
A Modified Parallel F4 Algorithm for Shared

and Distributed Memory Architectures

Severin Neumann

Fakultät für Mathematik und Informatik
Universität Passau, D-94030 Passau, Germany

neumans@fim.uni-passau.de

Abstract

In applications of symbolic computation an often required but complex procedure is finding
Gröbner bases for polynomial ideals. Hence it is obvious to realize parallel algorithms to
compute them. There are already flavours of the F4 algorithm like [4] and [13] using the
special structure of the occurring matrices to speed up the reductions on parallel architec-
tures with shared memory. In this paper we start from these and present modifications
allowing efficient computations of Gröbner bases on systems with distributed memory. To
achieve this we concentrate on the following objectives: decreasing the memory consump-
tion and avoiding communication overhead. We remove not required steps of the reduction,
split the columns of the matrix in blocks for distribution and review the effectiveness of the
SIMPLIFY function. Finally we evaluate benchmarks with up to 256 distributed threads of
an implementation being available at https://github.com/svrnm/parallelGBC.

1 Introduction

Parallelization is one of the most used methods to improve the performance of existing software.
But it should be introduced systematically. One chooses the most time-consuming segments of
a program and tries to improve these first. In applications of symbolic computation an often
required but complex procedure is finding Gröbner bases for polynomial ideals. Therefore it
is obvious to realize parallel versions of algorithms to compute them. Although it is possible
to use Buchberger’s algorithm [14], we favour Faugère’s algorithm F4 [3] since the reduction is
done due to matrix transformation which is known for being well parallelizable.

There are already parallel flavours of F4 like [4] and [13] using the special structure of
the occurring matrices to speed up the reduction. Both approaches have been developed for
multicore and multiprocessor systems with shared memory. For these systems the number of
parallel processing units is limited and currently there are not many platforms serving more
than 64 processors. Compared with that clusters of several suchlike computers can have an
theoretical unlimited number of processors. This advantage comes with the downside of dis-
tributed memory: realizing algorithms requires to consider that data has to be transfered. By
that memory duplication and communication overhead are introduced.

In the following we start from the mentioned developments for shared memory systems
and present modifications which will finally allow efficient computation of Gröbner bases also
for systems with distributed memory. To achieve this we have concentrated on the following
objectives: reducing the memory consumption and avoiding communication overhead. We
remove needless steps of the reduction, split the columns of the matrix in blocks for distribution
and review the effectiveness of the SIMPLIFY function.

At the end we will evaluate benchmarks of an implementation using eight distributed nodes
having 32 processor cores each. The source code is available at https://github.com/svrnm/

parallelGBC.

70 L. Kovacs, T. Kutsia (eds.), SCSS 2013 (EPiC Series, vol. 15), pp. 70–80

https://github.com/svrnm/parallelGBC
https://github.com/svrnm/parallelGBC
https://github.com/svrnm/parallelGBC

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

2 Notations

In the following we will use the notation of [11]. Hence K denotes a field and K[x1, . . . , xn] the
polynomial ring over K in n indeterminantes. Tn is defined as the set of all terms xα1

1 · . . . ·xαnn .
σ is a term ordering on this set. For a polynomial f ∈ K[x1, . . . , xn] with f =

∑m
i=1 ci · ti,

where ci ∈ K and ti ∈ Tn for all i, we call the set Supp(f) := {t1, . . . , tm} support of f . Then
the leading term of f is defined as LTσ(f) := tk = maxσ(Supp(f)) and the leading coefficient
is LCσ(f) := ck.

Let F := {f1, . . . , fs} ∈ K[x1, . . . , xn] \ {0} be a set of polynomials. Then I := 〈F〉 is the
ideal generated by F . The elements of the set B := {(i, j) | 1 ≤ i < j < s} are called critical
pairs. For each critical pair exists an S-polynomial Si,j := 1

LCσ(fi)
· ti,j · fi − 1

LCσ(fj)
· tj,i · fj

with ti,j :=
lcm(LTσ(fi),LTσ(fj))

LTσ(fi)
and tj,i :=

lcm(LTσ(fj),LTσ(fi))
LTσ(fj)

.

The set F is a σ-Gröbner basis of I if for all critical pairs the S-polynomials can be reduced
to zero by the elements of F with respect to σ.

