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Abstract

It is recognized that security verification of cryptographic protocols tends to be difficult
and in fact, some flaws on protocol designs or security proofs were found after they had been
presented. The use of formal methods is a way to deal with such complexity. Especially,
process calculi are suitable to describe parallel systems. Bisimilarity, which denotes that
two processes behave indistinguishably from the outside, is a key notion in process calculi.
However, by-hand verification of bisimilarity is often tedious when the processes have many
long branches in their transitions. We developed a software tool to automatically verify
bisimulation relation in a quantum process calculus qCCS and applied it to Shor and
Preskill’s security proof of BB84. The tool succeeds to verify the equivalence of BB84 and
an EDP-based protocol, which are discussed in their proof.

1 Introduction

Security proofs of cryptographic protocols tend to be complex and difficult to verify. This
fact has been recognized in the classical cryptography and there is a line of researches to deal
with the complexity of verification [1, 2]. Since by-hand proofs are prone to human error and
time consumption, efforts have been put into automating security proofs and verification in the
classical cryptography. Security proofs are also complex in the quantum cryptography, where we
must also consider attacks using entanglements. The first security proof of BB84 quantum key
distribution (QKD) protocol by Mayers [3] is about 50 pages long. After that paper, researchers
have been seeking simpler proofs [4, 5]. Since QKD is one of the closest application to practice
in the quantum information field, it is important to examine QKD systems’ security formally
and make it machine-checkable.

There are several formal frameworks for quantum protocols. Feng et al. developed a process
calculus qCCS [6]. In this calculus, a protocol is formalized as a configuration. A configuration
is a pair of a process and a quantum state corresponding to quantum variables. Weak open
bisimulation relation on qCCS configurations is defined. Weakly open bisimilar configurations
have the same transitions up to internal ones and reveal the identical quantum states to the
outsider (adversary) in each step. The relation is proven to be closed by parallel composition of
processes. A use case of a process calculus for formal verification is to prove weak bisimilarity
of implementation and specification described as configurations. qCCS has been applied to
quantum teleportation, superdense coding and BB84 protocols.

To extend application of formal methods to security proofs, we applied qCCS to Shor and
Preskill’s security proof of BB84 [4] in the previous paper [7]. In Shor and Preskill’s security
proof, security of BB84 is proven to be equivalent to that of another protocol based on an
entanglement distillation protocol (EDP), and then the latter is proven to be secure. We
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formalized BB84 and the EDP-based protocol as configurations and proved their bisimilarity
by hand. However, by-hand verification of bisimilarity is often tedious when configurations
have many long branches in their transitions. In this paper, we present a software tool to verify
bisimilarity of given two qCCS configurations. There are two main contributions of our work.

First, we implemented a software tool that formally verifies bisimilarity of qCCS configu-
rations without recursive structures. A protocol possibly takes security parameters for various
purposes. As for BB84, it takes two parameters: one determines the length of qubits which
Alice sends to Bob in the first quantum communication, and the other is for tolerated error-rate
in the eavesdropping detection step. Such parameters are passed to the verifier as symbols and
are interpreted appropriately. In our verifier’s framework, quantum states and operations are
described as symbols. Since attacks from the adversary are also treated as symbols, our verifier
can deal with unspecified attacks. To examine the behavioural equivalence, adversary’s views
denoted by partial traces must be checked to be equal in each step of a protocol. The verifier
automatically checks the equality using user-defined equations.

Second, we applied our verifier to Shor and Preskill’s security proof of BB84 [4]. The verifier
takes as input two configurations denoting BB84 and the EDP-based protocol, and equations
about the properties of error-correcting codes and measurement of the halves of EPR pairs.
The verifier succeeds to verify the bisimilarity of the configurations of the two protocols.

