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Abstract

Making a knot on a rectangular origami or more generally on a tape of a finite length
gives rise to a regular polygon. We present an automated algebraic proof that making
two knots leads to a regular heptagon. Knot fold is regarded as a double fold operation
coupled with Huzita’s fold operations. We specify the construction by describing the
geometrical constraints on the fold lines to be used for the construction of a knot. The
algebraic interpretation of the logical formulas allows us to solve the problem of how
to find the fold operations, i.e. to find concrete fold lines. The logical and algebraic
framework incorporated in a system called Eos (e-origami system) is used to simulate the
knot construction as well as to prove the correctness of the construction based on algebraic
proof methods.

1 Introduction

From the early history of mathematics, the correspondence between geometry and algebra has
been recognized and has been the subject of constant study. In some sense, ancient geometry
was a mother of algebra. In particular, solving algebraic equations has been related to the
realm of Euclidean geometry. Early mathematicians, notably Khawarizmi and Khayyam, gave
geometrical meanings to the solutions of equations. Khayyam’s insight was that solutions of
certain cubic equations are points of intersections of conic sections [1]. Seven centuries later,
after freeing algebra from geometrical thinking, Wantzel proved that solving cubic solutions
is impossible by Euclidean tools, i.e. compass and straightedge [2]. Further tools have been
invented and used to perform constructions that are impossible by Euclidean tools.

Paper folding, i.e. origami, allows solving cubic equations and, hence, geometrical construc-
tions such as trisection of an arbitrary angle or a regular heptagon are realizable. Given an
origami paper, what we can do by hand is to construct creases and points. The creases are
constructed by folding the paper along the lines which we call fold lines. The points are con-
structed by the intersection of lines. Huzita presented a set of fold operations (known also as
Huzita’s axioms in literature) with which he showed how to obtain fold lines [3]. Huzita’s fold
operations are simple to perform by hand but powerful enough to solve cubic equations [4].

The geometrical construction of a regular heptagon has a unique history in that it belongs
to the famous classical impossible problems by Euclidean tools. Using paper folding, the con-
struction was shown to be possible. In this paper, we show another method of constructing a
regular heptagon based on an extension of Huzita’s fold operations by introducing knotting.
The constructions of regular n-gons (in particular of regular pentagon and heptagon) by making
knots have not been rigorously specified, and the observation that their constructions purport
to problems of solving geometrical constraints is missing.
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We investigate the geometrical constraints of the knot fold towards constructions of regu-
lar polygons and proofs of the correctness of these constructions. The knot fold operation is
specified by an existentially quantified formula of the first-order predicate logic. The formula
is then translated into a set of algebraic equalities and disequalities, which then are solved by
specialized solvers based on Gröbner basis theory and/or CAD (Cylindrical Algebraic Decom-
position). We have developed a computational origami system called Eos [5] using computer
algebra system Mathematica. In brief, it is an e-origami system which allows us to do virtual
origami. It has capabilities of constructing and visualizing origami geometrical objects, alge-
braically analyzing origami folds, and proving the correctness of origami constructions. Eos

supports Huzita’s fold operations and has been extended to include multi-fold operations. We
use Eos, to assist us with our mathematical study of the knot fold.

The rest of the paper is organized as follows. In Sect. 2, we give the notations that we use.
In Sect. 3, we present Huzita’s fold operations and their extensions. In Sect. 4, we explain the
geometrical properties of the knot fold. The construction of regular heptagon by Eos is shown
in Sect. 5, and its formal and algebraic proof is discussed in Sect. 6. In Sect. 7, we summarize
our results and point out a direction of further research.

2 Notations

In this paper, we restrict the use of geometrical objects to points, segments and lines. Points
are denoted by a single capital letter of the Latin alphabet, e.g. A, B, C, D, X , Y etc. Lines
are denoted by m, n, t, u and v. Let X and Y be two points, then XY denotes the line passing
through points X and Y . For brevity, we often write XY to refer to the line passing through X
and Y . We use the same notation to denote the segment between points X and Y . Although
the meaning of the notation XY should be clear from the context, we precede the notation XY
with either the word “segment” or the word “line” to emphasize which objects we are working

with. We also use
−−→
XY to denote a vector from point X to point Y . The distance between two

points X and Y is denoted by |XY |.
Since we use Cartesian coordinate system in this paper, a line is represented by a linear

equation ax+ by+ c = 0 in variables x and y. The sets of all points and lines are denoted by Π
and L, respectively. Abusing the set notation, we use X ∈ m to mean that point X is incident
to line m, and {X1, . . . , Xp} ⊂ m to mean that all the points X1, . . . , Xp are incident to m.

