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Abstract 

The medical history information contained in electronic health records (EHR) is a 

valuable and largely untapped data mining source for predicting patient outcomes and 

thereby improving treatment. This paper presents a simple but novel evolutionary 

algorithm (EA) for identifying how various medical history and demographic factors 

predict clinical outcomes. For this initial study, our EA was tested using synthetic data 

concerning COVID-19 hospitalization rates and we show that the EA results are more 

informative than logistic regression, neural network, or decision tree results. 

1 Introduction 

Interpretable and explainable AI has become a major area of research in the machine learning 

community [1]. Clinical professional such as doctors are, in particular, thought to be highly skeptical 

of any machine learning models that cannot easily be explained to them [2]. In recent years, many 

studies have attempted to predict patient disease outcomes from patient information ranging from 

patient demographics to noted symptoms and clinical measurements [3], [4], [5], [6], [7]. Recently, 

much of the research in this field has zeroed in on electronic health record (EHR) data [2], [8]. Most of 

this data has been fed into machine learner algorithms that have a low human interpretability, such as 

SVM [9], [10]; random forest [9], [10], [11], [12], [13], [14], [15]; or neural network models [9], [14], 
[16]. Logistic regression, which is more interpretable, is commonly used as a baseline standard against 

which to judge these more advanced machine learners. Decision trees, which aim to produce a human-

interpretable output, have been used to some success [6], [9], [13]. To our knowledge, however, no 

research has been done into using evolutionary algorithms (EA) to interpret this clinical data. 

This study proposes a simple but novel EA that fits coefficients for an equation linking all medical 

history and demographic factors of interest, both individually and in pairwise combination, to the 

clinical outcome of interest. We decided to focus on five factors that have been of interest in predicting 
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COVID-19 outcomes: history of asthma, heart disease, hypertension, diabetes, and advanced age 

(defined here as 65 or older). Prior to trying this tool out on real-world medical data, much of which is 

still held as private [2], we decided to calibrate our model against a synthetic COVID-19 dataset where 

we defined (and therefore knew) the percent chance by which each model factor would lead to severe 

disease and hospitalization. To this end, we generated a 10,000-patient training data set and a 5,000-

patient testing data set and submitted them our novel EA. As experimental controls, we used the 

baseline-standard logistic regression method, a multilayer perceptron neural network, and a simple but 

standardized decision-tree learner. 

The outcome of this study, then, is not intended to give any new insights about COVID-19 but rather 

to serve as proof-of-concept for a novel machine learner, which can then be applied to any number of 

clinical datasets to determine risk factors for severe disease.  

2  Methods 

2.1 Evolutionary Algorithm 

A genetic algorithm was constructed to find coefficients for the following equation: 

𝑌 = ∑ 𝑐𝑖𝑋𝑖

𝑛

𝑖=1
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where the inputs are n medical history factors, Xi, treated as binary numbers, and the output is the 

clinical outcome of interest, Y, again treated as a binary number. This equation captures the predictive 

effects of each factor in isolation as well as any pairwise interactions, or synergies, between factors.  

For the present study we decided to consider five medical history and demographic factors such that 

𝑜𝑢𝑡𝑐𝑜𝑚𝑒 =  𝑐𝐴𝐴 + 𝑐𝐵𝐵 + ⋯ +  𝑐𝐸𝐸 + 𝑐𝐴𝐵𝐴𝐵 + 𝑐𝐴𝐶𝐴𝐶 + ⋯ + 𝑐𝐷𝐸𝐷𝐸 

where A = asthma, B = heart disease, C = diabetes, D = hypertension, and E = advanced age (65+). 

Data structures Patient{A, B, C, D, E, outcome} and Gene{cA, cB, … , cDE} were 

defined, along with a mutate subroutine shown in the pseudocode below: 

Mutate(Gene g0): 

g1 = g0 

Randomly choose one coefficient 

g1.chosen_coeff = g0.chosen_coeff + normal_dist(0.0, SIGMA) 

return g1 

The normal distribution used here was from the C++ standard library; σ was initially set to 0.5, but 

was reduced in stages as the model narrowed in on a solution. 

