
A Sufficient Condition for the Observational Equivalence of

Processes

Andrew M. Mironov1

The Institute of Informatics Problems of the Russian Academy of Sciences
amironov66@gmail.com

Abstract

The article deals with the problem of proving observational equivalence for the class
of computational processes called processes with message passing. These processes can
execute actions of the following forms: sending or receiving of messages, checking logical
conditions and updating values of internal variables of processes. Our main result is a the-
orem that reduces the problem of proving observational equivalence of a pair of processes
with message passing to the problem of finding formulas associated with pairs of states of
these processes, satisfying certain conditions that are associated with transitions of these
processes. This reduction is a generalization of Floyd’s method of flowchart verification,
which reduces the problem of verification of flowcharts to the problem of finding formu-
las (called intermediate assertions) associated with points in the flowcharts and satisfying
conditions, corresponding to transitions in the flowcharts. The above method of prov-
ing observational equivalence of processes with message passing is illustrated by a sliding
window protocol verification.

Keywords: verification, processes with message passing, observational equivalence,
sliding window protocol

1 Introduction

The problem of formal representation and verification of discrete processes is one of the most
important problems in computer science. There are several approaches to this problem, the
main of them are: CCS and π-calculus [1], [2], CSP and its generalizations [3], temporal logic
and model checking [4], Petri nets [5], process algebras [6], communicating finite-state machines
[7].

In the present paper we introduce a new model of discrete processes, which is a synthesis
of Milner’s model of processes [1] and the model of communicating finite-state machines [7].
Discrete processes are represented in our model as graphs, edges of which are labelled by
operators. These operators consist of internal actions and communication actions. Proofs of
correctness of processes are represented by sets of formulas, associated with pairs of states of
analyzed processes. This method of verification of processes is a synthesis of Milner’s approach
related on the concept of an observational equivalence [1] and Floyd’s inductive assertion method
[8]. For a simplification of an analysis of processes we introduce a simplification operation on
processes. With use this operation it is possible to reduce a complexity of verification of
processes. We illustrate an advantage of the proposed model and the verification method on
the example of verification of a two-way sliding window protocol.

I. Virbitskaite, A. Voronkov (eds.), PSI 2014 (EPiC Series, vol. 23), pp. 9–29 9

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

2 Motivation, advantages of the proposed approach and
its comparison with other works

2.1 Motivation of the proposed approach

The main disadvantage of modern methods of verification of discrete processe is their large
complexity. More precisely,

• the main disadvantage of verification methods based on model checking approach is a high
computational complexity related to the state explosion problem, and

• disadvantages of methods based on theorem proving approach are related with a high
complexity of construction of corresponging theorems and their proofs, and also with an
understanding of these proofs.

For example, in recent paper [9] a complete presentation of proofs of theorems related to verifi-
cation of two-way sliding window protocol takes a few dozen pages of a complex mathematical
text.

The main motivation for the proposed approach to modeling and verification of discrete sys-
tems by checking of observational equivalence of corresponding processes with message passing
is to simplify and make more obvious the following aspects of modeling and analysis of discrete
systems: representation of mathematical models of analyzed systems, construction of proofs of
correctness of the systems, and understanding of these proofs by any who is not a strong expert
in the mathematical theory of verification of discrete systems.

2.2 Advantages of the proposed approach

The proposed mathematical model of processes with message passing allows to construct such
mathematical models of analysed systems that are very similar to an original description of
these systems on any imperative programming language. In section 8 we give an example of
such model that corresponds to a C-program describing a sliding window protocol using go
back n (the program was taken from book [10], section 3.4.2).

The main advantage of the proposed approach is a possibility to use a simplification opera-
tion of models of analyzed systems, that allows essentially simplify the problem of verification
of these models. In section 8 we present a result of such simplification for the above model
of a sliding window protocol: this model can be simplified to a model with only one state. It
should be noted also that the simplified models allow more clearly understand main features of
analyzed systems, and facilitate a construction of correctness proofs for analyzed systems.

If an analyzed property of a system has the form of a behavior which is described by some
process, for example, in the case when

• an analyzed system is a network protocol, and

• a property of this system is a description of an external behavior of this protocol (related
to its interaction with a higher-level protocol)

then a proof of a correctness of such system in this model is a set of formulas associated with
pairs of states, the first of which is a state of the analyzed system, and the second is a state of
a a process which describes a property of the analyzed system.

In section 8 we give an example of such proof, which is a small set of simple formulas. These
formulas can be naturally derived from a simplified model of an analyzed protocol.

10

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

Another advantage of the proposed approach is a possibility to verify systems with un-
bounded sets of states. One of examples of such systems is the above sliding window protocol
using go back n.

2.3 Comparison with other works

In this section we present an overview of papers related to verification of message passing
systems, which are most relevant to the present paper.

The paper [9] deals with modeling and manual verification in the process algebraic language
µCRL. Authors use the theorem prover PVS to formalize and to mechanically prove the cor-
rectness of a protocol using selective repeat (a C-program describing this protocol is presented
in section 3.4.3 of the book [10]). The main disadvantage of this work is a large complexity of
proofs of theorems related to verification of this protocol. This protocol can be verified more
simply with use of the approach proposed in the present paper.

There are a lot of works related to verification of systems with message passing based on
temporal logic and model checking approach. Most relevant ones to the present paper are [11],
[12], [13], [14], [15], [16], [17]. The most deficiency of all of them is restricted abilities: these
methods allow verify only finite state systems.

Among other approaches it should be noted approaches with use of first order logic and
assertional verification: [18], [19], and approaches with use of process algebra: [20], [21], [22],
[23]. The most deficiency of these approaches is a high complexity of construction of proofs of
correctness of analyzed systems.

3 Auxiliary concepts

3.1 Terms

We assume that there are given a set X of variables, a set D of values, a set C of constants,
and a set F of function symbols. Any constant from C is interpreted by a value from D, and
any function symbol from F is interpreted by an operation on D.

We assume that C contains constants 0 and 1, and F contains boolean function symbols
∧,∨,→, which correspond to standard boolean operations on {0, 1}.

The set E of terms is defined in the standard way. Variables and constants are terms. Other
terms have the form f(e1, . . . , en), where f ∈ F , and e1, . . . , en are terms. For each e ∈ E a set
of all variables occurring in e is denoted by Xe.

If X ⊆ X , then a valuation of variables of X is a correspondence ξ, that associates each
variable x ∈ X with a value xξ ∈ D. We denote by the record X• the set of all valuations of
variables from X. For each e ∈ E , each X ⊇ Xe and each ξ ∈ X• the record eξ denotes an
object called a value of e on ξ and defined in the standard way. We assume that terms e1 and
e2 are equal iff ∀ ξ ∈ (Xe1 ∪Xe2)• eξ1 = eξ2.