If not stated otherwise we will use the degree reverse lexicographic termordering (DegRevLex)
and the finite field with 32003 elements (F32003) for examples and benchmarks.

3 Preliminaries

The F4 algorithm was introduced by Faugère in 1999 [3]. By using the special structure of
the matrix and column-based parallelism Faugère and Lachartre introduced a parallelization
improving the performance remarkable [4]. We have presented another modification [13] for F4
speeding up the computation by row-based parallelization.

In the following we give a quick summary about Gröbner bases computation and the men-
tioned developments. For a given set of polynomials F := {f1, . . . , fs} ∈ K[x1, . . . , xn] \ {0}
generating an ideal I = 〈F〉 a σ-Gröbner basis G = {g1, . . . , gt} ∈ K[x1, . . . , xn] can be com-
puted using the F4 algorithm by the following four steps:

1. Create and update the set of critical pairs B using Gebauer’s and Möller’s UPDATE func-
tion [6]. This function guarantees that the leading terms ti,j · fi = tj,i · fj of the minuend
and subtrahend of the S-polynomial is unique among the critical pairs.

2. Select a subset of all critical pairs for reduction using the normal or the sugar cube
strategy [7]. At this point the details are not relevant. For our benchmarks we chose the
sugar cube strategy. Although we have to mention that our implementation supports the
normal strategy and for some of the polynomial systems we used as example this strategy
might perform better.

3. Symbolic preprocess the selected pairs to obtain a coefficient matrix representing the
S-polynomials. The matrix is additionally filled with rows representing reduction polyno-
mials for each term which can be reduced using elements of the partial computed Gröbner
basis G. The SIMPLIFY method can be applied to reuse results of previous reductions.

4. Reduce the generated matrix until row-echelon form. This is equivalent to top-reducing
the S-polynomials. All non-zero rows of this matrix having leading terms which are not
divisible by any element of G are inserted into G. As long as new elements are found the
algorithm continues with step 1.

The most time-consuming step is the reduction of the coefficient matrix. The mentioned par-
allelizations of Lachartre and Faugère as well as our own approach concentrate on speeding

71

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

up this step. We want to show how to use these improvements also for distributed parallel
architectures, therefore we have to review them.

Starting after symbolic preprocessing we obtain a coefficient matrix M which has to be
reduced to a row-echelon form. M has n rows and m columns with m ≥ n and can be
decomposed in submatrices:

1. Submatrices S1 and S2 arise from the subtrahends and minuends of the S-polynomials.
Since the UPDATE function guarantees that all polynomials have distinct leading terms the
representing rows have unique pivot columns. Therefore S1 and S2 are upper-triangular.

2. Submatrix R represents the reduction polynomials. They were computed during symbolic
preprocessing. For each reducible term there is only one reduction polynomial. Because
of that R is upper-triangular.

3. Finally these submatrices can be split up in pivot and non-pivot columns. The pivots of R
and S1 are forming the submatrix A and the non-pivots the submatrix B. The submatrix
S2 is split into C containing its pivots and D containing the non-pivot columns. This
notation was introduced in [4].

The following example demonstrates the construction of a matrix occurring during Gröbner
bases computations.

Example 1. Let K := K32003, P := K[x1, x2, x3] and let the polynomials g1 = x21 + x22,
g2 = x1 · x2 + x22 + x2 · x3 and g3 = x22 + x23 + x3 form the ideal I := 〈g1, g2, g3〉 for which a
Gröbner basis with respect to DegRevLex should be computed. Using UPDATE we get the critical
pairs (2, 3) and (1, 2). They have the same sugar degree sugar(g2, g3) = 3 = sugar(g1, g2). So
we reduce the following polynomials:

f1,2 =(x21 + x22) · x2 = x21 · x2 + x32

f2,1 =(x1 · x2 + x22 + x2 · x3) · x1 = x21 · x2 + x1 · x22 + x1 · x2 · x3
f2,3 =(x1 · x2 + x22 + x2 · x3) · x2 = x1 · x22 + x32 + x22 · x3
f3,2 =(x22 + x23 + x3) · x1 = x1 · x22 + x1 · x23 + x1 · x3

and as set of reduction polynomials we obtain:

r1 =g3 · x2 = x32 + x2 · x23 + x2 · x3
r2 =g2 · x3 = x1 · x2 · x3 + x22 · x3 + x2 · x23
r3 =g3 · x3 = x22 · x3 + x33 + x23

At the end we get the following matrix M :

f1,2
f2,3
r1
r2
r3
f2,1
f3,2

1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 1 0
0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 1 0 0

One can easily see the mentioned structure of the matrix. The upper left submatrix is A and
its pivots are highlighted. Below is C and the non-pivot columns are forming B and D.

