Lingeling Essentials
A Tutorial on Design and Implementation Aspects of the
the SAT Solver Lingeling

Armin Biere
Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria
biere@jku.at

Abstract

One of the design principles of the state-of-the-art SAT solver Lingeling is to use as compact data
structures as possible. These reduce memory usage, increase cache efficiency and thus improve runtime,
particularly, when using multiple solver instances on multi-core machines, as in our parallel portfolio
solver Plingeling and our cube and conquer solver Treengeling. The scheduler of a dozen
inprocessing algorithms is an important aspect of Lingeling as well. In this talk we explain these design
and implementation aspects of Lingeling and discuss new direction of solver design.

References

Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr. 69, 4040
Linz, Austria.
S. Gerber, M. Järvisalo, and C. Sinz, editors, In Proceedings of SAT Challenge 2012: Solver and
Benchmark Descriptions, volume B-2012-2 of Department of Computer Science Series of Publica-
M. J. H. Belov, A. Heule, and M. Järvisalo, editors, In Proceedings of SAT Competition 2013,
University of Helsinki, 2013.
[5] A. Biere. Yet another local search solver and Lingeling and friends entering the SAT Competition
Fermüller and A. Voronkov, editors, 17th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’17), volume 6397 of Lecture Notes in Computer Science,
tler, editors, 6th International Joint Conference Automated Reasoning (IJCAR’12), volume 7364 of