A term e is a formula if ∀ ξ ∈ X•e the value eξ is 0 or 1. The set of all formulas is denoted
by B. The symbols > and ⊥ denote true and false formula respectively. We shall write formulas
of the form ∧(b1, b2), ∨(b1, b2), etc. in a more familiar form b1 ∧ b2, b1 ∨ b2, etc.

3.2 Atomic operators

We assume that there is given a set N , whose elements are considered as names of objects that
can be sent or received by processes.

11

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

An atomic operator (AO) is an object o of one of three forms presented below. Each
pair (o, ξ), where o is an AO, and ξ is a valuation of variables occurred in o, corresponds to an
action oξ, informally defined below.

1. An input is an AO of the form α?x, where α ∈ N and x ∈ X . An action (α?x)ξ is a
receiving from another process an object named α, with a message attached to this object,
this message is assigned to the variable x.

2. An output is an AO of the form α!e, where α ∈ N and e ∈ E . An action (α!e)ξ is a
sending to another process an object named α, to which a message eξ is attached.

3. An assignment is an AO of the form x := e, where x ∈ X , e ∈ E . An action (x := e)ξ is
an assigning the variable x with the value eξ.

Below we use the following notations.

• For each AO o the record Xo denotes the set of all variables occurred in o.

• If e ∈ E , and o is an assignment, then the record o(e) denotes a term defined as follows: let
o has the form (x := e′), then o(e) is obtained from e by a replacement of all occurrences
of the variable x by the term e′.

• If o is an assignment, and ξ ∈ X•, where Xo ⊆ X ⊆ X , then the record ξ · o denotes
a valuation from X•, defined as follows: let o = (x := e), then xξ·o = eξ and ∀ y ∈
X \ {x} yξ·o = yξ.

It is easy to prove that if o is an assignment and e ∈ E , then for each ξ ∈ X•, where
Xo ∪Xe ⊆ X ⊆ X , the equality o(e)ξ = eξ·o holds. This equality is proved by an induction on
the structure of the term e.

3.3 Operators

An operator is a record O of the form b [o1, . . . , on], where b is a formula called a precondition
of O (this formula will be denoted as 〈O〉), and o1, . . . , on is a sequence of AOs (this sequence
will be denoted as [O]), among which there is at most one input or output. The sequence [O]
may be empty ([]).

If [O] contains an input (or an output) then O is called an input operator (or an output
operator), and in this case the record NO denotes a name occurred in O. If [O] does not
contain inputs and outputs, then we call O an internal operator.

If 〈O〉 = >, then such precondition can is omitted in a notation of O.
Below we use the following notations.

1. For each operator O a set of all variables occurred in O is denoted by XO.

2. If O is an operator, and b ∈ B, then the record O · b denotes an object, which either is a
formula or is not defined. This object is defined recursively as follows. If [O] empty, then

O · b def= 〈O〉∧ b. If [O] = o1, . . . , on, where n ≥ 1, then we shall denote by the record O \ on
an operator obtained from O by a removing of its last AO, and

• if on = α?x, then O · b def
= (O \ on) · b, if x 6∈ Xb, and is undefined otherwise

• if on = α!e, then O · b def
= (O \ on) · b

• if on = (x := e), then O · b def
= (O \ on) · on(b).

3. If O is an internal operator, and ξ ∈ X•, where XO ⊆ X ⊆ X , then the record ξ · O
denotes a valuation from X•, defined as follows: if [O] is empty, then ξ · O def

= ξ, and if

[O] = o1, . . . , on, where n ≥ 1, then ξ ·O def
= (ξ · (O \ on)) · on.

12

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

It is easy to prove that if O is internal and b ∈ B, then for each ξ ∈ X•, where XO ∪Xb ⊆
X ⊆ X , such that 〈O〉ξ = 1, the equality (O · b)ξ = bξ·O holds. This equality is proved by an
induction on a lenght of [O].

3.4 Concatenation of operators

Let O1 and O2 be operators, and at least one of them is internal.
A concatenation of O1 and O2 is an object denoted by the record O1 · O2, that either

is operator or is undefined. This object is defined iff O1 · 〈O2〉 is defined, and in this case

O1 ·O2
def
= (O1 · 〈O2〉)[[O1], [O2]]. It is easy to prove that

• if operators O1, O2 and formula b are such that objects in both sides of the equality
(O1 ·O2) · b = O1 · (O2 · b) are defined, then this equality holds, and

• if operators O1, O2, O3 are such that all objects in both sides of the equality (O1 ·O2)·O3 =
O1 · (O2 ·O3) are defined, then this equality holds.

4 Processes with a message passing

4.1 A concept of a process with a message passing

A process with a message passing (also called more briefly a process) is a 4-tuple P of
the form

P = (SP , s
0
P , TP , IP) (1)

components of which have the following meanings.

• SP is a set of states of the process P .

• s0P ∈ SP is an initial state of the process P .

• TP is a set of transitions of the process P , each transition from TP has the form s1
O→ s2,

where s1, s2 ∈ SP and O is an operator.

• IP ∈ B \ {⊥} is a precondition of the process P .

A transition s1
O→ s2 is called an input, an output, or an internal transition, if O is an

input operator, an output operator, or an internal operator, respectively.
For each process P

• the record XP denotes the set consisting of

– all variables occurred in any of the transitions from TP , or in IP , and

– a variable atP , which is not occurred in IP , and in transitions from TP , the set of
values of atP is SP

• the record 〈P 〉 denotes the formula (atP = s0P) ∧ IP .

For each transition t ∈ TP the records Ot, 〈t〉, start(t) and end(t) denote an operator, a

formula and states defined as follows: if t has the from s1
O→ s2, then

Ot
def
= O, 〈t〉 def= (atP = s1) ∧ 〈O〉, start(t)

def
= s1, end(t)

def
= s2.

If t is an input or an output, then the record Nt denotes the name NOt .
A set Xs

P of essential variables of P is a smallest (w.r.t. inclusion) set satisfying the
following conditions.

13

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

• Xs
P contains all variables contained in preconditions and outputs in operators Ot, where

t ∈ TP .

• If P contains an AO x := e and x ∈ Xs
P , then Xs

P contains all variables occurred in e.

A process P is associated with a graph denoted by the same symbol P . Vertices of this

graph are states of P , and its edges correspond to transitions of P : each transition s1
O→ s2

corresponds to an edge from s1 to s2 with a label O.

4.2 Actions of processes

An action of a process (or, briefly, an action) is a record of one of the following three forms.

