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Abstract

%MinMax, a model of intra-gene translational elongation rate, relies on codon usage
frequencies. Historically, %MinMax has used tables that measure codon usage bias for all
genes in an organism, such as those found at HIVE-CUT. In this paper, we provide evidence
that codon usage bias based on all genes is insufficient to accurately measure absolute
translation rate. We show that alternative “High-φ” codon usage tables, generated by
another model (ROC-SEMPPR), are a promising alternative. By creating a hybrid model,
future codon usage analyses and their applications (e.g., codon harmonization) are likely to
more accurately measure the “tempo” of translation elongation. We also suggest a High-
φ alternative to the Codon Adaptation Index (CAI), a classic metric of codon usage bias
based on highly expressed genes. Significantly, our new alternative is equally well correlated
with empirical data as traditional CAI without using experimentally determined expression
counts as input.

1 Introduction

Synonymous codons are triplets of RNA nucleotides that encode the same amino acid. Sub-
stitutions of one synonymous codon for another are not always silent. For instance, multiple
groups have shown that rare (i.e., relatively infrequent) synonymous codons often occur at
the same location among homologous proteins, which could slow down translation elongation
and provide additional time for the corresponding protein to fold (see [4]). There are other
implications of non-random codon use. For example, some bacteria such as E. coli are used
to synthesize proteins from other species. This process, called heterologous expression, can be
used to produce human insulin in E. coli to treat diabetics. If codon usage is not considered,
poor protein production and/or improper folding may occur [11, 19, 2].

Although a number of studies have shown that codon usage bias can affect the creation of
functional proteins (reviewed in [3]), the myriad of presumed biological functions of synonymous
codons have made it difficult to predict codon usage that produces the highest proportion of
correctly folded proteins. Note that this is different from other applications whose aim is
to produce the largest amount of protein. For example, a simple solution for producing a
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protein from one species in a different host species is to replace every codon with the most
common (plentiful) synonymous codon in the new host. Because common codons should be
translated more quickly, this sprint could produce a peptide sequence in a minimal amount
of time. However, if specific localized slowdowns are required for proper folding, few copies of
these proteins will fold into functional proteins. Alternative computational methods incorporate
a mathematical model of “translation tempo” to predict where translation may be relatively
faster or slower. For example, we published an approach based on relative codon usage called
%MinMax [6, 4]. Similar attempts using other metrics to predict elongation rate have been
developed by other groups [10, 14, 20, 22].

In this paper we take a more holistic approach towards codon bias and protein production.
If codon usage is important for regulating the speed of translation elongation, as is apparent
from a number of biochemical and computational efforts [5, 3], how can we best tune the tables
required by many codon usage bias metrics to accurately reflect elongation rates? Historically
%MinMax has relied on “ORFeome” codon usage tables, where common codons across all genes
are considered “faster” and less common codons are considered “slower”. In contrast the model
CAI [18], which is built using a predefined set of “very highly expressed” genes, states that
the degree of codon usage bias within these highly expressed genes is a better predictor of
elongation rate. CAI is one of the most commonly used codon metrics; however, predefined
sets of highly expressed genes are unavailable for many organisms.

For a model of intra-gene elongation rate to be reflective of translation speed, the input
codon usage tables must be well correlated with which codons are truly “fast” and “slow”
within an organism. The question remains, how best to determine these tables? Given that
1) highly expressed genes are under selective pressure to chose efficiently (quickly) translated
codons [9] and 2) that codon usage varies greatly within an ORFeome [3], it follows that a
measure of codon usage bias that is best correlated with empirically measured expression levels
is likely to be most indicative of individual codon’s translation rates. Note that, as with codon
abundance, absolute translation elongation rates are likely to vary between organisms. Here we
demonstrate that, although elongation rates predicted using ORFeome codon usage tables have
been successfully used to predict the effects of codon substitutions on co-translational folding
[16], they are less well correlated with experimental data than our new alternative.

The rest of the paper is structured as follows. In Section II we outline related codon usage
efforts and motivate our specific goals. In Section III we outline our framework, specifically
which data we consider, metrics we compute, and evaluations we perform. We provide our
results in Section IV. Sections V and VI are a discussion and conclusion, respectively.

2 Related work

%MinMax [6] has historically been used as a visualization tool. The working hypothesis was that
amino acids encoded with rare codons (defined as codon positions where the %MinMax value
goes below zero) would be translated more slowly than other amino acids (values well above
zero). Negative %MinMax values could indicate “speed bumps” during translation elongation
that could aid in folding the newly translated protein [3].