The fitness function for a Gene g and a Patient p was defined as: 

𝒇𝒊𝒕𝒏𝒆𝒔𝒔 = 𝟏 − [(𝒈. 𝒄𝑨 ∙ 𝒑. 𝑨 + ⋯ + 𝒈. 𝒄𝑫𝑬 ∙ 𝒑. 𝑫 ∙ 𝒑. 𝑬) − 𝒑. 𝒐𝒖𝒕𝒄𝒐𝒎𝒆]𝟐 
A few tunable parameters of the algorithm were set empirically or through a process of 

trial-and-error: α, the rate by which σ shrinks as the algorithm narrows in on an answer, was set 
to 0.9 so that the algorithm did not narrow in too quickly; λ, the number of genes in one 
generation, was set to the number of factors cubed (found to be the minimum necessary to get 
reliable improvements in each generation); and the threshold for σ below which the algorithm 
would exit was set to 0.005 (found to be the maximum value for which there was good 
agreement between subsequent runs). 
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Finally, then, the evolutionary algorithm itself can be expressed as: 

Initialize SIGMA = 0.5, ALPHA = 0.9, LAMBDA = NUMFACTORS^3 

Gene G0 { 0.0, … 0.0 } // initialize all coefficients to 0.0 

G0.fitness = Sum of Fitness(G0, P) over all P in list Patients 

Unsuccessful = 0 // count of unsuccessful mutations 

While SIGMA >= 0.005 do 

 If Unsuccessful >= 2 then  

        SIGMA *= ALPHA 

        Unsuccessful = 0 

 For j = 1 to LAMBDA do 

  Genes[j] = Mutate(G0) 

  Genes[j].fitness = Sum of Fitness(Genes[j], P) for all P 

 Sort Genes[j] in order of decreasing fitness 

 If Genes[0].fitness > G0.fitness then 

  G0 = Genes[0] // replace G0 with most-fit child 

Else 

  Unsuccessful++ // no improvements in this generation 

Output(G0) 

2.2 Other machine learning algorithms 

The widely-known WEKA machine learning workbench software [17] was used to compare 
the results of this EA with other common machine learning algorithms: logistic regression, 
multilayer perceptron neural network, and C4.5 decision tree. All algorithms were used with 
their default parameters to ease comparison with other work. 

2.3 Synthetic data generation 

Two datasets were generated: a 10,000 patient training set and a 5,000 patient testing set. 
Each dataset was assigned medical history and demographic factors in a random process 
according to the prevalence percentages given in Table 1.  

Table 1. Prevalence of five medical history and demographic factors in the US population. 

Factor Population Prevalence Source 

Asthma US Adults (18+ yrs) 8.0% [18] 

Diabetes US Adults (18+ yrs) 13.0% [19] 

Coronary Heart 

Disease 

US Adults (20+ yrs) 6.7% [20] 

Hypertension US Adults (18+ yrs) 29.0% [21] 

Advanced Age (65+) US Adults  21.2% [22] 

 

For this supervised-learning study, the class variable that the learners are attempting to predict is 

the probability of hospitalization for patients presenting at a clinic with symptoms of COVID-19. The 
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baseline rate for hospitalization has been reported as 5% [23]. Based on odds ratios obtained in late 

2021 [24], enhanced rates of hospitalization were calculated for each risk factor (see Table 2). 

Table 2. Rates of hospitalization used to generate artificial dataset. 

Risk factor Hospitalization rate 

Asthma alone 6.4% 

Heart Disease (all types) 27.0% 

Diabetes (both types) 19.5% 

Hypertension alone 40.5% 

Advanced Age (65+) alone 40.4% 

No hard data was found for synergistic effects of various risk factors. Based on intuition and 

qualitative information found online, either 25% synergy (advanced age + either asthma, heart disease, 

or diabetes), 20% synergy (hypertension combined with advanced age or heart disease), or 10% synergy 

(all other combinations) was applied to particular risk factor combinations. The total risk percent was 

then calculated for each pair of factors by adding the two individual risks and multiplying by the synergy 

factor (i.e. 1.25 for 25% synergy). 