72

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

Using this decomposition the (full) reduction of the matrix can be computed using the
following algorithm:

1. Primary reduction: Reduce B to A−1 ·B.

2. Secondary reduction: Reduce D to D − C ·A−1 ·B.

3. Final reduction: Reduce D to its reduced row-echelon form using Gaussian elimination.

4. Optional reduction: Reduce B using the pivots of D.

Especially the primary reduction can be efficiently parallelized since the matrix is in upper
triangular form and so all pivots are known. The primary and secondary reduction can be
computed in parallel because a reduced row of B can be applied independently on rows of D.

After the final reduction all non-zero rows of D are elements of the Gröbner basis and
can be used to compute further critical pairs. Matrix (AB) does not contain any required
elements because by construction the pivots of A are equivalent to leading terms which are
already contained in the Gröbner basis. Hence the fourth step is optional and only required if
SIMPLIFY is used.

There are two different approaches to achieve parallelization: Column-based as suggested
by Faugère and Lachatre and row-based as suggested by us. Actually these two are not mu-
tually exclusive and we will use this property to advance the parallelism on architectures with
distributed memory. In the following we will use the row-based approach for shared memory
parallelism but one can easily see that all modifications are also applicable to the column-based
approach of Faugère and Lachatre.

4 Matrix Distribution

In the case of the matrix reduction during Gröbner basis computation we have to consider
how to distribute the coefficient matrices with least duplication and communication. Like any
other parallel and distributed algorithm for transforming matrices into row echelon form we
can choose between row- and column-based distribution or a combination of both.

If row-based or combined distribution is chosen the algorithm scatters rows or blocks among
the computation nodes and these need to send rows from one to each other if they are required
for further reductions. To reduce the communication overhead this needs to use a strategy
which decides how the matrix is distributed. Since we use rows-based parallelization for the
shared memory level and since the column-based distribution does play well with the special
properties of Gröbner basis computations we didn’t analyse the effectiveness of the row-based
or combined approach.

If column-based distribution is chosen the pivot matricesA and C have to be send to all nodes
and the non-pivot matrices B and D can be distributed without duplication. Since all pivots
are preset for primary and secondary reduction this approach does only require communication
before and after all reductions are done.

Furthermore the matrices are sparse and by using appropriate matrix formats the commu-
nication overhead can be reduced even more. We chose to store the off-diagonal elements of A
and C in a coordinate list, i.e. there is one list storing tuples of row, column and value. This
format allows reordering in parallel executable sets to improve the row-based parallelization as
presented in [13]. For B and D a modified list of lists format is used storing pairs of row index
and value for each column. This allows to distribute columns independently. As suggested in
[8, Chapter 6] the columns are distributed round-robin to optimize load balancing. Afterwards

73

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

each node can use row-based parallelism on the local shared memory. The following shows the
distribution of the matrix constructed in example 1:

Example 2. Using two parallel nodes the matrix M of the previous example is decomposed
into one coordinate list and two lists of lists. Afterwards the pivots are sent to both nodes and
the two sets of non pivot columns are distributed among the nodes. Finally the two nodes are
holding the following data:

Node #1 Node #2

(A C)
(4,1,1) (4,3,1) (2,0,1)
(2,1,1) (3,5,1)
(0,5,1)
(1,5,1)
(1,6,1)

(B D)
5 (6,1)
7 (4,1)
9 (4,3)

(A C)
(4,1,1) (4,3,1) (2,0,1)
(2,1,1) (3,5,1)
(0,5,1)
(1,5,1)
(1,6,1)

(B D)
6 (2,1) (3,1)
8 (6,1) -
10 (4,1) -

Table 1 shows that the final reduction can be computed on a single node because the
submatrix D consumes only a tiny fraction of the whole matrix. One can easily check that
this is true in general: the submatrices S1 and S2 have s rows each and the submatrix R has
r rows. There are p pivot columns and n non-pivot columns. Hence the coefficient matrix has
2 ·s+r rows and p+n columns. After primary and secondary reduction the final reduction only
requires the submatrix D which has s remaining rows and n columns. Therefore all reduced
columns can be gathered on one node which executes the Gaussian elimination on D.