• α?d, where α ∈ N and d ∈ D. An action of this form is called a receiving of an object
named α with the attached message d.

• α!d, where α ∈ N and d ∈ D. An action of this form is called a sending of an object
named α with the attached message d.

• τ . An action of this form is called a silent action.

A set of all actions is denoted by A.

4.3 An execution of a process

An execution of a process (1) is a walk on the graph P starting from s0P , with an execution
of AOs occurred in labels of traversed edges. At each step i ≥ 0 of this walk there is defined a
current state si ∈ SP and a current valuation ξi ∈ X•P . We assume that s0 = s0P , 〈P 〉ξ0 = 1,

and for each step i of this walk atξiP = si.
An execution of P on step i is described informally as follows. If there is no transitions in

TP starting at si, then P terminates, otherwise

• P selects a transition t ∈ TP , such that 〈t〉ξi = 1, and if t is an input or an output, then
at the current moment P can receive or send respectively an object named Nt (i.e. at the
same moment there is another process that can send to P or receive from P respectively an
object named Nt). If there is no such transition, then P suspends until at least one such
transition will appear, and after resumption its execution P selects one of such transitions,

• after a sequential execution of all AOs occurred in the operator Ot of the selected transition
t, P moves to the state end(t).

An execution of each AO o occurred in [Ot] consists of a performing of an action a ∈ A
and a replacement the current valuation ξ on a valuation ξ′, which is considered as a current
valuation after an execution of the AO o. An execution of an AO o is as follows:

• if o = α?x, then P performs an action of the form α?d, and xξ
′def
= d, ∀ y ∈ XP \{x} yξ

′def
= yξ

• if o = α!e, then P performs the action α!(eξ), and ξ′
def
= ξ

• if o = (x := e), then P performs τ , and xξ
′ def

= eξ, ∀ y ∈ XP \ {x} yξ
′ def

= yξ.

5 Realizations of processes

5.1 Realizations of AOs and sequences of AOs

A realization of an AO o is a triple (ξ, a, ξ′), such that

14

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

• ξ, ξ′ ∈ X•, where Xo ⊆ X ⊆ X , and a ∈ A
• if o = α?x, then a = α?(xξ

′
) and ∀ y ∈ X \ {x} yξ

′
= yξ

• if o = α!e, then a = α!(eξ) and ξ′ = ξ

• if o = (x := e), then a = τ and ξ′ = ξ · o.
Let o1, . . . , on be a sequence of AOs which contains at most one input or output. A real-

ization of o1, . . . , on is a triple (ξ, a, ξ′), such that

• ξ, ξ′ ∈ X•, where X ⊆ X and a ∈ A
• if n = 0, then ξ′ = ξ and a = τ , otherwise there exists a sequence

(ξ0, a1, ξ1), (ξ1, a2, ξ2), . . . , (ξn−1, an, ξn) (2)

where ξ0 = ξ, ξn = ξ′, ∀ i = 1, . . . , n (ξi−1, ai, ξi) is a realization of oi, and a = τ , if each
ai in (2) is equal to τ , otherwise a coincides with that ai, which is different from τ .

5.2 Realization of transitions

Let P be a process of the form (1), and t ∈ TP .
A realization of t is a triple (ξ1, a, ξ2), where ξ1, ξ2 ∈ X•P and a ∈ A, such that 〈t〉ξ1 = 1

and (ξ1 · (atP := end(t)), a, ξ2) is a realization of [Ot].
The following properties hold.

• If a transition t is internal or is an output, then for each ξ ∈ X•P , such that 〈t〉ξ = 1, there
exist a unique ξ′ ∈ X•P and a unique a ∈ A, such that (ξ, a, ξ′) is a realization of t. We
shall denote such ξ′ by ξ · t.

• If a transition t is an input, then for each ξ ∈ X•P , such that 〈t〉ξ = 1, and each d ∈ D
there exists a unique ξ′ ∈ X•P , such that (ξ,Nt?d, ξ

′) is a realization of t. We shall denote
such ξ′ by ξ · td.

5.3 Realizations of processes

A realization of a process P is a graph P r having the following components.

• The set SrP of vertices of P r is the disjoint union X•P ∪ {P 0}.
• The set T rP of edges of P r consists of the following edges:

– for each realization (ξ1, a, ξ2) of any t ∈ TP the graph P r has an edge from ξ1 to ξ2
with a label a, and

– for each ξ ∈ X•P , such that 〈P 〉ξ = 1, and each edge of P r from ξ to ξ′ with a label a
the graph P r has an edge from P 0 to ξ′ with a label a.

We shall use the following notations: for any pair v, v′ of vertices of P r

• the record v1
a→ v2 denotes an edge from v1 to v2 with a label a

• v τ∗→ v′ means that either v = v′ or ∃ v0, v1, . . . , vn : ∀ i = 1, . . . , n the graph P r has an
edge vi−1

τ→ vi, and v0 = v, vn = v′.

• v τ∗aτ∗−→ v′ (where a ∈ A) means that ∃ v1, v2 : the graph P r has an edge v1
a→ v2, and

v
τ∗−→ v1, v2

τ∗−→ v′.

15

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

6 Observational equivalence of processes

6.1 A concept of observational equivalence of processes

Processes P1 and P2 are said to be observationally equivalent if P r1 and P r2 are observation-
ally equivalent in Milner’s sense [1], i.e. there exists µ ⊆ SrP1

× SrP2
, such that

1. (P 0
1 , P

0
2) ∈ µ

2. if (v1, v2) ∈ µ and v1
τ→ v′1, then ∃ v′2 : v2

τ∗→ v′2, (v′1, v
′
2) ∈ µ,

if (v1, v2) ∈ µ and v2
τ→ v′2, then ∃ v′1 : v1

τ∗→ v′1, (v′1, v
′
2) ∈ µ

3. if (v1, v2) ∈ µ and v1
a→ v′1, where a 6= τ , then ∃ v′2 : v2

τ∗aτ∗−→ v′2, (v′1, v
′
2) ∈ µ,

if (v1, v2) ∈ µ and v2
a→ v′2, where a 6= τ , then ∃ v′1 : v1

τ∗aτ∗−→ v′1, (v′1, v
′
2) ∈ µ

The record P1 ≈ P2 means that P1 and P2 are observationally equivalent.
A lot of problems related to verification of discrete systems can be reduced to the problem

to prove that P1 ≈ P2, where the process P1 is a model of a system being analyzed, and P2 is
a model of some property of this system. In section 8 we consider an example of a proof that
P1 ≈ P2, where P1 is a model of the sliding window protocol, and P2 is a model of its external
behavior.

