-KB for short) is built according to the following syntax rule

ψ ::= C v D | ψ ∧ ψ | ¬ψ.

Notation for concept assertions and role assertions is used as abbreviations: (a : C) := {a} v C
and ((a, b) : r) := {a} v ∃r.{b}. Further Boolean connectives like ∨ and → are defined as usual.

The only non-standard expression is the meta concept constructor JϕK that refers to a
standard ALCO-KB ϕ. It gives access to the object level from the meta level and describes the
set of meta level domain elements (contexts) in which ϕ is true.

The semantics of ALCOJALCOK is defined in terms of nested interpretations. The structure
consists of a single meta level interpretation over M where each domain element is associated
with an object level interpretation over O over a rigid domain ∆.

Definition 3 (Nested Interpretation). A nested interpretation I (over M and O) is a tuple of
the form I := (C, ·I,∆, {Ic}c∈C), where

• (C, ·I) is an M-interpretation, and

• Ic := (∆, ·Ic) is an O-interpretation for each c ∈ C.

Definition 4 (Semantics). Let I = (C, ·I,∆, {Ic}c∈C) be a nested interpretation. The extension
of the mapping ·I to complex m-concepts is defined by induction on the structure of m-concepts

83

Projection in ConDL with Actions Tirtarasa and Zarrieß

C and D as follows:

({a})I := {aI};
(JϕK)I := {c ∈ C | Ic |= ϕ};
(C uD)I := CI ∩DI;

(¬C)I := C \ CI;

(∃r.C)I := {c ∈ C | there exists c′ ∈ C such that (c, c′) ∈ rI and c′ ∈ CI},

where a ∈ MI, r ∈ MR and ϕ is an ALCO-KB over O.
Let ψ be an m-KB. Satisfaction of ψ in I, written as I |= ψ (I is a model of ψ), is defined

by induction on the structure of ψ as follows:

I |= C v D iff CI ⊆ DI;

I |= ψ1 ∧ ψ2 iff I |= ψ1 and I |= ψ2;

I |= ¬ψ1 iff I 6|= ψ1.

Example 1. We describe some aspects of a conference management domain. On the meta level
we talk about accounts that can be PC members of a conference (meta level concept name PC)
with possibly conflict of interest (meta level role has-conflict) to authors (concept name Author).
Each account has a particular view on the object level where we have a domain of submissions
and reviews. The object level concept names Subs-To-Review and Own-Subs describe the as-
signed submissions for reviewing and their own written submissions, respectively. The object
level role has-review relates submissions to their reviews. We describe an initial situation using
the meta level individual names bob’s-account and alice’s-account and the object level name sub1

denoting a concrete submission. Intuitively, in this model the meta level concept

Jsub1 : Own-SubsK

describes the set of accounts (meta level domain elements) in which sub1 is an instance of
Own-Subs. Therefore, it represents the set of author accounts of sub1. The following meta level
axioms represent some initial knowledge:

alice’s-account : (∀has-conflict.¬Jsub1 : Own-SubsK) (1)
bob’s-account : Jsub1 : Own-SubsK (2)

> v Jsub1 : ∀has-review .⊥K (3)
Author ≡ ¬JOwn-Subs v ⊥K (4)

¬JSubs-To-Review v ⊥K v PC (5)

Alice has no conflict of interest with an author of the submission sub1 (1). Bob is an author
of sub1 (2), which has not received any reviews yet (3). Author accounts are defined as those
accounts with own submissions (4). Only PC members are allowed to review (5).

We show a model (nested interpretation) of axioms (1) - (5) in Figure 1. It shows the meta
level with PC members and authors on the left labelled with C. For the sake of conciseness, we
use alice and bob to denote alice’s-account and bob’s-account. These are the two named accounts
in our domain. In this particular model alice is a PC member with a conflict of interest to some
unnamed account. In the middle and on the right of the figure the particular views of bob and
alice on submissions and reviews are shown.