The package of the verifier is available from http://hagi.is.s.u-tokyo.ac.jp/~tk/qccs

verifier.tar.gz. It includes a user manual and and example scripts in the folders doc and
scripts.
Related Work The authors of qCCS presented the notion of symbolic bisimulation for quan-
tum processes [8]. A purpose is to verify bisimilarity algorithmically. They proved the strong
(internal actions should be simulated) symbolic bisimilarity is equivalent to the strong open
bisimilarity, and actually presented an algorithm to verify symbolic ground (outsiders do not
perform quantum operations adaptively) bisimilarity. Since our purpose is to apply a pro-
cess calculus to security proofs where adversarial interference must be taken into account, we
implemented a tool that verifies weak open bisimilarity on the basis of the original qCCS [6].

2 The Verifier

Formal Framework The verifier employs a sublanguage of qCCS, where the syntax of recur-
sion and the use of classical data are restricted. The framework is still expressive, because our
target protocols do not need recursion and classical probability distributions can be represented
as quantum states denoted by diagonal operators. The syntax of the processes in the verifier is
as follows.

P ::= discard(q̃) | c?q.P | c!q.P | meas b then P saem | op[q̃].P | P ||P | P\L

Intuitively, discard(q̃) means termination of a process keeping a sequence of quantum variables
q̃ secret. c!q.P sends a quantum variable q to a channel c and then executes P . c?q.P receives
quantum data to a variable q from a channel c and then executes P . meas b then P saem

measures a quantum bit b and executes P if the outcome is 0 or terminates if the outcome is
1. op[q̃].P performs a superoperator op to quantum variables q̃ and then executes P . P ||P ′
executes P and P ′ in parallel. P\L, where L is a set of channels, executes P keeping channels
in L private. Let qv(P ) be the set of quantum variables that occur in a process P . c!q.P ,
meas b then P saem, op[q̃].P and P ||P ′ are defined only if q /∈ qv(P ), b ∈ qv(P ), q̃ ⊂ qv(P )
and qv(P ) ∩ qv(P ′) = ∅ respectively. In our verifier, each quantum variable is defined with its
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qubit-length that is indicated by a natural number symbol declared beforehand. The adoption
of natural number symbols is important to treat security parameters in the verifier. Quantum
states are represented as character strings called environments. The syntax of the environments
is given as follows.

ρ ::= X[q̃] | op[q̃](ρ) | ρ * ρ | proji[b](ρ) | Tr[q̃](ρ)

Let qv(ρ) be the set of quantum variables that occur in an environment ρ. X[q̃] means
that quantum variables q̃ are in a quantum state X. op[q̃](ρ) is a quantum state after the
application of operation op to quantum variables q̃ in an environment ρ. ρ * ρ′ represents the
tensor product of ρ and ρ′ but ρ * ρ′ and ρ′ * ρ are identified in the verifier. ρ * ρ′ is defined
only if qv(ρ) ∩ qv(ρ′) = ∅. proji[b](ρ) means the reduced density operator |i〉〈i|bρ|i〉〈i|b with
i ∈ {0, 1}. Tr[q̃](ρ) means the partial trace of ρ by q̃. We call a pair 〈P, ρ〉 of a process P
and an environment ρ a configuration only if qv(P ) ⊂ qv(ρ), because quantum states of qubits
occurring in P must be defined in ρ. For example, an agent that sends the halves of n EPR pairs
to the outside is formalized as a configuration 〈c!q.discard(r), EPR[q,r]*ANY[s]〉, where the
quantum variables q, r are of the qubit length n and the quantum variable s is defined with an
arbitrary qubit-length. EPR[q,r] is interpreted to (|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)⊗nq,r

and ANY[s] is arbitrarily for adversary’s density operators.
A labelled transition system based on the original one [6] is implemented in the verifier.