6.2 A method of a proof of observational equivalence of processes

In this section we present a method of a proof of observational equivalence of processes. This
method is based on theorem 1. To formulate and prove this theorem, we introduce auxiliary
concepts and notations.

1. Let P be a process, and s, s′ ∈ SP . A composite transition (CT) from s to s′ is a
sequence T of transitions of P of the form

s = s0
O1→ s1, s1

O2→ s2, . . . sn−1
On→ sn = s′ (3)

such that there is at most one input or output operator among O1, . . . , On, and there are
defined all concatenations in the expression

(. . . (O1 ·O2) · . . .) ·On (4)

Sequence (3) may be empty, in this case s = s′. If CT T is not empty and has the form
(3), then the record OT denotes a value of the expression (4). If CT T is empty, then

OT
def
= [].

We shall use for CTs the same concepts and notation as for ordinary transitions (start(T),
end(T), NT etc.). A CT T is said to be an input, an output, or an internal iff OT is an
input operator, an output operator, or an internal operator, respectively.

A concept of a realization of a CT is defined by analogy with the concept of a realization
of a transition (see section 5.2). This concept has properties similar to properties of a
realization of a transition, in particular:

(a) if a CT T is internal or is an output, then for each ξ ∈ X•P , such that 〈T 〉ξ = 1, there
is a unique ξ′ ∈ X•P and a unique a ∈ A, such that (ξ, a, ξ′) is a realization of T , we
shall denote such ξ′ by the record ξ · T

16

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

(b) if a CT T is an input, then for each ξ ∈ X•P , such that 〈T 〉ξ = 1, and each d ∈ D there
is a unique ξ′ ∈ X•P , such that (ξ,NT ?d, ξ′) is a realization of T , we shall denote such
ξ′ by the record ξ · T d.

2. If b and b′ are formulas, then the record b ≤ b′ is a brief notation of the proposition that
the formula b→ b′ is true.

3. If O1, O2 are operators, and b ∈ B, then the record (O1, O2) · b denotes a formula defined
by a recursive definition presented below. In this definition we use records of the form
O \o and o(b), which denote an operator and a formula respectively, defined in section 3.3.

Let [O1] = o1, . . . , on and [O2] = o′1, . . . , o
′
m, then the formula

(O1, O2) · b (5)

is defined as follows:

(a) 〈O1〉 ∧ 〈O2〉 ∧ b, if n = m = 0

(b) (O1 \ on, O2) · on(b), if on is an assignment

(c) (O1, O2 \ o′m) · o′m(b), if o′m is an assignment

(d) ((O1 \on), (O2 \o′m)) ·b(z/x, z/y), if on = α?x, o′m = α?y, and b(z/x, z/y) is a formula
obtained from b replacing all occurrences of x and y on a fresh variable z (i.e. z is not
occurred in O1, O2 and b)

(e) ((O1 \ on), (O2 \ o′m)) · ((e1 = e2) ∧ b), if on = α!e1 and o′m = α!e2
(f) ⊥, otherwise.

Theorem 1
Let Pi = (SPi , s

0
Pi
, TPi , 〈Pi〉) (i = 1, 2) be processes such that SP1

∩SP2
= ∅ and XP1

∩XP2
=

∅. Then P1 ≈ P2, if there exist a set {bs1s2 | si ∈ SPi (i = 1, 2)} of formulas with variables from
(XP1

∪XP2
) \ {atP1

, atP2
}, such that

1. 〈P1〉 ∧ 〈P2〉 ≤ bs0P1
s0P2

2. ∀ (s1
O→ s′1) ∈ TP1

, ∀ s2 ∈ SP2
there exists a set {s2

Ti→ si2 | i ∈ =} of CTs of P2 such that
bs1s2 ∧ 〈O〉 ≤

∨
i∈=

(O,OTi) · bs′1si2

3. ∀ (s2
O→ s′2) ∈ TP2 , ∀ s1 ∈ SP1 there exists a set {s1

Ti→ si1 | i ∈ =} of CTs of P1 such that
bs1s2 ∧ 〈O〉 ≤

∨
i∈=

(OTi , O) · bsi1s′2

A proof of this theorem is in the appendix.

7 Simplification of processes

The concept of a simplification of processes is intended to reduce the problem of verification of
processes.

A simplification of a process P is a sequence of transformations of this process, each of
which is performed according to one of the rules set out below. Each of these transforma-
tions (except the first) is performed on the result of previous transformation. A result of a
simplification is a result of last of these transformations.

Simplification rules are defined as follows. Let P be a process.

Rule 1 (removing of states).
If s ∈ SP \ {s0P }, and

17

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

• s1
O1→ s, . . ., sn

On→ s are all transitions incoming to s

• s O′1→ s′1, . . ., s
O′m→ s′m are all transitions outgoing from s, and if all these transitions

are internal, then 〈O′i〉 ∧ 〈O′j〉 = ⊥ if i 6= j

• s 6∈ {s1, . . . , sn, s′1, . . . , s′m}
• ∀ i = 1, . . . , n, ∀ j = 1, . . . ,m ∃Oi ·O′j

then s and all transitions related to s are removed from P , and the transitions si
Oi·O′j−→ s′j

(where i = 1, . . . , n, j = 1, . . . ,m) are added to P .

Rule 2 (fusion).

If P has a pair of transitions of the form s1
O→ s2, s1

O′→ s2, and [O] = [O′], then this pair

is replaced by a single transition s1
b[O]−→ s2, where b = 〈O〉 ∨ 〈O′〉.

Rule 3 (elimination of unessential assignments).
If P has an AO (x := e), where x 6∈ Xs

P , then this AO is removed from P .

Theorem 2
If P ′ is a result of simplification of P , then P ′ ≈ P .

8 An example: verification of a sliding window protocol

In this section we present an example of use of theorem 1 for a verification of a sliding window
protocol.

A sliding window protocol ensures a transmission of messages from one agent to another
through a medium, in which messages may get distorted or lost. In this section we consider a
two-way sliding window protocol, in which the agents can both send and receive messages from
each other. We do not present here a detail explanation of this protocol, a reader can find it in
section 3.4.2 of the book [10] (a protocol using go back n).

8.1 A structure of the protocol

The protocol is a system consisting of interacting components, including

• components that perform a formation, sending, receiving and processing of messages (such
components are called agents, and messages sent from one agent to another, are called
frames), and

• a medium, through which frames are forwarded (such a medium is called a channel).

A detailed description of the components and relation between them is represented in the
Appendix.

8.2 Frames

Each frame f , which is sent by any of the agents, contains a packet x, and a couple of numbers:

• a number s ∈ Zn
def
= {0, 1, . . . , n− 1} (where n is a fixed integer), which is associated with

the packet x and with the frame f , and

• a number r ∈ Zn, which is a number associated with a last received undistorted frame.