84

Projection in ConDL with Actions Tirtarasa and Zarrieß

C

alicePC

bobAuthor

has-conflict

∆
sub1

sub2Subs-To-Review

Ialice

has-review

∆
sub1Own-Subs

sub2

Ibob

Figure 1: A model of axioms 1-5

3 Representing Context-dependent Change

We define separate action descriptions for the object level and the meta level. Syntactically,
action descriptions are complex expressions with constructors for describing conditional and
simultaneous execution. Semantically, actions update interpretations by changing the mem-
bership of named individuals in concept names or of pairs of named individuals in role names
depending on the satisfaction of the condition.

Definition 5. Let ψ be an m-KB and A ∈ MC, r ∈ MR and a, b ∈ MI be meta level names. An
M-action description α (M-action for short) is built according to the following syntax rule:

α := 〈A⊕ a〉 | 〈A	 a〉 | 〈r⊕ (a, b)〉 | 〈r	 (a, b)〉 | (ψ . α) | (α ‖ α).

Let C be an m-concept and B ∈ OC, s ∈ OR and o, o′ ∈ OI object level names. An O-action
description β (O-action for short) is built according to the following syntax rule:

β := 〈B ⊕ o〉 | 〈B 	 o〉 | 〈s⊕ (o, o′)〉 | 〈s	 (o, o′)〉 | (C . β) | (β ‖ β).

We write just action if we do not distinguish between M-actions and O-actions. Actions of the
form 〈A ± a〉, 〈r ± (a, b)〉, 〈B ± o〉 or 〈s ± (o, o′)〉 are called atomic actions.

An atomic action like 〈A⊕ a〉 over some signature N changes an N-interpretation I by
adding aI to AI and 〈r	 (a, b)〉 deletes (aI , bI) from rI . M-actions have m-KBs as conditions
and O-actions have m-concepts as conditions. A conditional M-action (ψ . α1) takes effect in
the meta-level interpretation only if ψ is satisfied and a conditional O-action of the form C . β1
means that an O-interpretation Ic in a nested interpretation I is only updated with β1 if c
belongs to C in I. The construct (α1 ‖ α2) means that α1 and α2 are executed simultaneously,
similar with a conjunction.

For the first step of the definition of the execution semantics we define how a set of atomic
M-actions (or atomic O-actions) updates a non-nested M-interpretation (or O-interpretation).
Both levels behave similarly if atomic actions are considered.

Definition 6 (Update). Let N ∈ {M,O} denote either the meta-level or object-level signature,
and let I := (∆I , ·I) be an N-interpretation and E a set of atomic N-actions. The update of
I with E is an interpretation denoted by IE and is defined for all A ∈ NC, all r ∈ NR and all

85

Projection in ConDL with Actions Tirtarasa and Zarrieß

a ∈ NI as follows

∆IE := ∆I ;

AI
E

:=
(
AI \ {aI | 〈A	 a〉 ∈ E}

)
∪ {bI | 〈A⊕ b〉 ∈ E}

rI
E

:=
(
rI \ {(aI , bI) | 〈r	 (a, b)〉 ∈ E}

)
∪ {(aI , bI) | 〈r⊕ (a, b)〉 ∈ E}

aI
E

:= aI .

Next, we define the effects of the execution of a complex action in a nested interpretation as
a set of atomic actions. The definition tells us how the conditions attached by the “.” operator
are evaluated for M-actions and O-actions.

Definition 7 (Effects). Let I = (C, ·I,∆, {Ic}c∈C) be a nested interpretation and α an M-
action. The set of atomic M-actions for I and α, denoted by E(α, I), is defined by induction on
the structure of α as follows

E(〈A ± a〉, I) := {〈A ± a〉} and E(〈r ± (a, b)〉, I) := {〈r ± (a, b)〉}

E(ψ . α1, I) :=

{
E(α1, I) if I |= ψ,

∅ otherwise;

E(α1 ‖ α2, I) := E(α1, I) ∪ E(α2, I).

Let β be an O-action and c ∈ C. The set of sets of atomic O-actions for I, c and β, denoted by
E(β, c, I), is defined by induction on the structure of β as follows

E(〈B ± o〉, c,I) := {〈B ± o〉} and E(〈s ± (o, o′)〉, c,I) := {〈s ± (o, o′)〉}

E(C . β1, c,I) :=

{
E(β1, c,I) if c ∈ CI,

∅ otherwise;

E(β1 ‖ β2, c,I) := E(β1, c,I) ∪ E(β2, c,I).