Polynomial System Sugar degree primary matrix final matrix ratio (%)
Gametwo 7 [10] 17 7731 x 5818 2671x2182 13

Cyclic 8 [1] 14 3819 x 4244 612x1283 4.8
Cyclic 9 16 70251 x 75040 4014x10605 0.8

Katsura 12 [9] 9 12141 x 11490 2064x2155 3.2
Katsura 13 9 26063 x 23531 4962x4346 3.5
Eco 12 [12] 9 12547 x 10937 2394x1269 2.2

Eco 13 10 25707 x 24686 2883x2310 1.0
F966 [5] 9 60274 x 63503 4823x9058 1.1

Table 1: Ratio of primary matrix and final matrix during reduction for selected problems.

The optional reduction is an obstacle for the effectiveness of the algorithm since it requires
that the reduced matrix D has to be distributed again to be applied on B. Because of that we
examine if the optional reduction is useful at all. Even more we put to test, if the SIMPLIFY

method and distributed computation play well together.

5 Simplifying the F4 Algorithm

Removing the optional reduction may scale down the required communication overhead and
the reduction time. Even more, if SIMPLIFY isn’t used during symbolic preprocessing, the

74

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

distributed matrix has not to be gathered completely since the columns of the reduced matrix
B are not required after primary and secondary reduction.

Algorithm 1: SIMPLIFY

Input: t ∈ Tn a term, f ∈ K[x1, . . . , xn] a polynomial, F ∈ (Fk)k=1,...,d−1), where Fk is
finite subset of K[x1, . . . , xn]

Output: a non evaluated product, i.e. an element of Tn ×K[x1, . . . , xn]
1 foreach u ∈ list of divisors of t do
2 if ∃j(1 ≤ j < d) such that (u · f) ∈ Fj then
3 F̃j is the row echelon form of Fj w.r.t. σ ;

4 there exists a (unique) p ∈ F̃j
+

such that LTσ(p) = LTσ(u · f) ;
5 if u 6= t then return SIMPLIFY(tu , p,F) else return (1, p);

6 end

7 end

The SIMPLIFY method does not guarantee that a reduction is improved by reusing previous
results. Actually SIMPLIFY proves it effectiveness mostly by application. Hence we require
a best possible implementation of the method. Algorithm 1 is a repetition of the original
SIMPLIFY [3]. It leaves some details open and there are some possibilities for optimization:

• Searching through all divisors of t is time consuming regarding the fact that only some
divisors of u will satisfy the condition (u, f) ∈ Fj for j ∈ (1 ≤ j < d).

• To check if there exists a j with (u, f) in Fj it is important how Fj is stored. A naive
implementation will require to loop over all rows of Fj until the condition is satisfied.

• This algorithm does not check if there is another j′ 6= j satisfying the condition and
provides a better replacement.

To address these issues we propose the following modifications:

• All rows of F̃1 . . . , F̃d−1 are stored in a two-dimensional map. The first key is a polynomial
f and the second is a term u. This allows to update (u, f) if a better replacement is found.
By that only one value per pair is stored. This will decrease the required memory.

• The first map should provide a fast random access to the value of key f and the second
map should have an ordering to allow a decreasing iteration of the possible terms. In this
way the search space for possible replacements is reduced to the multiples of f only.

• The value of a map element is the reduced form of f · u.

We call this data structure SimplifyDB. We can provide an improved version of SIMPLIFY as
shown by algorithm 2. Additionally we have to introduce a function to update the SimplifyDB.

Therefore after reduction we execute algorithm 3 for each row of F̃j
+

. The insertion step allows
us to compare candidates for the SimplifyDB. In our implementation for two candidates the
better is the one which has less elements in its support. This is equivalent to the first weighted
length function wlen(p) = #Supp(p) in [2]. At this point we didn’t try any other suggested
weighted length function.