We have shown that positions of %MinMax rarity have been conserved in homologous pro-
teins from 76 diverse species across the tree of life [4], and can predictably alter co-translational
protein folding [16]. Additionally, we have hypothesized that %MinMax can be useful in “codon
harmonization”: synthetic gene design through computationally optimized synonymous codon
usage [15]. In particular, the %MinMax algorithm provides a few relative advantages (also see
[15]) including interpretability (compared to ROC-SEMPPR), broad usability since no experi-
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mental data on overall expression is required (compared with traditional CAI), and the ability
to look at codon usage within and between genes (compared to both CAI and ROC-SEMPPR).

One of the earliest and most widely used metrics of codon usage bias is the Codon Adaptation
Index (CAI), which was initially proposed by Sharp and Li in 1987 [18]. CAI uses a reference set
of previously determined “very highly expressed genes” to calculate codon usage frequencies. It
then calculates Relative Synonymous Codon Usage (RSCU), which is simply the usage frequency
for a codon divided by the average usage frequency of the set of synonymous codons for a given
amino acid. This value is then normalized to be between 0 and 1 by dividing each RSCU by the
max RSCU among the synonymous codons, called w. The CAI value for a gene is calculated
as the geometric mean of the w values for each codon in the sequence. While still commonly
used, CAI has a limitation: it requires a relevant set of highly expressed genes, which is not
often available outside well-studied model organisms.

An alternative method that addresses this specific CAI weakness is Ribosome Overhead
Costs - Stochastic Evolutionary Model of Protein Production Rate (ROC-SEMPPR; [9]). This
method uses a Markov Chain Monte Carlo model to estimate gene expression (φ), using any
relevant set of gene sequences, e.g., all predicted genes in a genome. In addition to provid-
ing expression estimates for each gene, ROC-SEMPPR can produce estimated codon usage
at different expression levels (see C++/R package in [12]). Although originally designed for
visualization, this last feature allows for easy incorporation with any computational method
requiring codon usage tables, such as %MinMax or CAI.

3 Methods

To determine the effects of codon usage bias on protein production, and to inform future mod-
eling of such bias, we ran a number of tests on E. coli and S. cerevisiae. Both are popular
organisms for fundamental experimental work, which provides an abundance of data for com-
paring models, and for producing proteins heterologously. The latter should enable future
experimental validation of said models [3].

3.1 Correlation of %MinMax and ROC-SEMPPR

Our underlying hypothesis is that any viable model for estimating translation rate should have
at least a modest correlation with experimental expression data. We therefore first calculated
a linear correlation between average %MinMax (median and geometric mean produced similar
results) and expression estimates (φ) from ROC-SEMPPR [9], with %MinMax integrating the
following models of codon usage bias (CUB):

• ORFeome: %MinMax was calculated as before (per [4, 15]), meaning that no weight-
ing was performed based on expression (experimental or estimated). Like [15], codon
usage tables were obtained from HIVE-CUT [1]. This approach assumes codon bias is
meaningful only when measured for the entire ORFeome.

• Dynamic: As a result of ROC-SEMPPR [9], each gene is assigned an estimated expres-
sion value. We next considered a new framework where CUB values were recalculated
based on this estimate (i.e, log10(φ)) per gene. This approach assumes a bias gradient
and is intermediate between previous efforts and more experimentally-driven approaches
such as CAI [18]. The change in one amino acid’s synonymous codon usage frequency as
expression level increases in E. coli can be seen in Figure 3A.
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Correlation of φ and Average %MinMax

Figure 1: Correlation of φ and Average %MinMax using the High-φ codon tables, with log10(φ)
set to 0.7 for E. coli and 0.74 for S. cerevisiae. The strong correlation between these two metrics
under these circumstances is not surprising. Using a High-φ table causes common codons in
genes that are estimated to be highly expressed to have higher relative codon usage, therefore
pushing up the average %MinMax in genes with corresponding high φ estimates.

• High Expression ROC-SEMPPR (High-φ): The codon usage table was calculated
only once using ROC-SEMPPR’s estimates at a high log10(φ) value. This approach
overcomes the need for experimental training data and assumes codon bias is clearest in
highly expressed genes. High-φ codon usage corresponds to the frequencies on the right
side of Figure 3A.