An M-action only updates the outer meta level interpretation of a nested interpretation. An
O-action leaves the meta level interpretation unchanged and updates all object level interpre-
tation simultaneously. How a particular object level interpretation Ic in a nested interpretation
I is updated as the result of executing an O-action β depends only on the membership of c in
the meta level concepts used as conditions in β. The corresponding set E(β, c, I) can also be
empty.

Definition 8 (Nested Update). Let I := (C, ·I,∆, {Ic}c∈C) be some nested interpretation, α
an M-action and β an O-action. The update of I with α is the nested interpretation

Iα := (C, ·Iα ,∆, {Ic}c∈C),

where (C, ·Iα) is the update of (C, ·I) with E(α, I) and all other components are unchanged.
The update of I with β is the nested interpretation

Iβ := (C, ·I,∆, {Jc}c∈C),

where for each c ∈ C the O-interpretation Jc := (∆, ·Jc) is the update of Ic with E(β, c, I).
Let σ be a sequence of M-actions and O-actions the update Iσ is defined in the obvious way

86

Projection in ConDL with Actions Tirtarasa and Zarrieß

...

t0

ψ

...

t1

β

β

...

t2

α

α

. . .

...
tn

ψ′?σ

Figure 2: A depiction of the projection problem

by induction on σ.

As in [1] the semantics of actions is defined independent from global constraints formulated
as GCIs. Checking whether or not a given sequence of actions preserves certain GCIs is viewed
as a reasoning task (called projection problem). Preserving global GCIs is not something we try
to enforce in the semantics. For a discussion on this view on state constraints we refer to [9].

Note that it is possible to write an action that adds and deletes an object (or a pair of
objects) to and from a name simultaneously. The semantics of updates gives precedence to
add effects but we want to exclude those descriptions. In the following we assume that for any
M-action α, any O-action β and any nested interpretation I and meta level domain element c
the sets E(α, I) and E(β, c, I) are non-contradictory, i.e., does not contain both 〈A⊕ a〉 and
〈A	 a〉 and analogously for roles.

We are interested in checking whether a certain consequence formulated as an m-KB holds
after executing a sequence of actions given an incomplete representation of the initial state in
terms of an m-KB.

Definition 9 (Projection). Let ψ,ψ′ be m-KBs and σ a sequence of actions. We say that ψ′
is a consequence of executing σ in ψ iff for all models I of ψ, we have that Iσ |= ψ′. The
projection problem is then to decide whether ψ′ is a consequence of executing σ in ψ.

We depict a sketch of the projection problem in Figure 2. All possible initial models that
satisfy ψ are contained in t0. Then, an O-action β is executed and changes each nested-
interpretation into the new one in t1 with corresponding effects of β. Then, an M-action is
executed and changes them in a similar way to t2. It is possible that two nested-interpretations
collapse into one due to the effect (e.g. from t1 to t2). Furthermore, our formalization is
deterministic, i.e., there is only one successor for each nested-interpretation. After executing all
actions in sequence σ, we have the final sets of possible nested-interpretations in tn. Projection
is the problem to check whether all of them satisfy properties that are represented by an m-KB
ψ′.

87

Projection in ConDL with Actions Tirtarasa and Zarrieß

We continue our example about the conference management system.

Example 2 (Example 1 continued). An M-action for adding Alice as a PC Member of the
conference is given by

add-pc := 〈PC ⊕ alice’s-account〉.

It updates a nested interpretation by adding alice’s-account to PC on the meta level and changing
nothing else. Next, we want to define an action which assigns Alice as a reviewer for the
submission sub1 under the condition that she has no conflict of interest with an author of this
submission. It is specified as an O-action:

add-sub := ({alice’s-account} u ¬∃has-conflict.Jsub1 : Own-SubsK) .
〈Subs-To-Review ⊕ sub1〉

Note that only the account of Alice is affected. The action only updates the object level inter-
pretation associated with alice’s-account by adding sub1 to the review set (Subs-To-Review).