SIMPLIFY can be improved even more. During symbolic preprocessing it is called twice:
once for the selected critical pair (m, f) with m ∈ Tn and f ∈ G and once to create reduction

75

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

Algorithm 2: SIMPLIFY with SimplifyDB

Input: t ∈ Tn a term, f ∈ K[x1, . . . , xn] a polynomial, SimplifyDB
Output: a non evaluated product, i.e. an element of Tn ×K[x1, . . . , xn]

1 foreach u ≤ t ∈ SimplifyDB[f] do
2 if u divides t then
3 p = SimplifyDB[f][u] ;
4 if u 6= t then return SIMPLIFY(tu , p, SimplifyDB) else return (1,p) ;

5 end

6 end

Algorithm 3: Insertion into SimplifyDB

Input: t ∈ Tn a term, f, p ∈ K[x1, . . . , xn] polynomials, SimplifyDB
Output: SimplifyDB

1 if ∃u ∈ SimplifyDB[f] : t = u then
2 Replace SimplifyDB[f][u] with p if it is better ;
3 else
4 SimplifyDB[f][t] = p ;
5 end

polynomials m′ · f with m′ ∈ Tn and f ′ ∈ G. As one can easily see the second input parameter
is always an element of G. So it stands to reason to restrict SIMPLIFY:

SIMPLIFY(t, i), where i is the index of gi ∈ G

Still there is the recursive call of SIMPLIFY taking a polynomial p as parameter which might
not be an element of G. Recall that p was found in the SimplifyDB using f and a term u = t

z ,
with z ∈ Tn. With the knowledge, that f = gi ∈ G we can write p = f ·u− r = gi ·u− r, where
r ∈ K[x1, . . . , xn] is the sum of all reductions applied on f during a previous reduction step.
The recursive call is looking for another polynomial p′ which simplifies z · p = z · (gi · u − r).
If such a polynomial p′ exists we can write p′ = z · (gi · u − r) − r′ = z · u · gi − (z · r − r′).
Hence if the SimplifyDB stores p′ at index (gi, z · u) instead of (p, z) the recursion is obsolete
and SIMPLIFY can be replaced with algorithm 4 being recursion free.

Algorithm 4: New SIMPLIFY algorithm

Input: t ∈ Tn a term, i is the index of gi ∈ G, SimplifyDB
Output: a non evaluated product, i.e. an element of Tn ×K[x1, . . . , xn]

1 foreach u ≤ t ∈ SimplifyDB[f] do
2 if u divides t then return (tu , SimplifyDB[f][u]) ;
3 end

Before benchmarking different variants of the distributed versions of the algorithm a first
look at timings using only shared memory will thin out the number of combinations. For
the following computations we used a system with 48 AMD Opteron

TM

6172 cores having
64 gigabyte of main memory. The implementation of the parallelization for the shared memory
is presented in [13] and in its latest version it is realized using Intel R© Threading Building Blocks
(TBB) and Open Multi-Processing (OpenMP) for parallelization.

76

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

Table 2 shows that the optional reduction is mostly useless and can be left out during
Gröbner basis computation. Table 3 shows that our new recursion-free SIMPLIFY is also in
practice faster and even more memory efficient.

Finally SIMPLIFY is improving performance by increasing memory usage and so for solving
larger polynomial systems it might be possible to find a solution within the bounds of available
memory by disabling SIMPLIFY. Consequently we will compare computations with and without
the improved SIMPLIFY for the distributed parallel implementation in the following section.

Polynomial systems without optional reduction with optional reduction
max. matrix size runtime max. matrix size runtime

Gametwo 7 7808 x 5895 28.46 7731 x 5818 29.85
Cyclic 8 3841 x 4295 11.18 3819 x 4244 12.15
Cyclic 9 70292 x 75080 606.7 70251 x 75040 628.3

Katsura 12 12142 x 11491 34.49 12141 x 11490 36.66
Katsura 13 26063 x 23531 152.2 26063 x 23531 169.2

Eco 12 12575 x 11349 25.22 12547 x 10937 28.36
Eco 13 25707 x 24686 91.76 25707 x 24686 103.7
F966 60898 x 63942 98.32 60274 x 63503 118.5

Table 2: Comparison of computations with and without optional reduction. The new SIMPLIFY

algorithm was used in both cases.