When an origami is folded along a line m, some of the points are moved to superpose with
their reflections across m. We denote by Xm the reflection of point X across line m.

A simple knot is denoted by K. Ki denotes the ith knot. The notation K = 〈m,n, t〉 means
that the knot K is defined by 3 fold lines (to be explained in Sect. 4) m, n and t, and furthermore
K is obtained by folding along the lines following the order of their appearance in 〈m,n, t〉.

3 Origami Geometrical Construction

3.1 Huzita’s Fold Operations

By O we denote an origami. An origami O is supposed to represent a square sheet of paper
with four points on the corners and four edges that is subject to folding1. We call A, B, C
and D, the points on the corner. Some intersections of lines may not fit on the square paper.

1We could take O to be any convex polygon that can be constructed from a square sheet of paper. However,
this could be an unnecessary generalization in our study.
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As we want to work with these points, we consider O to be a sufficiently large (bounded) 2D
plane so that all the points and lines of interest are on O. Huzita observed that the degree
of freedom of paper fold by fold lines can be made finite by specifying how certain points and
lines are superposed. Then, he gave the following operations (O1) ∼ (O6), which serve as basic
operations in the geometrical construction of origamis. Operation (O7) was added, later, by
Justin [6]. We call collectively (O1) ∼ (O7) Huzita’s fold operations.

(O1) Given two distinct points P and Q, fold O along the unique line that passes through P
and Q.

(O2) Given two distinct points P and Q, fold O along the unique line to superpose P and Q.

(O3) Given two distinct lines m and n, fold O along a line to superpose m and n.

(O4) Given a line m and a point P , fold O along the unique line passing through P to superpose
m onto itself.

(O5) Given a line m, a point P not on m and a point Q, fold O along a line passing through
Q to superpose P and m.

(O6) Given two lines m and n, a point P not on m and a point Q not on n, where m and n are
distinct or P and Q are distinct, fold O along a line to superpose P and m, and Q and n.

(O7) Given two linesm and n and a point P not onm, fold O along the unique line to superpose
P and m, and n onto itself.

We note that the above statements are slightly different from the original ones. To formalize
the above statements with the view to rigorous geometrical construction, we restate Huzita’s
operations by carefully adding and removing side conditions of degeneracy and incidence [7].
In essence, treating origamis with a program requires rigorous specification of these operations.

Huzita’s fold operations determine fold lines by specifying superpositions of constructed
points and lines. In Eos, these specifications are formulas in a language of many-sorted first-
order predicate logic. By the algebraic interpretation of the formulas we derive polynomial
equalities. The problem of finding fold line(s) is therefore reduced to solving constraints ex-
pressed in multi-variate polynomials of degree 3 over the field of origami constructible numbers
[8, 5].

3.2 Extensions

The contribution of Huzita’s fold operations is powerful enough to perform relevant geometri-
cal constructions by way of solving algebraic equations of degree up to 3. Examples of such
constructions are trisecting an arbitrary angle, constructing a regular heptagon, etc. Some
studies have explored possible extensions of Huzita’s fold operations in an attempt to increase
the power of paper folding, i.e. to solve higher degree equations.

Alperin and Lang proposed multi-fold method, where the origami is folded along more than
one fold line, simultaneously [9]. The idea is to find fold lines that are mutually dependent.
The multi-fold construction allows solving higher degree equations. We presented a construc-
tion method of angle trisection using 2-fold operation [5] and angle quintisection using 4-fold
operation [10]. Although the p-fold method generates an arbitrarily high degree polynomial,
accurately folding an origami by p lines simultaneously would be difficult to do by hand even
for p = 2.
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Folding polygonal knots has been traditionally used in Japan. For example, folding a broad
sash for a kimono by a pentagon is a common practice of daily life. However, it is unknown
when the knot fold was first mathematically studied. The earliest contributions of which we
are aware are those of Cundy and Rollett [11], Brunton [12] and Sakaguchi [13]. Cundy and
Rollett showed models of knots that make some regular polygons. Brunton elaborated the
mathematical study of the knot fold and showed that the number of necessary knots depends
on the number of the edges of the polygon.