For each risk factor or two-factor combination that a simulated patient possessed, that patient was 

assigned a random number between 0 and 100; their hospitalization flag was set to “true” if that number 

was less than or equal to the percent risk. For example, if a patient had asthma, the algorithm would 

assign them a Hospitalized outcome if their randomized percent score was ≤ 6.4%, but if they also had 

advanced age, the algorithm would assign them a Hospitalized outcome for scores ≤ 58.5%.  

The following printout summarizes the training data: 
2191 patients with adv age (21.91%) -- 1489 (67.9598%) hospitalized 
768 patients with asthma (7.68%) -- 334 (43.4896%) hospitalized 
651 patients with heart disease (6.51%) -- 410 (62.98%) hospitalized 
1300 patients with diabetes (13%) -- 737 (56.6923%) hospitalized 
2891 patients with hypertension (28.91%) -- 1779 (61.5358%) hospitalized 
4223 patients with none (42.23%) -- 217 (5.13853%) hospitalized 

As you can see from this printout, since many patients have multiple history factors, the relative 

rates of ICU hospitalization when patients are itemized by history factor appear to be higher than the 

actual risk rates. One question of this study will be whether our simple EA can sort out these effects. 

3 Results 

3.1 Evolutionary Algorithm 

Running the evolutionary algorithm on the training dataset yielded the fit coefficients in Table 3, with 

a normalized fitness score of 0.876747, where A = asthma, B = heart disease, C = diabetes, D = 

hypertension, and E = advanced age (65+). Fit coefficients are the average of results from seven runs, 

with an error margin of between 0.00011 and 0.00022. On average, runs took 331 generations to 

converge, with a range of 295 to 380. 

Table 3. Fit coefficients from Evolutionary Algorithm 

Factor Coeff Factor Coeff Factor Coeff Factor Coeff 

A 0.0748 E 0.4415 A E 0.1321 C D 0.1096 

B 0.3117 A B 0.0846 B C 0.0349 C E 0.0486 

C 0.2185 A C 0.0323 B D 0.0027 D E 0.0367 

D 0.3889 A D 0.1131 B E 0.0123 C0 0.0356 
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It appeared from a cursory observation of the coefficients that each single-variable coefficient was 

very close to the actual risk percent for the corresponding single factor, prompting speculation that the 

fit equation would predict the actual disease risk for each patient. Substituting each single factor or two-

factor combination into the fit equation with the EA-determined coefficients produced a response that 

closely resembled the actual hospitalization risk. The results of this operation are presented in Figure 1. 

 

Figure 1. Percent chance of hospitalization as estimated by a novel genetic algorithm as compared to 

actual percent chances used to generate the data. 

The test data was then processed with the regression equation to produce a risk prediction for each 

patient. This data was processed with the “ROCR” R package to obtain the ROC curve shown in Figure 

2. Area under the ROC curve was 0.868. 

 

Figure 2. Receiver-Operator Characteristic (ROC) curve for EA model of synthetic COVID data. 
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3.2 Logistic Regression 

The logistic regression model produced the coefficients seen in Table 4 and the confusion matrix 

seen in Table 5. The ROC area for this model was 0.868. 

 

Table 4. Coefficients for logistic regression. 

Variable Class No 

ASTHMA=Yes -1.0909 

HRT_DIS=Yes -2.3872 

DIABETES=Yes -1.9578 

HYPERTEN=Yes -2.9075 

ADV_AGE=Yes -3.1404 

Intercept 3.2621 

 

Table 5. Confusion matrix for logistic regression. 

Classified as No Classified as Yes  

3376 79 True No 

845 700 True Yes 

  

3.3 Decision-Tree Learner 

The C4.5 decision tree algorithm in WEKA produced the tree shown in Figure 3, and again the 

confusion matrix was identical to that shown in Figure 5. The ROC area for this model was 0.856. 