18

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

To build a frame, a function ϕ is used, i.e. a frame has the form ϕ(x, s, r).

To extract the components x, s, r from the frame ϕ(x, s, r), the functions info, seq and ack
are used, these functions have the following properties:

info(ϕ(x, s, r)) = x, seq(ϕ(x, s, r)) = s, ack(ϕ(x, s, r)) = r

8.3 Window

The set of variables of an agent contains an array x[n]. Values of some components of this
array are packets which are sent, but not yet acknowledged. A set of components of the array
x, which contain such packets at a current time, is called a window.

Three variables of the agent are related to the window: b (a lower bound of the window), s
(an upper bound of the window), and w (a number of packets in the window). Values of these
variables belong to the set Zn. At the initial moment values of b, s and w are equal to 0. At
any moment the window can be empty (if b = s), or not empty (if b 6= s). In the last case the
window consists of elements of x with indices from the set [b, s[, where [b, s[denotes the set

• {b, b+ 1, . . . , s− 1}, if b < s, and

• {b, b+ 1, . . . , n} ∪ {0, 1, . . . , s− 1}, if s < b.

Adding a new packet to the window is performed by an execution of the following actions:
this packet is written in the component x[s], s is increased by 1 modulo n (i.e. a new value of
s is assumed to be s+ 1, if s < n− 1, and 0, if s = n− 1), and w is increased by 1. Removing a
packet from the window is performed by an execution of the following operations: b is increased
by 1 modulo n, and w is decreased by 1 (i.e. it is removed a packet whose number is equal to
the lower bound of the window).

If an agent received a frame, the third component r of which (i.e. a number of an acknowl-
edgment) is such that r ∈ [b, s[, then all packets in the window with numbers from [b, r[are
considered as acknowledged and are removed from the window (even if their acknowledgments
were not received).

8.4 Specification

External actions of the above protocol (i.e. actions which are related to its communication
with a network level) have the form In1?d, In2?d, Out1!d and Out2!d. Assume that we take
into account only external actions In1?d and Out2!d, and ignore other its external actions (i.e.
we consider a transmission only in one direction: from the left to the right). We would like to
prove that such behavior is equivalent to a behavior of a process Bn−1, which is called “a FIFO
buffer which can hold at most n− 1 frames”, and is defined as follows:

• variables of Bn−1 are

– an array (x[0], . . . , x[n−1]), elements of which have the same type as a type of frames
in the above protocol, and

– variables r, s, u, values of which belong to Zn, and have the following meaning: at
every moment

∗ a value of u is equal to a number of frames in the buffer

∗ values r and s can be interpreted as lower and upper bounds of a part of the array
x, which stores the received frames, which has not yet been issued from the buffer

19

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

• Bn−1 has one state and 2 transitions with labels

(u < n− 1) [In?x[s], s := s+
n

1, u := u+ 1]

(u > 0) [Out !x[r], r := r+
n

1, u := u− 1]

where ∀ i ∈ {0, n− 2} i+
n

1
def
= i+1 and (n− 1) +

n
1

def
= 0

• initial condition is r = s = u = 0.

8.5 A process corresponded to the protocol

A process that describes a behavior of the protocol with respect to the above specific point
of view (where we ignore actions of the form In2?d and Out1!d) is constructed as a parallel
composition of the processes corresponded to components of this procotol, with elimination of
atomic operators related to ignored communications. The definition of a parallel composition
of processes is presented in the Appendix.

8.6 Verification

With use of the simplification operations from section 7, we can transform the process cor-
responded to the protocol (with elimination of atomic operators which are corresponded to
ignored actions) to a process P with only one state and with transitions labelled by the follow-
ing operators:

• (w < n− 1) [In?x[s], M1 := M1 · ϕ(x[s], s, . . .), s := s+
n

1, w := w + 1]

• (M1 6= ε) ∧ (seq(M̂1) = r) [Out ! info(M̂1), r := r+
n

1, M1 := M ′1]

• (M2 6= ε) ∧ (ack(M̂2) ∈ [b, s[) [b := ack(M̂2) +
n

1, w := s−
n
b, M2 := M ′2], where ∀ i, j ∈

{0, n− 1} i−
n
j
def
= i−j, if i−j ∈ {0, n− 1}, and n+ i−j, otherwise

• [M1 := M1 · ϕ(x[b], b, . . .), . . . ,M1 := M1 · ϕ(x[s−
n

1], s−
n

1, . . .)]

• (M1 6= ε) [M1 := M ′1]

• (M2 6= ε) [M2 := M ′2]

• [M2 := M2 · ϕ(. . . , . . . , r−
n

1)]

where
dots denote unessential components of expressions, and the symbols Mi, M̂i, M

′
i , · and ε

have the following sense:

• M1 and M2 are variables of the process Channel, and values of these variables are lists
of frames which were received by the process Channel (Mi holds frames received from
Agenti), every received frame is added to the end of a corresponding list

• M̂i (i = 1, 2) is an expression, a value of which is equal to the first element of the list Mi

• M ′i (i = 1, 2) is an expression, a value of which is equal to the list Mi without its first
element

• · is a function of an addition of a frame to the end of a list

• ε is a constant, a value of which is an empty list.

20

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

For a proof that the process P is observationally equivalent to the process Bn−1, we define a
formula bs1s2 where s1 is a unique state of P and s2 is a unique state of Bn−1 as a conjunction
of the following formulas:

• (M1 6= ε) ∧ (seq(M̂) = r) ⇒ u > 0

• ∀ f ∈M1 info(f) = x[seq(f)]

• ∀ f ∈M2 ack(f) ∈ [b−
n

1, r[

• [r, s[⊆ [b, s[

• w = s−
n
b ≤ n− 1

• u = s−
n
r ≤ w

• if a value of M2 is f1 · . . . · fk, then the sequence ack(f1) . . . ack(fk) is monotonically
increasing (mod n) subsequence of [b−

n
1, r[

(the last record is not a formula, but can be represented by a formula, we omit this represen-
tation).

It is not so diffcult to check that bs1s2 satisfies the conditions of theorem 1 and this proves
that the process P is observationally equivalent to Bn−1.

9 Conclusion

The concept of a process with message passing which is presented in this paper can be considered
as a formal model of a communicating program without recursion. In the paper we have
established suffcient conditions of observational equivalence of processes. The next steps of
investigations in this area can be the following.

• Find necessary and suffcient conditions of observational equivalence of processes with
message passing.

• Generalize the proposed concept of a process with message passing for formal modeling
of communicating programs with recursion, and find necessary and suffcient conditions of
observational equivalence of such processes.