Let rev be the name for the review Alice has written for sub1. We define an O-action that
enters this review to the system and removes sub1 from the review list of Alice simultaneously.

finish := enter ‖ remove;

enter := (PC u ¬∃has-conflict.Jsub1 : Own-SubsK) . 〈has-review ⊕ (sub1, rev)〉;
remove := {alice’s-account} . 〈Subs-To-Review 	 s〉.

The review rev is only visible for PC members with no conflict of interest with someone that is
an author of sub1.

Assume initially we have axioms (1)-(5) from Example 1. After performing the sequence
add-pc; add-sub it holds that

alice’s-account : Jsub1 : Subs-To-ReviewK

is true and the constraint

¬JSubs-To-Review v ⊥K v PC

is preserved. Furthermore, after add-pc; add-sub; finish we have that

alice’s-account : J(sub1, rev) : has-reviewK

is true.

4 Deciding the Projection Problem in ALCOJALCOK

The approach of solving the projection problem in a DL-based action formalism by reducing
it to a standard consistency problem in the underlying DL has been applied already in several
settings (e.g. [5, 4, 14]). The overall idea we use here is similar to previous techniques extended
to nested structures in our case.

As a first step we introduce a normal form of action descriptions by conjoining conditions
and pushing them inside. We say that an N-action µ with N ∈ {M,O} is in normal form if it

88

Projection in ConDL with Actions Tirtarasa and Zarrieß

is of the form

(ψ1 . e1) ‖ ... ‖ (ψn . en),

where each ei, for any i, 1 ≤ i ≤ n is an atomic N-action and ψi is either an m-KB (in case of
an M-action) or an m-concept (in case of an O-action). We normalize an arbitrary N-action by
applying exhaustively the following rules:

ψ1 . (ψ2 . µ) (ψ1 ? ψ2) . µ ψ . (µ1 ‖ µ2) (ψ . µ1) ‖ (ψ . µ2) ,

where ? ∈ {∧,u} stands for ∧ in case of an M-action and for u in case of an O-action. W.l.o.g.,
we assume from now on that any action is in normal form. For convenience, we denote a
normal form of an N-action µ as a set of atomic N-actions with a single condition attached:
µ = {(ψ1 . e1), ..., (ψn . en)}. Although the right side seems causing an exponential blow-up,
notice that the number of copies of the conditions (ψ or C) are polynomially bounded by the
number of atomic effects.

Let an m-KB ψ (initial state), ψ′ (goal state) and a sequence of actions σ = µ1, ..., µn in
normal form be the input of the projection problem. Our goal is to construct a reduction m-KB
that is consistent iff ψ′ is a consequence of executing σ in ψ.

We say that concepts, roles, and individuals are relevant if they occur in the input of the
projection problem. For the reduction we use fresh concept names and role names of the
corresponding sort. For each execution step 0 ≤ i ≤ n, we introduce fresh time-stamped
copies A(i) of all relevant concept names, r(i) of all relevant role names, and fresh time-stamped
concept names T (i)

C for every relevant complex subconcept C. A(0) refers to the initial content
of A and the further copies A(j), 1 ≤ j ≤ n refer only to the set of named individual names
of the corresponding sort that are instance of A after the jth execution step. This holds for
both concept and role names. The copies of the form T

(i)
C represent the content (both named

and unnamed) of the complex concept C after the ith execution step. The distinction between
named and unnamed is made because actions only affect named individuals.

Furthermore, for the set of all named individuals of sort object in the input (denoted by
ObjO) and for the set of all named meta level individuals in the input (ObjM) two fresh concept
names NO and NM, respectively, are introduced.

The meaning of the new names is now axiomatized using meta level axioms as follows. For
NO and NM we have

ψobj = (NM ≡
⊔

c∈ObjM

{c}) ∧ (> v JNO ≡
⊔

a∈ObjO

{a}K).