 

Figure 3. C4.5 decision tree based on unequalized dataset. 

3.4 Multilayer Perceptron 

The multilayer perceptron neural-network model produced five nodes with weights given in 

Supplemental Figure 4 at the end of this paper. The confusion matrix was identical to the one shown in 

Table 5 for the logistic regression model. The ROC area for this model was 0.868. 
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4 Discussion 

The single-factor coefficients produced by the EA clearly assign correct weights to each factor – 

giving hypertension a much larger coefficient than asthma, for example – and even assigns coefficients 

to each factor that roughly correspond to the percent chance of each attribute predicting hospitalization. 

The intercept coefficient, C0, also comes close to identifying the correct percent chance of 

hospitalization for a patient with none of these risk factors. The remaining coefficients of the equation 

look at interactions between two attributes. These interaction coefficients range from miniscule – less 

than 0.005 – to substantial – up to 0.14. None of the coefficients in this model is negative, which might 

indicate that that factor or interaction between factors was somewhat protective against strong disease, 

though this researcher has seen negative coefficients in preliminary studies of real-world data.  

Figure 1 indicates that while the EA model predictions do not agree exactly with the percent risks – 

they particularly seem to overestimate the risks for each single factor, though this is perhaps an artifact 

of the process by which the data were generated – the predictions are sufficiently close to the actual 

risks that it is reasonable to expect that models produced with this method could be used to gauge the 

quantitative risks that each medical history and demographic factor – and each two-factor interaction – 

poses for severe disease, potentially a large step forward in interpretable machine learning. The 

somewhat poor ROC curve was no worse than any of the other models tested, indicating that this is 

simply a difficult dataset to predict. 

Two of the three “control” models – the logistic regression and the multilayer perceptron – were 

equal to the EA model in terms of predictiveness as measured by ROC area. When it comes to assessing 

the potential of each for interpretable AI, however, the neural network model fails to meet this standard. 

Supplemental Figure 4 shows that, other than the fact that asthma is consistently weighted less than the 

other factors, there are few clear patterns that can be discerned from the network node descriptions. The 

logistic regression model can be seen to produce factor coefficients that scale somewhat proportionally 

to the percent risk that each factor represents, but unlike the EA model the LR model predictions cannot 

simply be read as equal to the risk percent for each factor or combination of factors. 

The decision tree model was somewhat less predictive, from a ROC area standpoint, than the other 

two control models. Its confusion matrix, however, was the same as the other two: it was good at 

avoiding false positives, but predicted more false negatives than true positives. While one might expect 

the decision tree to be a clear winner in the interpretability category, the tree produced by this model 

was in fact difficult to interpret. It correctly predicts advanced age and hypertension as the two top-

level concerns, and asthma as a bottom-level concern, but its treatment of heart disease and diabetes is 

somewhat confusing, and the exact interactions it predicts as most important in the middle of the tree is 

not very informative. 

5 Conclusions 

The simple but novel genetic algorithm presented in this paper may represent a leap forward in 

interpretable machine learning for clinical applications. Not only did it assign model coefficients in 

proportion to the risk that each factor represented, but it also detected interactions between risk factors, 

something that is lacking from many other models. Perhaps more significant, however, the model 

predictions for each factor or two-factor combination seem to be almost a numerical match for the 

percent risk that those factors or combinations represent. The goal of an interpretable or explainable AI 

is not only to make accurate predictions but to point out patterns in the data such that human domain 
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experts, such as clinicians, could use the model to gauge actual risks for each patient and to see how 

each factor contributes to that risk. Such a model could have implications in other fields as well, such 

as estimating the percent risk that particular defects might represent for device failure. In future studies, 

this machine learner, or a more advanced form of it, will be trained on publicly-available data in an 

effort to gain insight into real world disorders. 
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6 Supplemental Figures 

 

Figure 4. Node structure of multilayer perceptron neural network. 

 

Simple evolutionary algorithm for quantifying disease risks J. Camp and H. Al-Mubaid

52


