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Abstract

Nowadays, powerful parallel SAT solvers are based on an algorithm portfolio. The alternative

approach, (iterative) search space partitioning, cannot keep up, although, according to the literature,

iterative partitioning systems should scale better than portfolio solvers. This rises often! In this paper

we identify key problems in current parallel cooperative SAT solving approaches, most importantly

communication, how to partition the search space, and how to utilize the sequential search engine. First,

we improve on each problem separately. In a further step, we show that combining all the improvements

leads to a state-of-the-art parallel SAT solver, which does not use the portfolio approach, but instead

relies on iterative partitioning. The experimental evaluation of this system completely changes the

picture about the performance of search space partitioning SAT solvers: on instances of a combined

benchmark of recent SAT competitions, the presented approach can keep up with the winners of last

years SAT competition. The combined improvements improve the existing cooperative solver splitter

by 24%: instead of 561 out of 880 instances, the new solver Pcasso can solve 696 instances.

1 Introduction

Many practical problems could be sped up by utilizing massively parallel hardware, for
example by utilizing the GPGPU. Especially for problems with local calculations these execution
units are beneficial (e.g. [1, 2]). For more complex problems, for instance the satisfiability
testing problem [3] whose complexity is NP, only a few massively parallel solutions have been
proposed – yet not suitable to cope with neither modern sequential CDCL solvers, nor with the
high complexity of current application formulas [4]. The presented results consider only 3SAT
with 100 variables – a size being easily solved by modern sequential SLS solvers. Still, there
exists the interest in improving the performance of SAT solving, and parallel approaches have
not yet been exhaustively explored.

With the goal of having a massively parallel SAT solver in mind, we go a step backwards
from GPGPUs to multi-core CPUs. Nowadays, a usual CPU ships with four cores, and high
performance computing CPUs already contain up to 16 cores, which should be exploited for
solving SAT. For these architectures, many solutions to execute parallel solvers have been pro-
posed. The latest generation of these solvers, namely portfolio solvers, has been introduced with
ManySAT [5], a solver that runs several configurations of a single solving engine in parallel,
and which is based on a modern sequential solving engine. These incarnations of the solving
engine all solve the same input instance, and additionally share clauses, that have been learned
during their search process. Much research has been done on this type of solvers, for example
investigating the properties of clause sharing [6, 7], or whether additional information sharing
could improve the performance of the parallel SAT solver [6, 8]. However, there also exist paral-
lel portfolio solvers that simply combine many solvers with the aim to have a specialized solver
for each category of instances, such that the overall portfolio provides a good performance [9].

An alternative approach to solve SAT in parallel is to partition the search space of the input
formula, and then solve partitions in parallel. Recently, there has been less research on this
field, especially for the multi core platform. Within the past five years, there have been only a
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few parallel search space splitting solvers: CubeAndConquer [10, 11], and splitter [12]1. A
reason for this situation might be the following: In [13] it has been shown that when partitioning
an input formula, and solving only the partitions in parallel but not considering the input
formula itself, the overall run time of the parallel solver can be higher than when solving the
input formula with a sequential solver. We refer to this splitting scheme as plain partitioning.
When a solver incarnation proved the unsatisfiability of a partition, it simply continues by
solving another partition, assuming that sufficiently many partitions have been provided. The
first solver CubeAndConquer follows this scheme. Another approach is to consider the input
formula as well, and provide less partitions. Then, we solve the input formula and the partitions
in parallel. As soon as we have another free solver incarnation, we assign a remaining partition
to that solver. If no more partitions are present, we divide the search space of a partition
into further partitions, where each of them is ready to be assigned to new solvers again. This
solving scheme has been introduced for solving SAT with grids computing, and is referred to
as iterative partitioning in the literature [13]. Most importantly, iterative partitioning has been
shown to be more powerful in the presence of more parallel execution units [13]. In contrast
to this statement, the solver Splitter that uses this scheme showed a poor performance in
international competitions [14], even when adding an improved clause sharing [15]. Currently,
the performance gap between portfolio solvers and search space splitting solvers is still huge,
as the following table shows, both Plingeling and PeneLoPe solve more instances and are
faster than Splitter. The data of the table has been created on a benchmark of application
880 instances originating from the SAT competition 2009, the SAT Challenge 2012 and the
hard unselected instances of the SAT Challenge 2012. We executed the solvers on an 8 cores of
an 16-core AMD Opteron 6274 with 2.2 GHz and 8 GB of memory. The time limit was set to
7200 seconds. In all the following tables we report the total number of solved instances (TOT),
the number of solved satisfiable (SAT) and unsatisfiable instances (UNSAT). Furthermore, we
give the average (Wall Time) and the median wall clock time (Median Time) for the whole
benchmark, as well as the Par10 score, which takes the mean of the sum the wall time for all
solved instances and ten times the timeout for each unsolved instance.