Transitions are interpreted as interactions between configurations and the adversary. For exam-

ple, the configuration above performs a transition 〈c!q.discard(r), EPR[q,r]*ANY[s]〉 c!q−−→
〈discard(r), EPR[q,r]*ANY[s]〉, where the adversary can recognize that the quantum vari-
able q is sent through the channel c. Transitions caused by internal actions such as quantum
operations, internal communications and conditional branches are labelled τ . The label τ intu-
itively means that the action is invisible from the outside. The transition rules of conditional
branch are 〈meas b then P saem, ρ〉 τ−→ 〈P, proj0[b](ρ)〉 and 〈meas b then P saem, ρ〉 τ−→
〈discard(qv(P )), proj1[b](ρ)〉. These may decrease the trace of the density operator de-
noting a quantum state. Since the trace indicates the probability to reach to a configuration,
we can restore the probability from configurations to conditional branches. We identify the
branches that are evoked by an identical quantum variable. Eventually, probability is absorbed
in quantum states and excluded from the transition system.

The transition system of the original qCCS is probabilistic, which is caused by the mea-
surement construction M [q;x] in the syntax [6]. It measures an observable M of a quantum
variable q and stores the result in a classical variable x. There are two ways to formalize quan-
tum measurement since one can be also formalized as a superoperator. Because only M [q;x]
evokes a probabilistic branch, processes with different formalization of measurement are not
bisimilar in general. We proposed a criteria how to select the way in our previous work [7]; we
should use M [q;x] if a process behaves differently according to the measurement. For example,
the case where a process performs different labeled transitions is typical. Otherwise, we should
formalize measurement by a superoperator. In our verifier’s framework, M [q;x] cannot be writ-
ten independently. Instead, the syntax meas b then P saem is the composition of M [q;x] and
the conditional branch in the original qCCS. This restriction and the conditions on quantum
variables prevent the situation where two configurations with the different ways of formalization
of measurement are not bisimilar.
Procedure to Check Bisimulation Weak bisimulation relation [6] is defined on qCCS con-
figurations. Roughly speaking, weakly bisimilar configurations (1) perform identical labelled
transitions up to τ transitions and (2) reveal identical density operators whatever operations the
adversary performs to her quantum variables. The adversary’s view is denoted by the partial

66



Automated Verification of Equivalence on Quantum Cryptographic Protocols Kubota et al.

trace Tr[q̃](ρ) when the global quantum state is ρ and q̃ are the quantum variables that are
not revealed to the adversary. The verifier takes as input two configurations and user-defined
equations on environments and returns true or false. It is designed to be sound with respect
to the original qCCS, that is, two configurations are bisimilar if the verifier returns true with
them and some valid equations. This is because

R̂eqs = {(C,D) |The verifier returns true, given C,D, and eqs.}

is a bisimulation relation for all valid equations eqs. Precisely, R̂eqs is converted accordingly
because meas b then P saem is decomposed to M [b;x] and a conditional branch, which performs
a two-step transition in the branch with x = 0. The recursive procedure to verify bisimilarity
is as follows. Since the transitions of the processes written in our sublanguage are finite, the
procedure always terminates.

1. The procedure takes as input two configurations 〈P0, ρ0〉, 〈Q0, σ0〉 and user-defined equa-
tions on environments.

2. If P0 and Q0 can perform any τ -transitions of superoperator applications, they are all
performed at this point. Let 〈P, ρ〉 and 〈Q, σ〉 be the obtained configurations.

3. Whether qv(P ) = qv(Q) is checked. If it does not hold, the procedure returns false.

4. Whether Tr[qv(P )](ρ) = Tr[qv(Q)](σ) is checked with user-defined equations. The
procedure to check the equality of quantum states are described in the next subsection.
If it does not hold, the procedure returns false.

5. A new superoperator symbol E[qv(ρ)− qv(P )] that stands for an adversarial operation
is generated.

6. For each 〈P ′, ρ′〉 such that 〈P, E[qv(ρ) − qv(P )](ρ)〉 α−→ 〈P ′, ρ′〉, the procedure checks

whether there exists 〈Q′, σ′〉 such that 〈Q, E[qv(σ)− qv(Q)](σ)〉 τ∗−→ α−→ τ∗−→ 〈Q′, σ′〉 and
the procedure returns true with the input 〈P ′, ρ′〉 and 〈Q′, σ′〉. If there exists, it goes to
the next step 7. Otherwise, it returns false.