References

[1] R. Milner: A Calculus of Communicating Systems. Number 92 in Lecture Notes in Computer
Science. Springer Verlag (1980)

[2] R. Milner: Communicating and Mobile Systems: the π-calculus. Cambridge University Press
(1999)

[3] C.A.R. Hoare: Communicating Sequential Processes. Prentice Hall (1985)

[4] Clarke, E.M., Grumberg, O., and Peled, D.: Model Checking, MIT Press (1999)

[5] C.A. Petri: Introduction to general net theory. In W. Brauer, editor, Proc. Advanced Course on
General Net Theory, Processes and Systems, number 84 in LNCS, Springer Verlag (1980)

[6] J.A. Bergstra, A. Ponse, and S.A. Smolka, editors: Handbook of Process Algebra. North-Holland,
Amsterdam (2001)

[7] D. Brand, P. Zafiropulo: On Communicating Finite-State Machines. Journal of the ACM, Volume
30 Issue 2, April 1983, pp. 323-342. ACM New York, NY, USA (1983)

21

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

[8] R.W. Floyd: Assigning meanings to programs. In J.T. Schwartz, editor, Proceedings Symposium
in Applied Mathematics, Mathematical Aspects of Computer Science, pages 19-32. AMS (1967)

[9] Badban, B. and Fokkink, W.J. and van de Pol, J.C.: Mechanical Verification of a Two-Way
Sliding Window Protocol (Full version including proofs). Internal Report TR-CTIT-08-45, Centre
for Telematics and Information Technology, University of Twente, Enschede, June 2008. http:
//doc.utwente.nl/64845/ (2008)

[10] A. Tanenbaum: Computer Networks. Fourth Edition. Prentice Hall (2002)

[11] B. Hailpern: Verifying Concurrent Processes Using Temporal Logic. LNCS 129. Springer-Verlag
(1982)

[12] G. Holzmann: Design and Validation of Computer Protocols. Prentice Hall (1991)

[13] G. Holzmann: The model checker Spin. IEEE Transactions on Software Engineering, 23:279-295
(1997)

[14] R. Kaivola: Using compositional preorders in the verification of sliding window protocol. In Proc.
9th Conference on Computer Aided Verification, LNCS 1254, pages 48-59 (1997)

[15] P. Godefroid and D. Long: Symbolic protocol verification with Queue BDDs. Formal Methods and
System Design, 14(3):257-271 (1999)

[16] K. Stahl, K. Baukus, Y. Lakhnech, and M. Steffen: Divide, abstract, and model-check. In D. Dams,
R. Gerth, S. Leue, and M. Massink, editors, Proc. 6th SPIN Workshop on Practical Aspects of
Model Checking, Lecture Notes in Computer Science 1680, pages 57-76. Springer-Verlag (1999)

[17] T. Latvala: Model checking LTL properties of high-level Petri nets with fairness constraints. In J.
Colom and M. Koutny, editors, Proc. 21st Conference on Application and Theory of Petri Nets,
Lecture Notes in Computer Science 2075, pages 242-262. Springer-Verlag (2001)

[18] D. Chkliaev, J. Hooman, and E. de Vink: Verification and improvement of the sliding window
protocol. In H. Garavel and J. Hatcliff, editors, Proc. 9th Conference on Tools and Algorithms
for the Construction and Analysis of Systems, Lecture Notes in Computer Science 2619, pages
113-127 (2003)

[19] A. Schoone: Assertional Verification in Distributed Computing. PhD thesis, Utrecht University
(1991)

[20] F. Vaandrager: Verification of two communication protocols by means of process algebra. Technical
Report Report CS-R8608, CWI (1986)

[21] R. Groenveld: Verification of a sliding window protocol by means of process algebra. Technical
Report P8701, University of Amsterdam (1987)

[22] J. van Wamel: A study of a one bit sliding window protocol in ACP. Technical Report P9212,
University of Amsterdam (1992)

[23] M. Bezem and J. Groote: A correctness proof of a one bit sliding window protocol in µCRL. The
Computer Journal, 37(4):289-307 (1994)

22

http://doc.utwente.nl/64845/
http://doc.utwente.nl/64845/

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

10 Appendix

10.1 A proof of theorem 1

Since XP1 ∩XP2 = ∅, then there is a natural bijection between X•P1
×X•P2

and (XP1 ∪XP2)•.
Below we identify these two sets.

We define the relation µ ⊆ SrP1
× SrP2

as follows:

µ
def
= {(ξ1, ξ2) ∈ X•P1

×X•P2
| b(ξ1,ξ2)
at
ξ1
P1
at
ξ2
P2

= 1} ∪ {(P 0
1 , P

0
2)}.

We prove that µ satisfies the conditions from section 6.1.

1. The condition (P 0
1 , P

0
2) ∈ µ follows from the definition of µ.

2. Let (v1, v2) ∈ µ and v1
τ→ v′1. We must prove that

∃ v′2 : v2
τ∗→ v′2, (v′1, v

′
2) ∈ µ (6)

We consider separately the cases v1 = P 0
1 and v1 6= P 0

1 .

If v1 = P 0
1 , then v2 = P 0

2 , and according to definition of the graph P r1 (section 5.3),

∃ ξ1 ∈ X•P1
: 〈P1〉ξ1 = 1 and the graph P r1 has the edge ξ1

τ→ ξ′1 = v′1, i.e. (ξ1, τ, ξ
′
1) is a

realization of a transition s0P1

O1→ s′1 from TP1
, where O1 is an internal operator.

According to item 2 in the theorem, there exists a set {s0P2

Ti→ si2 | i ∈ =} of CTs of
process P2, such that

bs0P1
s0P2
∧ 〈O1〉 ≤

∨
i∈=

(O1, OTi) · bs′1si2 (7)

Since 〈P2〉 6= ⊥, then ∃ ξ2 ∈ X•P2
: 〈P2〉ξ2 = 1, so

1 = 〈P1〉ξ1 ∧ 〈P2〉ξ2 = (〈P1〉 ∧ 〈P2〉)(ξ1,ξ2) ≤ b(ξ1,ξ2)s0P1
s0P2

(8)

(the last inequality holds according to property 1 in the statement of the theorem).

According to the definition of a realization of a transition, the equality 〈O1〉ξ1 = 1 holds.
This equality, (7) and (8), imply that there is i ∈ = such that(

(O1, OTi) · bs′1si2
)(ξ1,ξ2)

= 1 (9)

It is easy to prove that the equality(
(O1, OTi) · bs′1si2

)(ξ1,ξ2)
= bs′1si2

(ξ1·O1,ξ2·OTi) (10)

holds. This equality is an analogue of the equality in the end of section 3.3, and is proved
by induction on the total number of AOs in [O1] and [O2].