4 Knot Fold

In order to determine the geometrical constraints of knot fold, we first analyze key geometrical
properties of a knot.

4.1 Geometrical Properties

(a) (b) (c)

Figure 1: Knot-fold of regular pentagon FEIHG

Let us examine the operation of knotting in Fig. 1. We make one simple knot by tying
together the two ends of the origami tape in Fig. 1(a). Note that we use a rectangular shape
of an origami. When the height of the tape, i.e |AD| and |BC|, is infinitesimal and both ends
of the paper are connected, the tape becomes a curve, i.e. an object of study in knot theory.
The knot with 3 crossings is the most basic one in knot theory. When we bring the height back
to the original without distorting the tape, except for folds, we obtain the polygonal knot. A
well fastened and well flattened knot becomes a polygonal shape as depicted in Fig. 1(c). The
obtained polygonal shape exhibits a regular pentagonal form. As it is inferred from the knot
theory, making the knot in Fig. 1(c) requires 3 folds along the lines m, n and t that extend the
edges FE, GH and IEn, respectively.2 The knot K = 〈m,n, t〉 is the one in Fig. 1(c).

When the knot is entirely unfolded, we obtain the tape with the creases and the generated
points as shown in Fig. 2. We note the following geometrical properties. The vertices E, H and
I are lined up on the edge CD whereas vertices F and G are incident to the edge AB. The fold
along m passes through F and superposes point H and line AB. Point E is the intersection
of m and CD. Similarly, the fold line n passes through G, and the fold along n superposes
point E and line AB. Point H is the intersection of n and CD. Note that fold lines m and n
are mutually defined. The fold is a 2-fold operation where m and n are defined simultaneously.
Line t can be determined by applying operation (O5) of Huzita’s fold operation set. Namely,

2Recall that En is the reflection point of E across line n as defined in Sect. 2
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Figure 2: Unknotted tape

line t passes through I and superposes G and CD. Note that the parameters of (O5), points I,
G and line CD are considered with respect to the configuration before the fold. Refer to Fig. 2.
The origami after the the 2-fold (i.e. along m and n) is shown in Fig. 1(b). The purposes of
the fold along t is, first, to construct the vertex I and, second, to fasten and lock the knot.

A purely geometrical proof that the knot fold creates a regular polygon is sketched in [14].
In the following, we present a formal and automated algebraic proof that uses properties of the
operation of folding such as preservation of some of distances, parallelism, etc.

4.2 Geometrical Constraint Solving Approach

The question now becomes how to determine the fold lines m, n and t such that the knot is
a regular pentagon. The proof that the knot fold gives rise to regular pentagons shows that
each of the fold line makes angles 2α = 2π

5 with the edges [14], where α = ∡GEH = ∡EHF .
In origami geometry, construction of angles using Huzita’s fold operations is not trivial. The
problem of constructing angles is boiled down to a sequence of fold steps which makes the
construction tedious where the number of intermediate points and lines is prone to increase.
Furthermore, not all angles are constructible by Huzita’s fold operations. The construction of
a regular 11-gon, whose interior angles are equal to 9π

11 , is shown to be impossible by Huzita’s
fold operations [15]. Hence, we carefully choose a specification of the knot fold that could
be extended towards the construction of regular n-gons, where n ≥ 7. We are led to avoid
construction of angles in order to solve the knot fold construction problem. We consider the
knot fold construction as a geometrical constraint solving problem without use of angles.

Example: Regular pentagon

Our method of constructing a regular pentagon by the knot fold uses a multi-fold together
with Huzita’s fold operations. We consider the example in Fig. 1, where we make a knot
K = 〈m,n, t〉. We try to define the geometrical properties of K in a systematic way so that
we can generalize it to the knot fold of regular n-gons, where n ≥ 7. We observe the following
geometrical properties on m, n, t, E, F , G, H and I.

• Points E and F are incident to m.
• Points G and H are incident to n.
• Points E, H and I are incident to CD.
• Points F and G are incident to AB.
• The fold line m superposes H and AB, i.e. Hm ∈ AB.
• The fold line n superposes E and AB, i.e. En ∈ AB.
• The fold line t passes through I and superposes G and CD. i.e. I ∈ t and Gt ∈ CD.
• The distances |EF |, |FG| and |GH | are equal.
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The above properties are described by the following first order logical formula φK.