7. For each 〈Q′, σ′〉 such that 〈Q, E[qv(σ) − qv(Q)](σ)〉 α−→ 〈Q′, σ′〉, the procedure checks

whether there exists 〈P ′, ρ′〉 such that 〈P, E[qv(ρ) − qv(P )](ρ)〉 τ∗−→ α−→ τ∗−→ 〈P ′, ρ′〉 and
the procedure returns true with the input 〈Q′, σ′〉 and 〈P ′, ρ′〉. If there exists, it returns
true. Otherwise, it returns false.

The step 2 prominently reduces the search space. Indeed, 〈op1[q̃].P ||op2[r̃].Q, ρ〉 and
〈P ||Q,F r̃op2(E q̃op1(ρ))〉 are bisimilar, and F r̃op2(E q̃op1(ρ)) = E q̃op1(F r̃op2(ρ)) holds because q̃ ∩ r̃ = ∅
holds. Therefore, superoperators that can originally cause τ transitions are disposed.
Equality Test of Quantum States To test the equality of given two environments, the verifier
checks whether they are transformed to the same form. There are two kinds of transformations,
trace out and application of user-defined rules.

Partial trace is significant to test the equality of quantum states. For example, two different
quantum states op1[q](X[q]*Y[r]*Z[s]) and op2[r](U[q]*V[r]*Z[s]) have the same par-
tial trace Z[s] under Tr[q,r] for arbitrary interpretation of the superoperators op1, op2 and
the quantum states X, Y, Z, U, V. The verifier eliminates symbols of superoperators and quantum
states according to the partial trace rules below.

Tr[q̃](E[r̃](ρ)) = Tr[q̃](ρ) if r̃ ⊂ q̃ (1), Tr[q̃](ρ) = Tr[r̃](Tr[s̃](ρ)) if q̃ = r̃ ∪ s̃ (2),

Tr[q̃](E[r̃](ρ)) = E[r̃](Tr[q̃](ρ)) if q̃ ∩ r̃ = ∅ (3), Tr[q̃](ρ ∗ ρq̃ ∗ σ) = ρ ∗ σ (4).
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If r̃ ⊂ q̃ holds, Tr[q̃](E[r̃](ρ)) is rewritten to Tr[q̃](ρ) eliminating E[r̃] by the rule (1);
otherwise, by the rules (2) and (3), the trace-out symbol with quantum variables that are disjoint
to targets of superoperator goes inside of it’s application. After eliminating superoperators,
quantum states are traced out by the rule (4).

If an objective quantum state has a part that matches to the left-hand side of a user-
defined equation, the part is rewritten to the right-hand side. To apply a user-defined
equation, the verifier automatically solves commutativity of superoperators or partial traces
that are applied to disjoint sets of quantum variables. For example, if the objective
quantum state is Tr[q](hadamard[s] (EPR[q,r]*X[s])) and a user defines an equation
Tr[q](EPR[q,r])=Tr[q](PROB [q,r]) (E1), the application goes as follows.

Tr[q](hadamard[s](EPR[q,r]*X[s])) = hadamards[s](Tr[q](EPR[q,r]*X[s])) (by 5)

= hadamard[s](Tr[q](PROB[q,r]*X[s])) (by E1)

Since the trace-out rules may have become applicable after applications of user-defined rules,
the trace-out procedure is applied again. In each opportunity to test the equality of quantum
states, each user-defined equation is applied only once. This guarantees whatever rules a user
defines, the equality test terminates.