3.2 Correlation of %MinMax, ROC-SEMPPR, and CAI with Mea-
sured Expression Counts

As a baseline, ROC-SEMPPR (φ), Average %MinMax, and CAI were independently correlated
with empirically measured protein counts in the cell for both E. coli and S. cerevisiae. The
expression count data was transformed using both a square root transform and a log-transform
to manage the wide spread of protein abundances. %MinMax was correlated under the three
CUB conditions described above. CAI was calculated using w values (see Related Work) as per
[18], as well as newly calculated w values derived from ROC-SEMPPR’s High-φ codon usage
tables.

3.3 Data

E. coli K12 nucleotide sequences were provided by Cedric Landerer and Michael Gilchrist (pers.
communication); these were used to test the software in [12] and for the analysis in [7]. The main
difference between this set and the entire predicted gene set is a number of likely horizontally
transferred genes were removed (see [7]). The codon specific parameters ∆η and ∆M for both
species were obtained from Gilchrist, based on his earlier work on ROC-SEMPPR [9]. Note
that these values can now be calculated independently using AnaCoDa (see [12] for a summary
and source code). ORFeome codon usage tables for both E. coli and S. cerevisiae were taken
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Figure 2: R2 values for each correlation analysis for E. coli and S. cerevisiae. While the R2 for
each ROC-SEMPPR hybrid model is not exceptional, they are comparable to the empirically
trained Traditional CAI. Comments on the quality of the correlations of these models with
measured expression counts is given in the discussion.

from HIVE-CUT [1]. The genetic sequences for S. cerevisiae were retrieved from the NCBI
Genome database, and the FASTA file was mapped to the GenBank genome file using Python.
Empirically measured abundance values for E. coli and S. cerevisiae proteins were taken from
[17] (Supplemental Table 6) and [8] respectively.

4 Results

ROC-SEMPPR log10(φ) and Average High-φ %MinMax showed a very strong correlation in
both E. coli ( r2 = .877 ) and S. cerevisiae ( r2 = .842 ), as shown in Figure 1. These were
the highest correlations between the two models. This strong correlation was to be expected
because common codons in the High-φ tables are the codons that appear most frequently in
the estimated highly expressed genes per ROC-SEMPPR.

Given the wide distribution of expression data we first performed multiple data transfor-
mations to minimize the effect of outliers (see Methods). When a log-transform was applied,
ROC-SEMPPR log10(φ) slightly outperformed Average High-φ %MinMax at correlating with
measured expression data, while the %MinMax estimate performed slightly better when given
square root transformed data. Neither metric has an exceptional R2 value, with the highest
being %MinMax correlated with the square root transform of the expression data at .405 for
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E. coli and .425 for S. cerevisiae. However, it should be noted that neither model performs
much worse than traditional CAI, which was built using empirically measured high expression
genes. Comments on why the correlation between the models and empirical expression data is
limited are given in the Discussion. Interestingly, ORFeome %MinMax showed almost no corre-
lation with the global empirical data, resulting in the worst R2 values, and Dynamic %MinMax
performed only slightly better (see Figure 2 for all results).

Traditional CAI values for each gene [18] were also correlated with the empirical protein
measurements, and outperformed both High-φ %MinMax and ROC-SEMPPR log10(φ) in E.
coli, with R2 values of .413 and .480 for the two different transforms. In S. cerevisiae, CAI was
less well correlated with expression data than High-φ %MinMax for log-transformed expression
data, but did better on square root transformed data.

High-φ CAI values outperformed both ROC-SEMPPR log10(φ) and High-φ %MinMax ex-
cept when using log-transformed S. cerevisiae data, making it the most well correlated of the
hybrid models. It also compared favorably to traditional CAI in two of the tests, while being
tied in a third. High-φ CAI also had the highest R2 value of any of the tests (.544 on the square
root transformed E. coli data). After close inspection this result can be explained by a compact
cluster near a CAI value of 0 for lowly expressed genes, which signals that the geometric mean
used to calculate CAI appropriately penalized slower translating codons in this data.

We conclude that codon usage bias in highly expressed genes is the most strongly correlated
with empirically measured protein abundance levels for the tests we ran in both S. cerevisiae
and E. coli. This implies that models of translation rate which incorporate such a bias will
likely be more accurate than models incorporating other options (e.g., ORFeome codon usage
bias). Additionally, ROC-SEMPER-driven models can be competitive with models built using
empirically measured data (i.e., traditional CAI) without requiring pre-existing expression data.
Model choice for future work relating to codon usage bias should depend on the application,
as %MinMax has been used to study patterns locally within a gene while CAI traditionally is
used to look globally between genes.