We use τ(C, i) to denote the concept definition we introduce to define the names of the form
T

(i)
C . It is defined by induction on the structure of C as follows:

T
(i)
A ≡ (NO uA(i)) t (¬NO uA(0))

T
(i)
{a} ≡ {a} T

(i)
¬C ≡ ¬T

(i)
C T

(i)
C1uC2

≡ T (i)
C1
u T (i)

C2

T
(i)
∃r.C ≡ (NO u ((∃r(0).(¬NO u T (i)

C)) t (∃r(i).(NO u T (i)
C)))) t (¬NO u ∃r(0).T (i)

C)

For referring meta concepts we have T (i)
JϕK ≡ Jϕ(i)K. For the object level, we ensure that the

89

Projection in ConDL with Actions Tirtarasa and Zarrieß

concept definitions hold in any context:

ψ
(i)
defO :=

∧
C∈RO

> v Jτ(C, i)K ψ
(i)
defM :=

∧
G∈RM

τ(G, i),

where RO is the set of relevant object level subconcepts and RM the analogous set on the meta
level. Given an O-GCI γ = C v D and a timestamp 0 ≤ i ≤ n, we define the timestamped
copy γ(i) := T

(i)
C v T

(i)
D , and ϕ(i) is the timestamped O-KB obtained from ϕ as the result of

replacing every O-GCI γ in ϕ with γ(i). Timestamped copies for M-GCI ζ(i) and m-KB ψ(i)

are defined analogously.

We simply put timestamp zero for the initial knowledge base ψ, i.e., we include ψ(0) as a
conjunct of the reduction m-KB.

Next, we encode the effects of each action µi using the m-KB ψacti . Intuitively, we make
sure that if the condition is satisfied, then corresponding atomic actions are applied to the
next step. We define corresponding assertions for each atomic action e and a timestamp i with
π(e, i).

π(〈A⊕ a〉, i) := (a : A(i)) π(〈A	 a〉, i) := (a : ¬A(i))

π(〈r⊕ (a, b)〉, i) := ((a, b) : r(i)) π(〈r	 (a, b)〉, i) := ((a, b) : ¬r(i))

We distinguish two cases, whether the action is an M-action or an O-action. First, we consider
the case of µi is an M-action αi. We define:

ψ
(i)
actM :=

∧
ψ.e∈αi

(ψ(i−1) → π(e, i))

We encode the atomic O-actions similarly for µi = βi, with taking the context into account.
Instead of having an m-KB, we have a timestamped m-concept as the condition. The atomic
O-actions are propagated using referring meta concept for those contexts.

ψ
(i)
actO :=

∧
G.e∈βi

(T
(i−1)
G v Jπ(e, i)K)

In case of the other type of action happens at timestamp i, the corresponding ψ(i)
act is simply >.

For example, ψ(i)
actM = > if µi is an O-action.

Then, we make sure a change only happens if there is an effect that enforces it. For every
i, 1 ≤ i ≤ n, we define an m-KB ψ

(i)
minM

that encodes all the non-effects, that is, for each named
individual a, each relevant concept name A from the meta level it contains a conjunct of the
form (

(a : A(i−1) ∧
∧

ψ.〈A	a〉∈µi
¬ψ(i−1))→ a : A(i)

)
∧

(a : ¬A(i−1) ∧
∧

ψ.〈A⊕a〉∈µi
¬ψ(i−1))→ a : ¬A(i),

and analogous conjuncts for all relevant role names and pairs of named individuals. Likewise, we
ensure a minimization of changes on the object level with an m-KB ψ

(i)
minO

for every i, 1 ≤ i ≤ n

90

Projection in ConDL with Actions Tirtarasa and Zarrieß

consisting of conjuncts of the form

(Jo : B(i−1)K ∧
∧

G.〈B	o〉∈µi
¬T (i−1)

G)→ Jo : B(i)K,

and analogously for the negative case and role names. If no condition in the effects that might
change an assertion are satisfied, then they should stay the same. Finally, we define the complete
reduction m-KB:

ψred := ψinit ∧ ψobj ∧
∧

0≤i≤n
ψ
(i)
defO ∧

∧
0≤i≤n

ψ
(i)
defM ∧

∧
1≤i≤n

ψ
(i)
actO ∧

∧
1≤i≤n

ψ
(i)
actM ∧

∧
1≤i≤n

ψ
(i)
minO

∧
∧

1≤i≤n
ψ
(i)
minM

Lemma 1. Let ψ be an m-KB, σ = µ1, ..., µn be a sequence of actions, and ψred be defined as
above. The following properties hold:

1. For every sequence of nested-interpretations I0, ...,In such that I0 |= ψ and Ii = Iµii−1 for
each i, 1 ≤ i ≤ n there exists an interpretation L |= ψred such that for every i, 0 ≤ i ≤ n,
and every relevant m-KB ψ, we have Ii |= ψ iff L |= ψ(i).