(9) and (10) imply that

bs′1si2
(ξ1·O1,ξ2·OTi) = 1 (11)

By the definition of µ and ξ2, the statement (6) in this case (v1 = P 0
1) follows from the

statement

∃ ξ′2 : ξ2
τ∗→ ξ′2, b

(ξ′1,ξ
′
2)

at
ξ′1
P1
at
ξ′2
P2

= 1 (12)

23

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

Define ξ′2
def
= (ξ2 · (atP2 := si2)) ·OTi . Since at

ξ′1
P1

= s′1, and ξ′1 = (ξ1 · (atP1 := s′1)) ·O1, then
(12) follows from the statements

ξ2
τ∗→ (ξ2 · (atP2

:= si2)) ·OTi (13)

b
((ξ1·(atP1

:=s′1))·O1,(ξ2·(atP2
:=si2))·OTi)

s′1s
i
2

= 1 (14)

(13) follows from the definitions of concepts of a CT and a concatenation of operators and

from the statements atξ2P2
= s0P2

and 〈OTi〉ξ2 = 1. The first of these statements follows from

the equality 〈P2〉ξ2 = 1, and the second is justified as follows. The definition of formulas
of the form (O1, O2) · b implies that the statement (9) can be rewritten as(

〈O1〉 ∧ 〈OTi〉 ∧ b
)(ξ1,ξ2)

= 1 (15)

where b is some formula. Since XP1
∩ XP2

= ∅, then (15) implies the desired statement
〈OTi〉ξ2 = 1.

(14) follows from (11) and from the assumption that atP1
and atP2

do not occur in bs′1si2 ,
O1 and OTi .

Thus, in the case v1 = P 0
1 the property (6) holds.

In the case v1 6= P 0
1 the property (6) can be proved similarly.

3. Let (v1, v2) ∈ µ and v1
a→ v′1, where a 6= τ . We must prove that

∃ v′2 : v2
τ∗aτ∗−→ v′2, (v′1, v

′
2) ∈ µ (16)

(a) At first consider the case v1 = P 0
1 and a = α?d.

If v1 = P 0
1 , then v2 = P 0

2 , and according to the definition of the graph P r1 (section

5.3), ∃ ξ1 ∈ X•P1
: 〈P1〉ξ1 = 1 and the graph P r1 has the edge ξ1

a→ ξ′1 = v′1, i.e.

(ξ1, a, ξ
′
1) is a realization of a transition t of the form s0P1

O1→ s′1 from TP1 , where O1

is an input operator. Using the notation introduced at the end of section 5.2, we can
write ξ′1 = ξ1 · td.
Just as in the preceding item, we prove that ∃ ξ2 ∈ X•P2

: 〈P2〉ξ2 = 1, and there exists

a CT s0P2

Ti→ si2 of the process P2, such that the equality(
(O1, OTi) · bs′1si2

)(ξ1,ξ2)
= 1 (17)

holds, which should be understood in the following sense: for each of valuation ξ ∈
(XP1

∪XP2
∪{z})• (where z is a variable, referred in the item 3d of the definition from

section 6.2, we can assume that z 6∈ ((XP1
∪XP2

)), coinciding with ξi on XPi (i = 1, 2),

the equality
(

(O1, OTi) · bs′1si2
)ξ

= 1 holds. In particular, (17) implies that OTi is an

input operator, and NOTi = NO1 = α.

Define ξ′2
def
= ξ2 ·T di . It is easy to prove that ξ2

τ∗aτ∗→ ξ′2, and the statement (16) in the
case v1 = P 0

1 follows from the equality

b
(ξ1·td,ξ2·Tdi)
s′1s

i
2

= 1 (18)

24

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

which is justified as follows.
In this case O1 and OTi can be represented as concatenation of the form

O1 = (O′1 · [α?x]) ·O′′1 , OTi = (O′Ti · [α?y]) ·O′′Ti

Definition of formulas of the form (5) implies that

(O1, OTi) · bs′1si2 =

=
(

(O′1 · [α?x]) ·O′′1 , (O′Ti · [α?y]) ·O′′Ti
)
· bs′1si2 =

=
(
O′1 · [α?x], O′Ti · [α?y]

)
·
(

(O′′1 , O
′′
Ti

) · bs′1si2
)

=

= (O′1, O
′
Ti

) ·
((

(O′′1 , O
′′
Ti

) · bs′1si2
)
(z/x, z/y)

) (19)

(17) and (19) imply the equality((
(O′′1 , O

′′
Ti) · bs′1si2

)
(z/x, z/y)

)(ξ1·O′1,ξ2·O′Ti)
= 1

Its special case is the equality((
(O′′1 , O

′′
Ti) · bs′1si2

)
(d/x, d/y)

)(ξ1·O′1,ξ2·O′Ti)
= 1

The last equality can be rewritten as(
(O′′1 , O

′′
Ti) · bs′1si2

)(ξ1·O′1·(x:=d),ξ2·O′Ti ·(y:=d))
= 1

whence it follows that(
bs′1si2

)(ξ1·O′1·(x:=d)·O′′1 ,ξ2·O′Ti ·(y:=d)·O′′Ti)
= 1 (20)

It is easy to see that the left side of (20) coincides with the left side of the equality
(18).
Thus, in the case v1 = P 0

1 and a = α?d the property (16) is proven.
In the case v1 6= P 0

1 and a = α?d the property (16) can be proved similarly.

(b) Now we prove (16), when a = α!d. As in the previous item, we consider only the case
v1 = P 0

1 .
If v1 = P 0

1 , then v2 = P 0
2 , and

• ∃ ξ1 ∈ X•P1
: 〈P1〉ξ1 = 1 and the graph P r1 has the edge ξ1

a→ ξ′1 = v′1, i.e.

(ξ1, a, ξ
′
1) is a realization of a transition t ∈ TP1

of the form s0P1

O1→ s′1, where O1

is an output operator

• ∃ ξ2 ∈ X•P2
: 〈P2〉ξ2 = 1, and there exists a CT s0P2

Ti→ si2 of the process P2, such
that (

(O1, OTi) · bs′1si2
)(ξ1,ξ2)

= 1 (21)

(21) implies that OTi is an output operator, and NOTi = NO1 = α.