Solver TOT SAT UNSAT Wall Time Median Time PAR10

PeneLoPe 704 304 400 305.649 89.39 14645
PLingeling 672 296 376 663.526 442.28 17525
Splitter 561 292 269 450.126 366.42 26387

In this paper we analyze the decision choices made in splitter, and try to improve the system,
such that the results of the implementation are in line with the theoretical scalability results.
As the above table indicates, this can be achieved mainly by improving the performance on
unsatisfiable instances, where the gap to PeneLoPe is 131 instances. For this, we focused on
the following aspects: (i) how to partition the input formula, (ii) how to share learned clauses
among partitions, (iii) how to initialize solving engines, (iv) how to solve partitions, (v) how
to perform extra communication among solving engines, and finally (vi) how to treat special
situations that may arise in iterative partitioning. For each point we first analyze the decisions
made in Splitter, and then try to identify weaknesses, propose improvements and finally
evaluate the performance of the proposed modification on a large benchmark of application
instances used or submitted to recent SAT competitions. We implemented all modifications into
another system called Pcasso, which is an acronym of Parallel, CooperAtive Sat SOlver. When

1The are other parallel SAT solvers that support search space splitting, for example clasp or pMinisat –
however, no detailed results have been reported on these systems.
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comparing Splitter with Pcasso, our evaluation shows a performance improvement of 24%.
Furthermore, Pcasso now can keep up with PeneLoPe, the best single engine parallel SAT
solver of last years competition. The results of our work prove that search space partitioning
SAT solvers are relevant, and supported by theoretical results [13], should be considered as
promising candidates for solving SAT on future massively parallel computing architectures.

2 Preliminaries

We assume a fixed set V of Boolean variables, or briefly just variables or atoms. A literal is
a variable x (positive literal) or a negated variable x (negative literal). We overload the overbar
notation: the complement l of a positive (negative, resp.) literal l is the negative (positive,
resp.) literal with the same variable as l. A clause is a finite set of literals, a formula in
conjunctive normal form is a finite set of clauses. An interpretation is a mapping from the
set V of all Boolean variables to the set {>,⊥} of truth values. In the following, we assume
the reader to be familiar with propositional logic, and how propositional formulas are evaluated
under interpretations. More details can be found in [16]. A clause that contains exactly a single
literal is called a unit clause. If x is a Boolean variable and C = x∨C ′ as well as D = x∨D′ are
clauses, then the clause C ′ ∨D′ is called the resolvent of C and D upon x. The SAT problem
is to answer whether a given formula F is satisfiable. Since [3], SAT is known to be in the
complexity class NP.

3 Sequential SAT Solving

For showing the satisfiability or unsatisfiability of formulas that originate from applications,
currently the conflict driven clause learning (CDCL) algorithm [17] shows the best performance.
In principle, this algorithm follows the tree search of the well known DPLL algorithm [18], but
it treats conflicts differently. Similar to DPLL, if the deduction of the solver, unit propagation,
reached a fix point, a search step (decision) is performed, so that deduction can be applied
again. However, if unit propagation reveals a conflict, which represents that the current sub-
tree does not contain a solution, a learned clause is generated by resolution [17]. This learned
clause is used to partially undo the current path and to continue search from this point by
propagation. The search is stopped if either a satisfying interpretation has been found, or if the
learned clause is the empty clause. In the latter case, the formula is found to be unsatisfiable.

Modern CDCL solvers are enhanced with advanced heuristics. First, the decision heuris-
tic prefers variables, which have been used in the derivation of recent learned clauses [19], by
maintaining an activity per variable. The polarity to branch on is determined by using the
phase-saving scheme [20]. Furthermore, learned clauses are maintained, and after some time
also removed again, where heuristics answer the following questions: (i) when to remove learned
clauses, and (ii) which learned clauses to remove. For (i) several schedules have been proposed
(e.g. [21, 22]). For (ii), learned clauses are augmented with measures, for example an activ-
ity [21], or the literal block distance(LBD) [22]. In addition, the search process is restarted
resetting the current partial interpretation [23]. Again, different restart policies have been pro-
posed [24, 21, 25, 26, 27]. More details about state-of-the-art SAT solving with the CDCL
algorithm can be found in [28].