2. For every nested-interpretation L |= ψred, there exists a sequence of nested-interpretations
I0, ...,In such that I0 |= ψ and Ii = Iµii−1 for every i, 1 ≤ i ≤ n such that for every i,
0 ≤ i ≤ n, and every relevant m-KB ψ, we have Ii |= ψ iff L |= ψ(i).

Proof. (Sketch)

1. We build a model L by interpreting i-timestamped copies of concepts (roles) in the same
way with the concepts (roles) in I(i). Obviously, we need to employ the idea on both
meta and object levels. Then, what remains is to show that L is indeed a model of ψred.
The ψinit and ψobj parts are trivial. Next, we need an intermediate claim that shows
that we irrelevant individuals will not change w.r.t. concept and role membership due
to the formalization. Using such claim, we show that each concept definition of T (i)

C in∧
0≤i≤n ψ

(i)
defO ∧

∧
0≤i≤n ψ

(i)
defM is faithful. The next step is showing that L |= ψ

(i)
act. Since

L is built by considering I0, ..., In that are altered by action µ0, ..., µn, we claim that
the changes represented by ψ(i)

act are satisfied. Finally, we use a similar idea to show that
L |= ψ

(i)
min. Due to the semantics, an individual would not change in the membership of

a concept name without any reason. We use the fact to show that the model built does
not violate such constraint that are expressed by ψ(i)

min.

2. We unfold the model L to a sequence of models I0, ...,In in a careful way. Then, we show
by induction that each CIi = (T

(i)
C)L and consequently for GCIs. Next , we show for any

timestamp i, we have that Ii = Iµii-1. The base case i = 0 is trivial. Then, we show that
for each concept name (role name), the membership coincides with previous membership
that altered by the effects due to the fact we restrict them using by enforcing the change
in ψ(i)

act and do not let anything change without any reason with ψ(i)
min.

Lemma 1 shows the correspondence between the models of the reduction m-KB ψred and
the sequence of nested interpretations we obtain by executing σ in a model of the initial m-KB.

91

Projection in ConDL with Actions Tirtarasa and Zarrieß

This allows one to use the following reduction of the projection problem to a (in)consistency
problem in ALCOJALCOK.

Lemma 2. Let ψ,ψ′ be m-KBs, and σ be a sequence of actions. It holds that ψ′ is a consequence
of executing σ in ψ iff ψred ∧ ¬(ψ′(n)) is inconsistent.

Proof. ⇒ We use a proof by contradiction. Assume that ψred ∧ ¬(ψ′(n)) is consistent. Then,
there is a model L such that L |= ψred and L |= ¬(ψ′(n)). However, since all In |= ψ′ then we
have L |= ψ′(n) from Lemma 1, hence a contradiction.
⇐ We use a proof by contradiction. Assume there exists an interpretation I0 |= ψ such

that Iσ0 = In 6|= ψ′, and consequently In |= ¬ψ′. By Lemma 1, we have that L |= ψred and
L |= ψ′(n), hence a contradiction.

This gives us a complexity result for the projection problem.

Theorem 1. The projection problem in ALCOJALCOK is ExpTime-complete.

Proof. ψred is polynomial in the size of the input, and obviously ¬(ψ′(n)) as well. Since the
consistency problem in ALCOJALCOK is ExpTime-complete [8], we can use the following pro-
cedure: build ψred ∧¬(ψ′(n)) as defined, and check using an ALCOJALCOK consistency checker
that runs in exponential time. Hence, we get an ExpTime procedure.

For hardness, we can reduce the inconsistency problem in ALCOJALCOK to the projection
problem. It is easy to see that an m-KB ψ is inconsistent iff {a} v ⊥ is a consequence of
executing 〈〉 in ψ.

5 Conclusion
We have introduced an action formalism for reasoning about context and object level change
in the ConDL ALCOJALCOK. The formalism is well-behaved in the sense that the projection
problem has the same complexity as standard reasoning in ALCO.