5 Discussion

Both [18] and [9] claim that highly expressed genes are under selective pressure to choose
translationally efficient (fast) codons, and that the degree of altered codon usage bias is indica-
tive of expression level. This implies that a highly expressed gene is expected to have greater
enrichment of said efficient codons than a more lowly expressed gene. Further, the most trans-
lationally efficient (fast) synonymous codon for a particular amino acid is not always the most
common synonymous codon in the ORFeome (see Figure 3). Therefore, a new codon usage
measure that shows the strongest correlation with measured expression counts is likely the best
estimator of which codons are actually fast or slow. Here we show that the strong correlation
between High-φ hybrid models and empirical expression data helps verify the claim in [9] that
common codons in High-φ tables are more indicative of translation elongation rate than those
based solely on ORFeome usage.

CAI, a model that has been around for over 30 years, outperforms High-φ %MinMax and
ROC-SEMPPR in three out of the four conditions tested. Note, however, that High-φ CAI
showed comparable correlation without requiring experimental data. Also note that traditional
ROC-SEMPPR log10(φ) and CAI are global estimates for overall elongation and, as a proxy,
expression. %MinMax is an established local (window-based) estimate, which we were able
make into a respectable expression estimate simply by averaging its values based on High-φ
codon usage.
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Codon Usage Variation for Phenylalanine in E. coli Modeled by ROC-SEMPPR

Figure 3: A: Predicted codon usage for the amino acid phenylalanine’s two synonymous codons,
TTC and TTT, in E. coli using ROC-SEMPPR (solid lines), as opposed to the ORFeome
codon usage frequency (dashed lines). Note the codon usage differences between the models,
with the “preferred” codon for phenylalanine actually swapping as the estimated expression
level increases. This behavior is true for a number of the amino acids in both E. coli and S.
cerevisiae.
B: Histogram of estimated expression levels (log10(φ)) for E. coli genes.

Data Transformation and Model Fits in E. coli

Figure 4: Correlation plots for log10(φ) vs log10(Expression) and Average %MinMax vs√
Expression.

Because measures like %MinMax allow users to look at specific regions within a gene, we
believe these profiles better enable harmonization of genes for improved heterologous expression,
which also happens to be an ideal framework for experimental validation. In support of this,
at least one recent publication proposed a CAI equivalent of %MinMax profiles for optimizing
codon usage in a host species [13]. Although a comparative experimental study of the two
models is needed to say which is best at producing the most well-folded proteins, we clearly
show that ROC-SEMPPR can easily be combined with either approach.

In this work we have generally tuned our input tables to best maximize correlations. This
approach, however, cannot be reproduced for organisms that do not have available protein
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abundance data, and is not as useful for genes with abundance data (as expression estimates
are then no longer needed). A good rule of thumb for choosing a High-φ threshold is to simply
set log10(φ) = 1. If this had been done here, the R2 values would have dropped only by an
average of .012 over all of our tests.

Finally, we note that none of the models analyzed here (%MinMax, ROC-SEMPPR φ,
and CAI) preform exceedingly well at predicting empirically measured protein levels in the
cell, with the highest found R2 value being .544. There are a number of possible reasons
for this observation. One possibility is that the protein measurements are noisy due to high
turnover. [21] claims that “approximately one-third of newly synthesized proteins are degraded
by proteasomes within minutes of their synthesis,” which could make collecting large-scale
and accurate measurements difficult. Another (and equally likely) explanation is that protein
production is a complex process, and there are likely other factors (i.e., initiation, nonsense
errors) that play a role in overall protein expression and could be modeled in future work.

6 Conclusion

We have outlined evidence supporting the merging of two different codon-usage models, %Min-
Max and ROC-SEMPPR, to improve the accuracy of modeling protein elongation rates. We
also introduced a ROC-SEMPPR/CAI hybrid alternative to traditional CAI for use in species
where no empirical protein expression data are available. Because %MinMax was initially de-
signed to look within a gene for rare codon clusters, it is the most local of the models considered.
As expected, High-φ average %MinMax is highly correlated with ROC-SEMPPR expression es-
timates, and they are also shown here to be equally correlated with empirical protein levels in
the cell. Because ROC-SEMPPR does not require any expression information as input, High-
φ-driven measures do not either. These features make hybrid models (e.g. High-φ %MinMax
and High-φ CAI) advantageous for species without experimental expression data.
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