4 Parallel SAT Solving

Parallel SAT solvers can be divided into two families: cooperative approaches, where the
search space is partitioned and each partition is assigned to a solver incarnation and competitive
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approaches, where instead each solver incarnation is fed with the same formula. Current state-
of-the-art is represented by competitive approaches, also known as portfolio procedures, whereas
cooperative approaches, also known as search space partitioning procedures, were quite popular
in the past. Since we focus on search space partitioning procedures, we will discuss the portfolio
approach only briefly. A more detailed survey on parallel SAT solving is given in [29, 30].

4.1 Solving SAT with the Portfolio Approach

In the portfolio approach, several solvers solve the same formula in parallel. A nice property
of this approach is that the parallel search can be terminated as soon as one solver incarnation
found a solution. This property motivates combining special solvers for formulas from special
categories to a portfolio solver, which then solves a given formula in the time required by
the fastest sequential component solver. Among portfolio systems, different sub approaches
arose, mainly differing in the way of which solving engines are used and how complex the
communication among these engines is: portfolio solvers in recent competitions like Ppfolio [9]
and PfolioUZK [31] simply execute several powerful SAT solvers in parallel, even scheduled
on a sequential machine.

A more sophisticated portfolio approach uses a single solving engine and executes multiple
incarnations with different configurations in parallel (e.g. ManySAT [5] or PeneLoPe [32]).
In this approach, learned clauses can be easily shared among the incarnations. Knowledge
sharing enables the portfolio solver to solve a formula even faster than the best sequential
incarnation, because the search of this best incarnation is enhanced with shared clauses that
cut off search space. ManySAT [5], winner of the SAT Competition 2009 in parallel SAT solver
track, shares clauses of up to size eight, and PeneLoPe [7], runner-up of the SAT Challenge
2012 in parallel SAT solver track, shares clauses of LBD value up to eight, and Plingeling [8],
winner of the parallel SAT solver track of the SAT Race 2010 and SAT Competition 2011, shares
only unit clauses and literal equivalences. Surprisingly, the portfolio solver pfolioUZK [31],
winner of SAT Challenge 2012 in the parallel SAT solver track, does not share any clause.
Even more communication to these single engine portfolio solvers has been introduced with the
Plingeling system [8]. Its solving engine Lingeling applies simplification techniques during
search, and thus knowledge about equivalent literals can be shared.

There exists much research on portfolio solvers, most prominently on sharing information
among solving incarnations. First, a static sharing limit for the size of shared clauses has been
introduced [5], which has been replaced by a dynamic quality-based filter [33]. Furthermore,
not only the size of the clause, but also its LBD has been taken into account for sharing
clauses [32]. Finally, not only learned clauses, but also active variables and other information
has been shared [6, 8]. A discussion about the soundness of clause sharing is presented in [34].

4.2 Solving SAT with the Search Space Partitioning Approach

4.2.1 Creating Partitions

Partitions in cooperative SAT solvers are created through partition functions, where a
partition function is a function φ such that, given a formula F and a natural number n ∈
N+, φ(F, n) := (F1, . . . , Fn), where F ≡ F1 ∨ . . . ∨ Fn and each pair of partitions is disjoint:
i 6= j ∈ [1, n], Fi ∧ Fj |= ⊥. Without loss of generality we assume that partitions F1, . . . , Fn are
always of the form F ∧K1, . . . , F ∧Kn, where K1, . . . ,Kn are sets of clauses, called partitioning
constraints. By iteratively applying the partition function to a formula F , a partition tree like
the one in Figure 1 is produced. Nodes in the partition tree are tagged with their positions:
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F

F 1 F 2

F 11 F 12 F 21 F 22

K1 K2

K11 K12 K21 K22

Figure 1: The tree shows how a formula can be partitioned iteratively by using a partitioning
function that creates two child formulae.

the root node F is tagged with the empty position ε; the i-th successor (from left to right) of a
node F p at position p is the node F pi. Please notice that, as positions are strings, the standard
prefix relation among strings (<) is defined for positions as well.