φK ≡ ∃m,n, t ∈ L ∃E,F,G,H, I ∈ Π

{E,F} ⊂ m ∧ {G,H} ⊂ n ∧ {E,H, I} ⊂ CD ∧ {F,G} ⊂ AB∧

Hm ∈ AB ∧ En ∈ AB ∧ I ∈ t ∧Gt ∈ CD ∧ |EF | = |FG| = |GH |

(1)

We used Eos to construct the regular pentagon in Fig. 1. It is possible to determine t indepen-
dently from m and n. We consider the formula (2), that defines the 2-fold operation to solve
lines m and n, first.

φ′
K ≡ ∃m,n ∈ L ∃E,F,G,H ∈ Π

{E,F} ⊂ m ∧ {G,H} ⊂ n ∧ {E,H} ⊂ CD ∧ {F,G} ⊂ AB∧

Hm ∈ AB ∧ En ∈ AB ∧ |EF | = |FG| = |GH |

(2)

The fold line t is obtained by applying operation (O5). Namely, line t passes through point
I and superposes point H and line AB.

We can prove automatically that the generated shape is a regular pentagon based on Gröbner
bases theory. We will omit the proof of the correctness of the pentagon knot construction. In
the next sections, we will discuss the construction and the proof of a regular heptagon by the
knot fold in details.

5 Regular Heptagon by the Knot Fold

Brunton studied the construction of regular n-gons, where n ≥ 3 [12]. He showed that the

number of necessary knots is Φ(n)
2 − 1 in order to construct a regular n-gon, where Φ(n) is

Euler’s totient function. Hence, to construct a regular heptagon, we perform 2 knots K1 and
K2. We explained in Sect. 4 that a knot can be decomposed into 3-fold operations along three
fold lines. In the case of regular heptagon, we need 5 fold lines m, n, t, u and v, where
K1 = 〈m,n, t〉 and K2 = 〈v, u,m〉. Let EKJIHGF be the constructed regular heptagon.
Figure 3 exhibits the vertices of the regular heptagon after unfolding K1 and K2. The fold
lines are extensions of edges of EKJIHGF as follows. Lines m, n and t are the extension of
segment EF , IJ and GFn, respectively. Lines v and u are extensions of segments KEu and
HIm, respectively. Figure 4 shows a sketch of a regular heptagon with the lines m, n, t, u and
v.

5.1 Geometrical Constraints

Figure 3: Unfolded regular heptagon EKJIHGF

Lines m and n of the knot K1 = 〈m,n, t〉 are defined by the following properties on m, n, t,
E, F , I, J , G and H .
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Figure 4: Sketch of a regular heptagon EKJIHGF and lines m, n, t, u and v

• Points E and F are incident to m.
• Points I and J are incident to n.
• Points E and J are incident to CD.
• Points F , I, G and H are incident to AB.
• The fold line m superposes I and CD, i.e. Im ∈ CD.
• The fold line n superposes F and CD, i.e. Fn ∈ CD.
• The distances |EF |, |IJ |, |FGn|, |IHm| and |GnHm| are equal.3

We write formula φK1
in a similar fashion to the formula (1).

φK1
≡ ∃m,n, t ∈ L ∃E,F, I, J,G,H ∈ Π

{E,F} ⊂ m ∧ {I, J} ⊂ n ∧ {F, I,G,H} ⊂ AB ∧ {E, J} ⊂ CD∧

Im ∈ CD ∧ Fn ∈ CD ∧G ∈ t ∧ J t ∈ AB∧

|EF | = |IJ | = |FGn| = |IHm| = |GnHm|

(3)

Similarly to our discussion in Sect. 4.2, line t can be constructed independently from lines m
and n. We therefore can separate the construction t and use φ′

K1
in (4) to solve for m and n,

first.

φ′
K1

≡ ∃m,n ∃E,F, I, J,G,H ∈ Π

{E,F} ⊂ m ∧ {I, J} ⊂ n ∧ {F, I,G,H} ⊂ AB ∧ {E, J} ⊂ CD∧

Im ∈ CD ∧ Fn ∈ CD∧

|EF | = |IJ | = |FGn| = |IHm| = |GnHm|

(4)

Knot K2 = 〈v, u,m〉 is defined by the following properties on v, u, m, K, X , H , Y , Z and F .
• Points K and X are on v.
• Points H and Y are on u.
• Points K and Y are on CD.
• Points Z, H , F and X are on AB.
• The fold line v superposes H and CD, i.e. Hv ∈ CD.