Polynomial with new SIMPLIFY with original SIMPLIFY without SIMPLIFY
systems runtime (s) memory runtime memory runtime memory

Gametwo 7 28.46 459 MB 28.82 721 MB 29.97 262 MB
Cyclic 8 11.18 262 MB 14.43 393 MB 12.28 131 MB
Cyclic 9 606.7 15.6 GB 649.2 24.0 GB 542.9 2.10 GB

Katsura 12 34.49 655 MB 39.28 1.57 GB 43.74 328 MB
Katsura 13 152.2 2.56 GB 187.2 7.27 GB 207.1 917 MB

Eco 12 25.22 328 MB 38.75 1.38 GB 50.87 262 MB
Eco 13 91.76 1.14 GB 136.4 5.77 GB 218.2 852 MB
F966 98.32 2.56 GB 218.2 11.3 GB 212.5 1.25 GB

Table 3: Comparison of original and new SIMPLIFY

6 Benchmarks

For the following benchmarks of our distributed implementation we used a cluster of up to
eight systems having 16 Intel R© Xeon R© E5-2670 cores with hyperthreading and 64 GB of RAM
allowing us using up to 256 parallel threads. For data distribution we use the Message Passing
Interface (MPI) and the Boost.MPI wrapper.

Table 4 compares once again runtimes for computations with and without SIMPLIFY using
one, two or four nodes. For all polynomial input systems the computation time goes up and
the distribution has no positive effect. However we accomplished to speed-up the reduction
time. This is not an inconsistency. The overall runtime goes up due to the communication

77

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

overhead and the possibility to improve the performance is limited to decreasing the reduction
time. Hence the problem is the small size of the given polynomial systems. Figure 1 illustrates
this issue for Cyclic 9.

Table 5 adds further and more difficult examples. Especially for Katsura 15 and Cyclic 10
the distributed parallelization takes effect providing a speed-up of 2.3 and 2.7 for the overall
computation time and 5.7 and 5.0 for the reduction using four respectively eight nodes. Exclud-
ing the Eco 14 system the computation is most effective without SIMPLIFY and in particular
for Cyclic 10 computations were not even possible with it due to memory overflows.

Eco 14 is an counterexample because it is not possible to decrease the computation time
using a distributed system. This is caused by the effectiveness of SIMPLIFY for the problem
instance.

The crashed computations for Katsura 15 and for Cyclic 10 without SIMPLIFY with two
nodes are caused by a not yet solved overflow in the MPI implementation if more than 512 MB
have to be transfered in one operation. This does not happen with four or eight nodes because
the matrix size for each node decreases by factor two respectively four.

At the end no distributed computation with SIMPLIFY is faster and hence it should be
removed in further developments of distributed parallel algorithms for Gröbner bases compu-
tations.

Polynomial systems with SIMPLIFY without SIMPLIFY
nodes 1 2 4 1 2 4

Gametwo 7 29.85 34.55 56.03 28.48 38.53 28.88
(5.549) (6.709) (6.010) (6.630) (4.607) (3.427)

Cyclic 8 7.798 11.12 9.520 7.497 14.06 20.78
(1.327) (1.707) (1.953) (1.332) (1.473) (1.168)

Cyclic 9 506.0 518.2 494.7 330.6 361.7 427.6
(222.2) (195.2) (138.8) (149.9) (122.4) (73.73)

Katsura 12 42.00 46.36 55.23 28.59 39.97 66.85
(6.083) (8.220) (7.762) (6.699) (4.535) (3.362)

Katsura 13 187.4 190.0 186.4 139.6 158.8 176.0
(40.46) (46.61) (36.82) (50.03) (31.07) (18.15)

Eco 12 21.35 29.40 41.49 24.98 41.08 88.02
(2.564) (3.760) (3.953) (6.458) (3.664) (3.097)

Eco 13 91.78 106.5 120.9 111.4 157.5 212.6
(12.10) (16.32) (14.62) (38.65) (23.10) (14.67)

F966 91.88 106.2 132.1 93.60 139.2 185.1
(20.86) (26.29) (23.91) (38.59) (26.32) (18.70)

Table 4: Distributed computation (and reduction) times for 1,2 or 4 nodes

78

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

1/woS 2/woS 4/woS 1/wS 2/wS 4/wS
0

100

200

300

400

500

600

Overhead

Reduction

Prepare

Update

Figure 1: Computation time in detail for Cyclic 9 with and without SIMPLIFY

Poly. sys. with SIMPLIFY without SIMPLIFY
nodes 1 2 4 8 1 2 4 8

Katsura 14 957.5 831.0 748.9 744.8 775.6 659.9 675.4 991
(313.9) (263.4) (201.2) 169.1 (398.4) (224.4) (135.1) (86)