From a practical point of view, choosing ALCOJALCOK has the advantage that an efficient
reasoning tool for checking consistency already exists [7]. The reasoner even supports the more
expressive combination SHOIQJSHOIQK.

For future work, we plan to investigate whether our action formalism offers sufficient ex-
pressiveness for capturing also the dynamic features of the role-based modelling language in
[11].

Furthermore, we would like to study the complexity of reasoning in several extensions of
the action formalism. This for example includes operators for non-determinism in the action
dimension and temporal specifications for possibly infinite action sequences.

References
[1] Shqiponja Ahmetaj, Diego Calvanese, Magdalena Ortiz, and Mantas Simkus. Managing change

in graph-structured data using description logics. ACM Trans. Comput. Log., 18(4):27:1–27:35,
2017.

[2] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[3] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017.

92

Projection in ConDL with Actions Tirtarasa and Zarrieß

[4] Franz Baader, Marcel Lippmann, and Hongkai Liu. Using causal relationships to deal with the
ramification problem in action formalisms based on description logics. In Christian G. Fermüller
and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning - 17th
International Conference, LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010. Proceedings,
volume 6397 of Lecture Notes in Computer Science, pages 82–96. Springer, 2010.

[5] Franz Baader, Carsten Lutz, Maja Milicic, Ulrike Sattler, and Frank Wolter. Integrating descrip-
tion logics and action formalisms: First results. In AAAI, pages 572–577. AAAI Press / The MIT
Press, 2005.

[6] Charles W. Bachman and Manilal Daya. The role concept in data models. In Proceedings of
the Third International Conference on Very Large Data Bases, October 6-8, 1977, Tokyo, Japan.,
pages 464–476. IEEE Computer Society, 1977.

[7] Stephan Böhme and Thomas Kühn. Reasoning on context-dependent domain models. In Zhe
Wang, Anni-Yasmin Turhan, Kewen Wang, and Xiaowang Zhang, editors, Semantic Technology
- 7th Joint International Conference, JIST 2017, Gold Coast, QLD, Australia, November 10-12,
2017, Proceedings, volume 10675 of Lecture Notes in Computer Science, pages 69–85. Springer,
2017.

[8] Stephan Böhme and Marcel Lippmann. Decidable description logics of context with rigid roles.
In Carsten Lutz and Silvio Ranise, editors, Frontiers of Combining Systems - 10th International
Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings, volume 9322 of
Lecture Notes in Computer Science, pages 17–32. Springer, 2015.

[9] Andreas Herzig and Ivan José Varzinczak. Metatheory of actions: Beyond consistency. Artif.
Intell., 171(16-17):951–984, 2007.

[10] Szymon Klarman and Víctor Gutiérrez-Basulto. Description logics of context. J. Log. Comput.,
26(3):817–854, 2016.

[11] Thomas Kühn, Stephan Böhme, Sebastian Götz, and Uwe Aßmann. A combined formal model for
relational context-dependent roles. In Richard F. Paige, Davide Di Ruscio, and Markus Völter,
editors, Proceedings of the 2015 ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2015, Pittsburgh, PA, USA, October 25-27, 2015, pages 113–124. ACM, 2015.

[12] Lars Schütze and Jerónimo Castrillón. Analyzing state-of-the-art role-based programming lan-
guages. In Jennifer B. Sartor, Theo D’Hondt, and Wolfgang De Meuter, editors, Companion to
the first International Conference on the Art, Science and Engineering of Programming, Program-
ming 2017, Brussels, Belgium, April 3-6, 2017, pages 9:1–9:6. ACM, 2017.

[13] Luciano Serafini and Martin Homola. Contextualized knowledge repositories for the semantic web.
J. Web Semant., 12:64–87, 2012.

[14] Benjamin Zarrieß. Complexity of projection with stochastic actions in a probabilistic description
logic. In Michael Thielscher, Francesca Toni, and Frank Wolter, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018,
Tempe, Arizona, 30 October - 2 November 2018., pages 514–523. AAAI Press, 2018.

93

	Introduction
	The Description Logic of Context ALCO "474A771 ALCO "574B779
	Representing Context-dependent Change
	Deciding the Projection Problem in ALCO"474A771 ALCO "574B779
	Conclusion