3Refering to Fig. 3, distances |GFn| and |FGn| are equal due to the fact that reflection across line n preserves
the distances. Similarly, distances |HIm| and |IHm| are equal.
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• The fold line u superposes X and CD, i.e. Xu ∈ CD.
• The fold line m passes through F and superposes Y and AB, i.e. Y m ∈ AB.
• The distances |KX |, |HY |, |XFu|, |HZv| and |FuZv| are equal.

φK2
≡ ∃v, u,m ∈ L ∃K,X,H, Y, Z, F ∈ Π

{K,X} ⊂ v ∧ {H,Y } ⊂ u ∧ {K,Y } ⊂ CD ∧ {X,H,Z, F} ⊂ AB∧

Hv ∈ CD ∧Xu ∈ CD ∧ F ∈ m ∧ Y m ∈ AB∧

|KX | = |HY | = |XFu| = |HZv| = |FuZv|

(5)

However, referring to Fig. 3, points X , Y and Z are equal to points Eu, Im and ((((Gn)m)u)v).
From formula φ′

K1
, E, I and G are obtained. It is possible to determine the fold lines that

make K2 in an easier way than solving constraints in formula (5), as we explain in the next
sub-section.

5.2 Construction by Eos

We first assume that the initial origami is a rectangle ABCD. We work with the Cartesian
coordinate system, and the coordinates of points A, B, C and D are (0, 0), (wd, 0), (wd, ht)
and (0, ht), respectively. The width wd and the height ht can be taken arbitrary. Of course
wd is sufficiently larger than ht, so that the knot construction is feasible. For concreteness of
our presentation using Eos, we set wd = 900 and ht = 60. Furthermore, let E be an arbitrary
but fixed point on segment CD. Let the coordinates of E be (400, ht) for simplicity and clarity
of the construction. Our objective is to construct a regular heptagon EKJIHGF by the knot
fold. Recall that the construction requires a 2-fold operation prior to Huzita’s fold operations
(see Sect. 4.1). The first folding step is the crucial one, i.e. the 2-fold operation.

In Eos, Huzita’s fold operations can be performed using function HO. The extension to the
multi-fold is natural as HO is implemented with the generality that allows the specification of
logical formulas describing the multi-fold. Multi-fold is realized by the call of the following
Mathematica function.

HO [ H, Constraint→ φ ]

H is a list of points on the origami which determine the faces to be moved. φ is a formula in the
first-order predicate logic. The formula φ specifies the constraints that the geometrical objects
concerned have to satisfy. In our example, the geometrical constraints that specify the 2-fold
operation are expressed by formula φ′

K1
in (4). We write φ′

K1
in the language of Eos and call

HO as follows.

HO[{C, A}, Constraint→ ∃m,m:Line∃n,n:Line∃f,f :Point∃i,i:Point∃j,j:Point∃g,g:Point∃h,h:Point

({E, f} ⊂ m ∧ {i, j} ⊂ n ∧ {f, i, g, h} ⊂ AB ∧ j ∈ CD∧

im ∈ CD ∧ fn ∈ CD∧

SqDistance[E, f ] == SqDistance[i, j] == SqDistance[f, gn] ==

SqDistance[i, hm] == SqDistance[gn, hm])]

(6)

The term SqDistance[X,Y ] is the square of the distance between X and Y (i.e. |XY |2).
Notations like “∃m,m:Line”, “{E, f} ⊂ m”, “im”, “im ∈ CD” are Eos extension of Mathematica
syntax.

The evaluation of (6) generates 24 distinct cases of possible configurations of points F , G,
H , I and J and lines m and n. We deduce that the algebraic interpretation of the constraints,
as defined by φ′

K1
, is a well constrained system of equations since we obtained finite number of

solutions. However, not all of the 24 cases are relevant to our construction problem. They may
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Figure 5: 6 possible cases for lines m and n

correspond to degenerate cases that lead to failure of the proof by Gröbner bases. In order to
eliminate the degenerate cases and also to get a reasonable number of cases, we further narrow
the search space of the configuration of points and lines. For that, we add the following extra
constraints.