Partitions in Splitter and Pcasso are created through scattering [35]. The idea is to
define each partitioning constraint as conjunctions of cubes [10], where a cube is a formula
Q := {C1, . . . , Ck} such that |Ci| = 1, for each 1 ≤ i ≤ k and k ≥ 1. Observe that the negation
of a cube Q := {{l1}, . . . , {lk}} is the clause {l1, . . . , lk}. More precisely, given a formula F0

and an integer n, n partitions F1, . . . , Fn are created by using n − 1 cubes Q1, . . . , Qn−1 and
applying them according to the following schema:

F1 := F0 ∧Q1; Fm+1 := F0 ∧ (
m∧
i=1

Qi) ∧Qm+1(1 ≤ m < n− 1); and finally Fn := F0 ∧
n−1∧
i=1

Qi.

4.2.2 Solving Partitions

Hyvärinen [36] identifies two strategies for solving nodes in the partition tree: plain parti-
tioning and iterative partitioning, where the latter is a hybrid that combines the competetive
and cooperative approach. To describe the node-state of a node F p at a certain point of ex-
ecution we use a triple (F p, s, r) where s ∈ {>,⊥, ?} (> indicates that an incarnation found
a model for the node, whereas ⊥ indicates that an incarnation proved unsatisfiability of F p;
finally, ? indicates that the node has not been solved yet) and r ∈ {I,�} (indicating whether
an incarnation is running on F p or not, respectively). Given the notion of a node-state, we can
easily differentiate between plain partitioning and iterative partitioning: a cooperative solver
exploits the iterative partitioning strategy if two incarnations are allowed to run at the same
time on nodes F p, F q such that p ≤ q. Otherwise, the solver is said to be exploiting the plain
partitioning strategy. More informally, plain partitioning solves only the leaf nodes of the par-
tition tree, whereas iterative partitioning processes all nodes in the search tree in a breadth
first order.

In the authors’ opinion these names are misleading since, for both strategies, the partitioning
is fixed, and the difference relies instead in the order in which nodes are solved. We thus propose
to rename iterative partitioning to overlapped solving, as it permits the parallel solver to look
at overlapping partitions of the search space at the same time. Accordingly, plain partitioning
will be called non-overlapped solving.

In each cooperative solver, in order to solve an unsatisfiable node F p, either F p has to be
directly solved by some incarnation or each child node F pi has to be solved. Hyvärinen shows
in [13] that solving each of these children can be more expensive (in terms of required time)
than solving the father node directly. A consequence of this fact is that overlapped solving is
superior to non-overlapped solving; this claim is formally proved in [36].
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F, ?,I

F 2, ?,IF 1, ?,I F 3, ?,I

F 12, ?,IF 11, ?,I F 13, ?,I

Figure 2: Visualization of a partition tree with clause sharing and overlapped solving: The
dashed lines show the possible ways flag-based sharing can send clauses. The dotted lines
represent the possible additional communication when position based sharing is used. From
this picture it can be seen that more clauses could be shared.

4.2.3 Sharing Information Among Partitions

A recent empirical study [37] shows that clause learning is the most important feature of
modern SAT solvers. Most of the current portfolio solvers share learned clauses among the
incarnations. This sharing of learned clauses shows improvements in portfolio solvers, because
a learned clause can prune parts of a search space of the incarnation. An important question
in sharing learned clauses is: which clauses are good for sharing? There is no general successful
answer to this question, but different portfolio solvers use different heuristics (see Section 4.1).

In the overlapped solving, we cannot share each learned clause with every incarnation,
because partitioning constraints can contribute to the learning of a clause, and so the clause
cannot always be a logical consequence of partition formulas solved by other incarnations. The
first approach for sharing clauses in the iterative partitioning is given in [38], this clause sharing
approach is called flag-based learned clause tagging.

A learned clause is considered unsafe if it belongs to partitioning constraints, or it is obtained
by a resolution derivation involving one or more unsafe clauses. A clause that is not unsafe is
called safe clause, and only safe clauses are shared. Sharing in the overlapped solving has been
further improved by position-based clause tagging [15]. The idea of safe and unsafe clause is
extended to sub-partition trees: a learned clause is shared in a sub-partition tree if it is safe in
that sub-partition tree. This information can be calculated by tagging each clause Cp with the
position p of the sub-tree where Cp is valid. With position-based clause sharing an increased
number of shared clauses and a better performance when compared against non-sharing or
flag-based have been reported [15]. For Pcasso, we therefore decided to exploit position-based
clause sharing.