3 Application to Shor and Preskill’s Security Proof

The two protocols BB84 and the EDP-based protocol [4] are formalized as qCCS configurations
on the basis of our previous work [7]. Readers can find the script scripts/shor-preskill.scr
in the package. The interpretations of the symbols of the quantum states and the superoperators
that are used in the formalization are also included as doc/shor-preskill symbols.pdf.
On Channels As in general QKD protocols, three kinds of channels are used: public quantum
channels, private classical channels and public no-interpolate classical channels. Since the
syntax has channel restriction P\L, formalization of private channels is straightforward. Public
no-interpolate classical channels are realized by copying the data. If a quantum variable q where
a classical value is assigned is sent through a public no-interpolate channel c, this is formalized
as ...copy[q,Q].c!q.d!Q...\{..., c, ...}, where Q is a new quantum variable, a superoperator
copy copies the value of q to Q and d is a new non-restricted channel. q will securely sent
through the restricted channel c and an adversary obtains the same value accessing Q through
a public channel d. Note that the value of q can be copied because it is classical.
Equations for the Proof We defined 10 equations in the verifier. Equations are interpreted
to those on density operators and proven correct. For example, the equation below tells the
verifier that the halves of EPR pairs are indistinguishable from the uniform distribution. This
is used to check that the adversary’s views are identical in the EDP-based protocol and BB84
before Alice in the EDP-based protocol measures her halves of the check qubits.

equation E7

Tr[q1_A](EPR[q1_A,q2_A]) = Tr[q1_A](PROB[q1_A,q2_A])

end

The user-defined rule above is interpreted to an equation tr{q1 A}(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+
|11〉〈11|)⊗nq1 A,q2 A = tr{q1 A}(|00〉〈00|+ |11〉〈11|)⊗nq1 A,q2 A. The other rules are related to CSS codes,
partial traces and measurement of quantum states. We obtained them by formalizing the
equality of quantum states that are discussed in the original proof [4].

It is actually natural to express quantum states as symbols with some equations in inputs. In
cryptographic protocols, the dimension of quantum states and superoperators cannot be fixed
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as a certain number as they depend on security parameters. In addition, qubits going through
public channels are potentially interpolated by the adversary. Since arbitrary computation
by the adversary must be considered, it should be described as an unspecified superoperator.
Therefore, quantum states are difficult to be expressed as concrete matrices, which can be
numerically analyzed. Although quantum states are treated symbolically, automatic calculation
of partial traces is still possible focusing on occurrence of quantum variables in environments.
Experiment Result We ran the verifier with the input of shor-preskill.scr. We used a
note PC with Intel Core i5 CPU M 460 @ 2.53GHz and 1GB memory. The transition tree of
the EDP-based protocol has 621 nodes and 165 paths, and that of BB84 has 588 nodes and 165
paths. The verifier checked the bisimilarity of the two protocols in 15.98 seconds. The recursive
procedure was called 951 times.

4 Conclusions

We presented a software tool to check bisimulation of qCCS configurations and applied it to a
security proof of BB84 [4]. In security proofs, equivalence on protocols is often discussed. It
can be described as bisimulation relation but it is nearly impossible to check by hand if state
transitions of processes have many long branches. In addition, the equality of an adversary’s
view between two protocols has to be checked in each step. An adversary’s view is calculated
from a global quantum states, which is possibly denoted by a huge matrix. The verifier does
exhausting parts of proofs of behavioral equivalence, namely, it checks the correspondence of
all state transitions up to invisible ones and an adversary’s view up to equations. On the other
hand, a user only have to examine the correctness of formalization of protocols and validity
of equations that he defines. It could be difficult to find all appropriate equations for a proof
immediately. The verifier is also able to show environments and/or processes when the check
procedure returns false. With the information, a user can modify equations to input.
Future Work We plan to define probabilistic bisimilarity, which denotes that configurations be-
have indistinguishably up to some probability. This will be helpful to prove “indistinguishability
up to negligible probability” of protocols. It is quite common argument in the cryptography.
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