E /∈ n∧j /∈ m∧SqDistance[E, i] == SqDistance[j, f ] == SqDistance[E, h] == SqDistance[j, g]

The sub-formula E /∈ n ∧ j /∈ m eliminates the degenerate cases where E and j are equal.
Sub-formula SqDistance[E, i] == SqDistance[j, f ] == SqDistance[E, h] == SqDistance[j, g]
specifies further conditions on points E, F , G, H , I and J . We evaluate the following HO call.

HO[{C, A}, Constraint → ∃m,m:Line∃n,n:Line∃f,f :Point∃i,i:Point∃j,j:Point∃g,g:Point∃h,h:Point

({E, f} ⊂ m ∧ {i, j} ⊂ n ∧ {f, i, g, h} ⊂ AB ∧ j ∈ CD∧

im ∈ CD ∧ fn ∈ CD ∧

SqDistance[E, f ] == SqDistance[i, j] == SqDistance[f, gn] ==

SqDistance[i, hm] == SqDistance[gn, hm]∧

E /∈ n ∧ j /∈ m ∧ SqDistance[E, i] == SqDistance[j, f ] == SqDistance[E, h] == SqDistance[j, g]),

MarkPointAt → {F, I, J, G, H}]

(7)

Consequently, we obtain 6 cases as shown in Fig. 5. Two of them, namely those in Fig. 5(a) and
in Fig. 5(f), lead to the construction of a regular heptagon. Eos allows the user to interactively
choose the suitable case to proceed with the construction. Keyword MarkPointAt tells the Eos
how to label the existentially quantified points f , i, j, g and h. The outcome of folding in the
case 6 is shown in Fig. 6

Next, we apply two operations (O1) to fold along the line FGn and IHm in Fig. 6 by calling
HO with suitable arguments. The lines FGn and IHm are the fold lines t and u, respectively.
The results are shown in Fig. 7(a) and 7(b). Finally, given the origami of Fig. 7(b), we construct
the remaining vertex K. We apply operation (O6) to obtain v, which brings H and G onto IC
and HB, respectively. Point K is the intersection of IC and line v. We obtain the heptagon
EKJIHGF in Fig. 7(c).
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Figure 6: Step 1: Folds along lines m and n

5.3 Algebraic Interpretation

This algebraic interpretation is used to “evaluate” the function calls of HO as well as the auto-
mated proof of the correctness of the construction. We take HO in (7) as an example. To obtain
geometrical objects m, n, F , G, H , I and J , the formula in (7) is transformed into a set of
algebraic equalities. Further details of the algebraic interpretation are explained in [8] and [5].

Let the coordinates of A, B, D and E be (0, 0), (900, 0), (0, 60) and (400, 60), respectively.
For an atomic formula φ, let [[φ]] denote the set of polynomial relations that are the algebraic
meaning of φ. An atomic formula is interpreted as a set of polynomial relations (equalities or
inequalities), and a term is given as a rational function. The set of (non-simplified) polynomial
equalities (8) – (14) is the algebraic interpretation of formula in (7).

{400a5+ 60b6+ c7 == 0, c7+ a5x11+ b6y12 == 0, c10+ a8x13+ b9y14 == 0,

c10+ a8x15+ b9y16 == 0,−900y12 == 0,−900y14 == 0,

−900y20 == 0,−900y18 == 0,−54000+ 900y16 == 0 (8)

−54000 +
900

(

−2b6(c7+ a5x13) + a52y14− b62y14
)

a52 + b62
== 0, (9)

−54000+
900

(

−2b9(c10 + a8x11) + a82y12− b92y12
)

a82 + b92
== 0, (10)

(400− x11)2 + (60− y12)2 == (x13 − x15)2 + (y14 − y16)2 ==
(

y12 −
−2b9(c10 + a8x17) + a82y18 − b92y18

a82 + b92

)2

+

(

x11 −
−a82x17 + b92x17 − 2a8(c10 + b9y18)

a82 + b92

)2

==

(

y14 −
−2b6(c7 + a5x19) + a52y20 − b62y20

a52 + b62

)2

+

(

x13 −
−a52x19 + b62x19 − 2a5(c7 + b6y20)

a52 + b62

)2

==

(

−2b9(c10 + a8x17) + a82y18 − b92y18

a82 + b92
−

−2b6(c7 + a5x19) + a52y20 − b62y20

a52 + b62

)2

+

(

−a82x17 + b92x17 − 2a8(c10 + b9y18)

a82 + b92
−

−a52x19 + b62x19 − 2a5(c7 + b6y20)

a52 + b62

)2

, (11)
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400a8+ 60b9+ c10 6= 0, c7+ a5x15+ b6y16 6= 0, (12)