5 Analyzing and Improving Cooperative SAT Solving

In this section we will analyze design decisions of Splitter one by one – next, suggesting
modifications to the procedure, and finally give an empirical evaluation. Therefore, we imple-
mented the parallel search space splitting solver Pcasso, which is based on a Minisat-style
solving engine2. Evaluation is performed using an AMD Opteron 6274 with 2.2 GHz and 8 GB
of memory. We evaluate the solvers on 8 cores. For each formula of the benchmark, we apply
a wall clock timeout of 2 hours. The full benchmark to compare parallel solvers consists of

2The latest version uses Glucose 2.2
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880 instances, originating from the application track of the SAT 2009 competition, as well as
the SAT 2012 Challenge. Furthermore, we added the instances that have not been selected for
the SAT 2012 Challenge. However, for the development of the single design improvements, we
choose a subset of 118 instances where 66 could be solved by Splitter, 34 can be solved by
PeneLoPe only and the remaining instances cannot be solved by both systems. During the
development phase (Section 5.1–5.3.6), we tested the performance of Pcasso only on these 118
instances. Furthermore, note that the results presented in the following paragraphs cannot be
related to each other directly, since the implementation of the system grew while developing
and applying the improvements. For the results presented in one table, all parameters of the
solver are fixed and only a single other parameter has been modified, as we indicate in the
tables3.

5.1 Creating Partitions

In our experiments, we have observed that scattering creates partitions for a given node using
cubes such that there are common variables among the cubes. We now define tabu scattering
as an extension of scattering, by putting a restriction that a variable used in one cube, must
not be used in the cubes for creating remaining partitions. Using tabu scattering, we diversify
the search more.

Another observation is that scattering does not always create partitions that have equal
difficulty in terms of solving time. Due to this difference, consider a scenario that the solver has
some idle resources, so the solver creates partitions of some running unsolved node (F p, ?,I)
in the partition tree, but it may happen that (F p, ?,I) is very close to find the result ⊥ and
thus the solver may waste resources on the newly created partitions. We propose a solution to
decrease the chance of this scenario to happen, by sorting the child nodes in decreasing order
of difficulty level; this way the solver will create partitions of more difficult node first than the
less difficult nodes, avoiding the above scenario. We predict the difficulty level of a node by a
simple heuristic that counts the number of propagated literals: the higher the number of top
level units after propagation, the lower the estimated difficulty of the analyzed formula.

splitter chooses the literals in the cubes by using VSIDS heuristic: it runs a solver for
a certain number of conflicts (8196 conflicts) and picks the literals with highest VSIDS score
and their saved polarity. Then, it creates the partition, adds the negated cube to the cur-
rent formula and repeats the process until enough partitions are created. In Pcasso, we use
lookahead techniques [39] for choosing the literals for creating partitions with scattering, by
choosing a variable with the maximum mixdiff score [39]. The score mixdiff of a variable is
the product of the diff score of each polarity of the variable. We calculate the diff score of the
polarity of a variable by applying lookahead, and use the following weighted sum: 0.3 times
the number of propagated literals plus 0.7 times the number of newly created binary clauses.
After choosing the variable with the maximum mixdiff score, we choose the polarity of the
variable that has the lowest diff score for creating cubes. We also use the reasoning techniques:
failed literals, necessary assignments, pure literals, and add learned clauses to the partition
constraints. Techniques like constraint resolvent, double lookahead, and adaptive pre-selection
heuristics are also used as proposed in the literature [39]. It is the first time that lookahead
and scattering is combined for creating partitions. Previously lookahead has already been used
in CubeAndConquer for creating partitions, but without scattering [10, 11].

3Pcasso is available at http://tools.computational-logic.org.
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TOT SAT UNSAT Wall Time Median Time PAR10

VSIDS 57 23 34 1319.43 7200 37857
LA 73 22 51 1135.43 1849.05 28160

The data clearly shows that combining look-ahead with scattering is superior to choosing vari-
ables by VSIDS, 37.7 %‘ more instances can be solved, and the median run time drops signifi-
cantly.