Katsura 15 5719 crashed 3440 3252 5615 3857 3252 3372
(2571) (-) 1272 1008 (3781) (1960) (1094) (666)

Cyclic 10 crashed crashed crashed crashed 30400 crashed 13270 11280
(-) (-) (-) (-) (25240) (-) (7862) (5010)

Eco 14 509.8 519.4 552.6 626 800.5 787.0 996.7 1660
(110.6) (117.7) (98.02) (89.38) (411.3) (224.0) (127.7) (78.24)

Table 5: Distributed computation (and reduction) times for larger input systems.

7 Conclusion

We have shown that the parallelization of the F4 algorithm can be expanded form a shared
memory system to a cluster of distributed nodes providing a multiple of the computation power
of a single system. This was primarily achieved by using column-based parallelism, removing
the optional reduction and the SIMPLIFY function. It allowed us to solve larger input systems
like Katsura 15 or Cyclic 10 almost three times faster using four or respectively eight distributed
nodes. Some work is still required to optimize the speed-up and the communication of the nodes
has to be improved to make solving of even larger problem instances possible.

79

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

References

[1] Göran Björck and Uffe Haagerup. All cyclic p-roots of index 3, found by symmetry-preserving
calculations, 2008.

[2] Michael Brickenstein. Slimgb: Gröbner bases with slim polynomials. Revista Matemática Com-
plutense, 23(2):453–466, 2010.

[3] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of
Pure and Applied Algebra, 139(1–3):61–88, June 1999.

[4] Jean-Charles Faugère and Sylvain Lachartre. Parallel Gaussian Elimination for Gröbner bases
computations in finite fields. In Proceedings of the 4th International Workshop on Parallel and
Symbolic Computation, PASCO ’10, pages 89–97, New York, USA, July 2010. ACM.

[5] Jean-Charles Faugère, Moreau Francois De Saint Martin, and Fabrice Rouillier. Design of regular
nonseparable bidimensional wavelets using Groebner basis techniques. IEEE Transactions on
Signal Processing, 46(4):845–856, 1998.

[6] Rüdiger Gebauer and H. Michael Möller. On an installation of buchberger’s algorithm. Journal
of Symbolic Computation, 6:275–286, December 1988.

[7] Alessandro Giovini, Teo Mora, Gianfranco Niesi, Lorenzo Robbiano, and Carlo Traverso. ”One
sugar cube, please” or selection strategies in the buchberger algorithm. In Proceedings of the 1991
international symposium on Symbolic and algebraic computation, ISSAC ’91, pages 49–54, New
York, USA, 1991. ACM.

[8] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, 1996.

[9] Shigetoshi Katsura, Wataru Fukuda, Sakari Inawashiro, Nahomi Fujiki, and Rüdiger Gebauer.
Distribution of effective field in the ising spin glass of the ±j model at t = 0. Cell Biochemistry
and Biophysics, 11:309–319, 1987.

[10] David M. Kreps and Robert Wilson. Sequential equilibria. Econometrica, 50(4):863–94, July 1982.

[11] Martin Kreuzer and Lorenzo Robbiano. Computational Commutative Algebra 1. Computational
Commutative Algebra. Springer, 2000.

[12] Alexander Morgan. Solving polynomial systems using continuation for engineering and scientific
problems. Classics in applied mathematics. SIAM, 2009.

[13] Severin Neumann. Parallel reduction of matrices in Gröbner bases computations. In Vladimir P.
Gerdt, Wolfram Koepf, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors, Computer Algebra in
Scientific Computing, volume 7442 of Lecture Notes in Computer Science, pages 260–270. Springer
Berlin Heidelberg, 2012.

[14] Kurt Siegl. A parallel factorization tree gröbner basis algorithm. In Parallel Symbolic Computation
PASCO, 1994: Proceedings of the First International Symposium, River Edge, USA, 1994. World
Scientific Publishing Co., Inc.

80

	Introduction
	Notations
	Preliminaries
	Matrix Distribution
	Simplifying the F4 Algorithm
	Benchmarks
	Conclusion