Define ξ′2
def
= ξ2 · Ti. For a proof of (16) it is enough to prove the statements

ξ2
τ∗aτ∗→ ξ′2 (22)

25

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

b
(ξ1·t,ξ2·Ti)
s′1s

i
2

= 1 (23)

In this case O1 and OTi can be represented as concatenations of the form

O1 = (O′1 · [α!e1]) ·O′′1 (24)

OTi = (O′Ti · [α!e2]) ·O′′Ti (25)

The definition of formulas of the form (5) implies that

(O1, OTi) · bs′1si2 =

=
(

(O′1 · [α!e1]) ·O′′1 , (O′Ti · [α!e2]) ·O′′Ti
)
· bs′1si2 =

=
(
O′1 · [α!e1], O′Ti · [α!e2]

)
·
(

(O′′1 , O
′′
Ti

) · bs′1si2
)

=

= (O′1, O
′
Ti

) ·
{
e1 = e2
(O′′1 , O

′′
Ti

) · bs′1si2

} (26)

(21) and (26) imply the equality

{
e1 = e2
(O′′1 , O

′′
Ti

) · bs′1si2

}(ξ1·O′1,ξ2·O
′
Ti

)

= 1

from which it follows that

e
ξ1·O′1
1 = e

ξ2·O′Ti
2 (27)

(
(O′′1 , O

′′
Ti) · bs′1si2

)(ξ1·O′1,ξ2·O′Ti)
= 1 (28)

By assumption, (ξ1, α!d, ξ′1) is a realization of the transition s0P1

O1→ s′1. From the rep-

resentation of O1 as a concatenation (24) it follows that d = e
ξ1·O′1
1 , whence, according

to (27) we get the equality d = e
ξ2·O′Ti
2 . From this and from a representation of OTi

as a concatenation (25) it follows that (ξ2, α!d, ξ2 · Ti) is a realization of the CT Ti.
Since ξ2 ·Ti = ξ′2 and α!d = a, then it follows that we are justified the statement (22).
The statement (23) follows from (28).
Thus, in the case v1 = P 0

1 and a = α!d the property (16) is proven.
In the case v1 6= P 0

1 and a = α!d the property (16) can be proved similarly

The symmetrical conditions on the relation µ (i.e., second parts of the conditions on µ,
presented in second and third items in section 6.1) can be proved similarly.

26

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

11 Structure of sliding window protocol

11.1 Flow graph

A relation between the components of sliding window protocol is represented by the flow graph:

e uu eu ee u

e u e u

e u
u e
?

6start1 timeout1 e u
u e
?

6start2 timeout2

C1

C1

C2

C2

'

&

$

%
Channel

'

&

$

%
Agent1

�
�
�
�Timer1

�
�
�
�Timer2

'

&

$

%
Agent2

-

�

-

�

In1 Out1 In2 Out2

11.2 Timers

Each component x[i] of the array x is associated with a timer, which determines a duration of
waiting of an acknowledgement from another agent of a receiving of the packet contained in the
component x[i]. The combination of these timers is considered as a process Timer, which has
an array t[n] of boolean variables. The process Timer has one state and transitions which are
labeled by the following operators:

• [start?i, t [i] := 1]

• [stop?i, t [i] := 0]

• (t [j] = 1)[timeout ! j, t [j] := 0] (where j = 0, . . . , n− 1)

An initial condition is t = (0, . . . , 0).

If an agent has received an object with a name timeout from a timer, then the agent sends
again all packets from its window.

27

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

11.3 Agents

A behavior of each agent is described by the same process, combining functions of a sender and
a receiver. This behavior can be represented by the following flowchart.'
&

$
%

start

enable = 1

w, b, s, r = 0

timeout?i
s := b
i := 1

�� ��enable = 1

In?x[s]
send
w := w + 1

send
i := i+ 1
�� ��i ≤ w

����
Out ! info(f)
r := r+

n
1

w := w − 1
stop ! b
b := b+

n
1

�
�

�
�ack(f) ∈ [b, s[

�� ��seq(f) = r

�� ��f = ∗C?f

enable := (w < n− 1)-

?

?

?

?

��

� - -

6

??

?

?

�

-

�

-

-

�

+

−

−

−−

+

+
+

+

where

• send is an abbreviation of the list of AOs

C !ϕ(x[s], s, r−

n
1)

start ! s
s := s+

n
1

• ∗ is a special notation for a distorted message, and

• a value of the variable enable is 1, if the agent can receive a new packet from his network
level (i.e. w < n− 1), and 0, otherwise.

Processes Agent1 and Agent2 are obtained by a simple transformation of this flowchart, and
by an addition of corresponding index (1 or 2) to its variables and names.

11.4 Parallel composition

In this section we define a parallel composition of pair of processes, for any number of processes
their parallel composition is defined similarly.

Let P1, P2 be processes, such that S1∩S2 = ∅ and XP1
∩XP2

= ∅. A parallel composition
of P1 and P2 is a process P = (SP , s

0
P , TP , IP), defined as follows:

SP
def
= S1 × S2, s0P

def
= (s01, s

0
2), IP

def
= I1 ∧ I2

and TP consists of the following transitions:

• for each transition s1
O→ s′1 of the process P1, and each state s of P2 the process P has

the transition (s1, s)
O→ (s′1, s)

28

A Sufficient Condition for the Observational Equivalence of Processes Andrew M. Mironov

• for each transition s2
O→ s′2 of the process P2, and each state s of the process P1 the

process P has the transition (s, s2)
O→ (s, s′2)

• for each pair of transition of the form

{
s1

O1→ s′1 ∈ TP1

s2
O2→ s′2 ∈ TP2

where one of the operators O1,

O2 has the form (O′1 · [α?x]) · O′′1 , and another operator has the form (O′2 · [α!e]) · O′′2 ,

the process P has the transition (s1, s2)
O→ (s′1, s

′
2), where 〈O〉 = 〈O1〉 ∧ 〈O2〉 and [O] =(

(O′1 ·O′2) · [x := e]
)
· (O′′1 ·O′′2).

29

	Introduction
	Motivation, advantages of the proposed approach and its comparison with other works
	Motivation of the proposed approach
	Advantages of the proposed approach
	Comparison with other works

	Auxiliary concepts
	Terms
	Atomic operators
	Operators
	Concatenation of operators

	Processes with a message passing
	A concept of a process with a message passing
	Actions of processes
	An execution of a process

	Realizations of processes
	Realizations of AOs and sequences of AOs
	Realization of transitions
	Realizations of processes

	Observational equivalence of processes
	A concept of observational equivalence of processes
	A method of a proof of observational equivalence of processes

	Simplification of processes
	An example: verification of a sliding window protocol
	A structure of the protocol
	Frames
	Window
	Specification
	A process corresponded to the protocol
	Verification

	Conclusion
	Appendix
	 A proof of theorem 1

	Structure of sliding window protocol
	Flow graph
	Timers
	Agents
	Parallel composition