5.2 Solving Time Limit

Splitter uses a solving time limit for each node in the partition tree, proposed in [36] for grid
environment. Here we propose a different strategy: we do not put any limit on the solving
time for each node. To give the intuition about our idea, we first define the ideal solving time
limit: a solving time limit is ideal if the given CNF formula is solved within that limit. Given
an unsatisfiable CNF formula that we solve with overlapped solving, a void partition function
(i.e. a partitioning that does not partition the problem in “simpler” problems) and a non-ideal
solving time limit then overlapped solving slowly becomes similar to non-overlapped solving,
because intermediate nodes are interrupted before they can be solved. By over-approximating
the ideal limit, we overcome this problem.

Node Limit TOT SAT UNSAT Wall Time Median Time PAR10

512000 73 22 51 1135.43 1849.05 28160
None 86 25 61 1177.48 1101.68 20346

When comparing solving with and without limits, it can be seen that the performance of the
solver increases heavily, especially on unsatisfiable instances. Furthermore, the median run time
drops, indicating that the limited solving also aborts incarnations just before they solve their
node.

5.3 Diversification and Intensification

A search strategy in a modern SAT solver uses the following components: decision heuristic,
polarity heuristic, restart policy, and learning scheme. Diversification vs intensification is a
trade-off made by the search strategy. Intensification refers to search strategies with the goal
to greedily improve the chances of finding a solution. Diversification strategies try to achieve
a reasonable coverage of the search space. For further reading, we refer to [40].

5.3.1 Sharing VSIDS and Progress Saving

We intensify the search by sharing information. First, we look into sharing VSIDS and
progress saving information. Portfolio solvers do not share this information, because all incar-
nations start their search at the same time; but in case of our solver, we have a tree structure
(partition tree) that we can exploit, and also the search of the nodes in the partition tree does
not start at the same time. Thus, sharing heuristic information like VSIDS and progress saving
from parent to child nodes, could help the child nodes. When Pcasso starts solving, the root
node and the nodes at the partition tree level one start at almost the same time. The nodes at
partition tree level greater than one are usually created after some time, so we initialize their
search process with the VSIDS and progress saving information of their parent, because the
child node searches in the sub-search space of its parent and whatever is learned by the parents
search can help the solving child node as well.
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TOT SAT UNSAT Wall Time Median Time PAR10

None 91 25 66 893.724 594.675 17163
Activity 92 26 66 867.278 508.19 16540
Polarity 93 27 66 895.846 619.85 15960
Both 92 26 66 870.25 593.575 16542

When sharing information, the performance of the solver increases – however, not sharing the
activity information seems to provide a slightly more powerful, but also slower..

5.3.2 Dynamic Sharing

Learned clauses are shared between incarnations to intensify the search. Most parallel
solvers use a static measure for sharing clauses. Splitter shares only binary clauses [15]. We
propose a dynamic learned clause sharing scheme, that is based on LBD scores. A learned
clause is eligible for sharing by an incarnation if the LBD score of this clause is lower than a
parameter δ of the global LBD average of the incarnation. In Pcasso, we use δ = 0.5.

Share Limit TOT SAT UNSAT Wall Time Median Time PAR10

Dynamic 0.5 95 27 68 765.479 467.98 14650
Static 6 94 26 68 896.848 506.575 15358

As indicated in related work already, the dynamic limit is superior with respect to the run time
of the solver. However, in Pcasso the number of solved instances is not influenced much.

5.3.3 Different Restarts

Portfolio solvers like ManySAT and PeneLoPe, use different restart policies for each in-
carnation, to diversify the search. Inspired by this idea, we diversify by using different restart
policy parameters in Pcasso. As Pcasso uses Glucose, the dynamic restart policy in Glu-
cose [41] can be modified to diversify the search of Pcasso as well. Glucose maintains a
global average of LBD scores. A restart is performed if the average LBD score of the last X
learned clauses is greater than the global average times a magic constant K. First we classify
the nodes in partition tree into three categories: (i) root node: the node at the root of the
partition tree, (ii) leaf node: the nodes which do not have any child node, (iii) middle node: the
node which is neither a root node nor a leaf node. According to these node categories, we apply
different restart policies. The root node uses X = 75 and K = 0.7. Leaf nodes use X = 50
and K = 0.8. Parent nodes use X = 75 and K = 0.8. We have selected the values of X and K
based on experiments and the data provided in [41].

TOT SAT UNSAT Wall Time Median Time PAR10

Same 89 27 62 792.393 673.405 18292
Different 92 26 66 870.25 593.575 16542

As provided by the empirical data, diversifying restart strategies helps to improve the perfor-
mance on unsatisfiable instances. Furthermore, the solving time improves.