(−400 + x13)2 + (−60 + y14)2 ==

(x11− x15)2 + (y12− y16)2 == (−400 + x19)2 + (−60 + y20)2 ==

(x15− x17)2 + (y16− y18)2, (13)

(−1 + b9)b9 == 0, (−1 + a8)(−1 + b9) == 0, 1 + a82 6= 0, (−1 + b6)b6 == 0

(−1 + a5)(−1 + b6) == 0, 1 + a52 6= 0} (14)

A line a x + b y + c = 0 is represented by (a, b, c), together with the constraint (−1 + b)b =
0 ∧ (−1 + a)(−1 + b) = 0 ∧ a2 + 1 6= 0. Lines m and n are represented by (a5, b6, c7) and
(a8, b9, c10), respectively. Hence, we have the equalities and disequalities in (14).

The equalities in (8) are the algebraic interpretation of the sub-formula {E, f} ⊂ m∧{i, j} ⊂
n∧ {f, i, g, h} ⊂ AB ∧ j ∈ CD. The first equation 400a5+ 60b6+ c7 == 0 means that point E
at (400, 60) is incident to m defined by the equation a5x+ b6y + c7 = 0. Similarly, the rest of
the equations in (8) are interpretations of f at (x11, y12) is on m, i at (x13, y14) is on n, j at
(x15, y16) is on n, f is on AB, i is on AB, h at (x19, y20) is on AB, g at (x17, y18) is on AB
and j is on CD, respectively.

The reflection of point i at (x13, y14) across line m is the point im whose coordinates are

(
−a52x13 + b62x13− 2a5(c7 + b6y14)

a52 + b62
,
−2b6(c7 + a5x13) + a52y14− b62y14

a52 + b62
)

Equation (9) states that im is incident to CD represented by (0, 1, -60). Similarly, equation
(10) is the algebraic interpretation of fn ∈ CD. Eos transforms rational form p

q
== 0 to

p == 0. Note that in (9)–(11), q comes from coefficient of lines and q 6= 0 is deduced from (14).
The disequalities of (12) states that the coordinates of point E and j do not satisfy the

equation of lines n and m, respectively. Eos changes the disequalities into equalities by adding
slack variables introduced by Rabinowitch trick.

Now, we examine the equalities (11) and (13). [[SqDistance[E, f ]==SqDistance[i, j]]] gives
rise to the first equality in (11), namely (400−x11)2+(60−y12)2 == (x13−x15)2+(y14−y16)2,
where E at (400, 60), f at (x11, y12), i at (x13, y14) and j at (x15, y16). The rest of the
equalities in (11) and equalities in (13) are obtained in the same way.

By solving the above set of polynomial equalities for the coefficients of m and n and coor-
dinates of f , i, j, g and h, we obtain the 6 cases in Fig. 5.

6 Proof

6.1 Theorem to Prove

We prove the following theorem.

Theorem 6.1. Given the origami in Fig. 7(c), we have
(a) |EF | = |FG| = |GH | = |HI| = |IJ | = |JK| = |KE|, and
(b) ∡EOF = ∡FOG = ∡GOH = ∡HOI = ∡IOJ = ∡JOK = ∡KOE = 2π

7 , where O is the
center of EKJIHGF .

Let θ = ∡EOF and α = eiθ. Vector
−−→
FG is the rotation of

−−→
EF through θ around center O.

To prove the theorem 6.1, we show that the rotations of
−−→
EF through angles 2θ, 3θ, 4θ, 5θ, and
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(a) (b) (c)

Figure 7: Construction of (a) the edge GF (step 2), (b) the edge IH (step 3) and (c) vertex K
and final heptagon EKJIHG (step 4)

6θ gives
−−→
GH ,

−→
HI,

−→
IJ ,

−−→
JK and

−−→
KE, respectively, and furthermore, that θ = 2π

7 . We show that
after the construction, the following holds.

∀α ∈ C (α
−−→
EF −

−−→
FG = 0 ⇒

α2−−→EF −
−−→
GH = 0 ∧ α3−−→EF −

−→
HI = 0 ∧ α4−−→EF −

−→
IJ = 0∧

α5−−→EF −
−−→
JK = 0 ∧ α6−−→EF −

−−→
KE = 0 ∧ α7 − 1 = 0)

(15)

Let P be the geometrical constraints accumulated during the construction. Let C ≡ ∀α ∈
C (C1 ⇒ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7) be the formula (15). P and C form the premise and
conclusion of the proposition (16) that we want to prove.

P ⇒ ∀α ∈ C (C1 ⇒ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7) (16)

Formula (16) is semantically equivalent to the conjunctions of the formulas (17)–(22).

P ⇒ ∀α ∈ C (C1 ⇒ C2) (17)

P ⇒ ∀α ∈ C (C1 ⇒ C3) (18)

P ⇒ ∀α ∈ C (C1 ⇒ C4) (19)

P ⇒ ∀α ∈ C (C1 ⇒ C5) (20)

P ⇒ ∀α ∈ C (C1 ⇒ C6) (21)

P ⇒ ∀α ∈ C (C1 ⇒ C7) (22)

6.2 Proof by Eos

We show how the validity of (17) is proved and the rest is achieved in a similar way. We add
the conclusion ∀α ∈ C C1 ⇒ C2 by calling Eos function Goal as follows.

Goal[∀α,α∈Complexes(VectorToComplex[α
−−→
EF −

−−→
FG]==0 ⇒

(VectorToComplex[α2−−→EF −
−−→
GH ]==0))]

(23)

Expressions C1 ≡ α
−−→
EF −

−−→
FG = 0 and C2 ≡ α2−−→EF −

−−→
GH = 0 written in the language of

Eos are VectorToComplex[α
−−→
EF −

−−→
FG] and VectorToComplex[α2−−→EF −

−−→
GH ]==0, respectively.
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Function Goal adds the negation of the conclusion to the premise. By calling Goal, we obtain
P ∧ ¬(∀α ∈ C (C1 ⇒ C2)). In order to translate P ∧ ¬(∀α ∈ C (C1 ⇒ C2)) into algebraic form,
we fix the coordinate system to be Cartesian with points A, B, C, D and E as follows:

map = DefMapping[{{A, Point[0,-wd]},{B, Point[wd,0]},

{C, Point[wd, ht]}, {D, Point[0, ht]}, {E, Point[0, ht]}}, {}]&
(24)

Without loss of generality, we set the size of the initial origami to be 2wd×ht, where the width
wd is taken to be arbitrary and the height ht is equal to 1. The point E is fixed at location
(0, ht). Finally, we check whether the reduced Gröbner basis of the algebraic interpretation of
P ∧ ¬(∀α ∈ C (C1 ⇒ C2)) is {1} by calling function Prove.

Prove[“Knot Heptagon”, Mapping→ map, GroebnerBasis→

{CoefficientDomain→ RationalFunctions,

MonomialOrder→ DegreeReverseLexicographic}]

(25)

The above call of function Prove tells Eos to compute Gröbner basis of the polynomial set
[[P ∧ ¬(∀α ∈ C (C1 ⇒ C2))]] . Let V be the set of variables in [[P ∧ ¬(∀α ∈ C (C1 ⇒ C2))]]. The
Gröbner basis computation is carried out in the domain of polynomials whose variables are in
V \ {wd} and whose coefficients are in functions of Q(wd). Eos computes Gröbner basis and
generates a proof document (whose title is given by the first argument of the call of Prove) [16].

6.3 Proof Results

The proofs of (17)–(22) are successful. The CPU time used for Gröbner basis computation on
Mac OS X (Intel Core i7 8G 2.4GHz) machine varies from 69.236984 seconds (for proving (17))
to 1994.889588 seconds (for proving (20)).

7 Conclusion

We presented the construction of a regular heptagon using the knot fold. Our method consists
in applying 2-fold operation coupled with Huzita’s fold operations. The fold lines that make
the knot fold are determined by solving geometrical constraints. We further showed the proof
of the correctness of the construction of a regular heptagon based on Gröbner bases.

Note that using Huzita’s fold operations (O1) ∼ (O7), a regular heptagon is constructible.
With Eos we need 9 Huzita’s fold operations and more than 10 auxiliary operations such as
unfolding and marking supporting points. Further investigation of the geometrical constraints
by the knot fold is required to construct regular 11-gon, which is impossible by Huzita’s fold
operations.

Another issue that should be investigated in the future research is the rigidity of the knot
fold. We need to define the notion of rigidity in mathematical terms in this knot fold as well
as in more general origami that may involve 3D constructions.
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