5.3.4 Different Learnt Clauses Cleaning

To diversify, PeneLoPe uses different intervals between cleaning learned clauses for different
incarnations. The purpose is that some incarnations keep learned clauses for a longer time
than others. We introduce this idea in our solver, according to the node category as well. We
give different cleaning intervals to the root node, middle nodes, and leaf nodes. Let Introot,

49



Modern Cooperative Parallel SAT Solving A. Irfan, D. Lanti, N. Manthey

F, ?,I

F 2, ?,IF 1,⊥,� F 3,⊥,�

F 22,⊥,�F 21, ?,I F 23,⊥,�

F 212,⊥,�F 211,⊥,� F 213, ?,I

Figure 3: The given snapshot shows the only child scenario for four computation units: for each
node, only a single child is still unsolved, and all other nodes are evaluated to ⊥.

Intmiddle, Intleaf be the cleaning intervals of the nodes root, parent, and leaf, respectively.
Then we have the following relationship: Introot ≷ Intmiddle ≷ Intleaf . Note that a leaf node
changes its cleaning policy dynamically when it becomes a middle node.

Clean Interval TOT SAT UNSAT Wall Time Median Time PAR10

None 94 27 67 950.416 608.98 15401
Decrease 93 24 69 1099.12 656.48 16120
Increase 92 26 66 870.25 593.575 16542

The default cleaning policy of Glucose seems to be chosen well - however, when increas-
ing the interval, the median run time can be improved slightly. Surprisingly, the number of
solved unsatisfiable instances can increase when using the modifications, whereas the number
of satisfiable instances decreases.

5.3.5 Only Child Scenario

During our experiments we have observed, on some instances, that the height of the partition
tree grows until it hits the number of parallel resources. This means that there is only one
unsolved node at each partition level of the partition tree. On a smaller scale, there could be
only one unsolved node at some partition level. For that reason, we call this scenario the only
child scenario. Figure 3 shows an extreme case of only child scenario for a solver with four
available resources. You can see that only one node is unsolved at each level of the partition
tree, i.e. the nodes solving the partitions F , F 2, F 21, F 213 are unsolved and running.

Consider that only child scenario happens at some level of the partition tree, then there are
two cases: i) the parent node is looking into the search space which has been solved by one of
its children already, ii) the parent node is looking into the same search space where its unsolved
children are looking. In either case, we have the risk of doing redundant work. We propose an
approach to get out of this scenario by reintroducing the solving limit in a node that has only
one unsolved child (Avoid). To be on safe side, we do not apply this limit for the root node.
The introduced limit grows with the level of the node (level ∗ 4096 conflicts). Since in the only
child scenario all learned clauses can be shared among the two participating nodes, we can also
exploit this situation, by enabling this sharing. In the extreme case, this configuration is very
similar to portfolio solvers, since then all clauses can be shared without restrictions.
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TOT SAT UNSAT Wall Time Median Time PAR10

None 93 27 66 979.23 726.09 16026
Avoid 92 26 66 870.25 593.575 16542
Exploit 91 26 65 856.31 607.335 17134

Although ignoring the scenario yields the best results wrt. solved instances, the run time can
be reduced significantly when either exploiting or avoiding the scenario, where avoiding the
scenario yields the better speedup.

5.3.6 Conflict Driven Node Killing

When clauses are tagged by position-based tagging [15] as described above, additional infor-
mation can be obtained by performing a conflict analysis on solved unsatisfiable nodes. Consider
a node (F p,⊥,�), and let {}q be the empty clause labeled with position q, which was derived
by the incarnation that solved F p. Then, from the main theorem in [15], we conclude that {}q
is the semantic consequence of the node of position q in the partition tree. Observe that q is a
prefix p: q ≤ p. Consequently, not only the node at position p can be marked as unsatisfiable,
but also the node F q as well as all its child nodes. As a result, more incarnations can terminated
and start solving different partitions. We call this kind of technique conflict driven node killing.
A similar approach is reported in [38] with assumption-based clause tagging, but the author
did not report benefits from exploiting this technique. Instead, our tests show an improved
performance in terms of the number of solved instances. However, similarly to [38], we observe
an increase of the median time. A reason for this might be the fact that by stopping a node we
prevent it from producing more shared clauses for its level and above levels.

TOT SAT UNSAT Wall Time Median Time PAR10

CKILL 92 26 66 870.25 593.575 16542
NOCKILL 89 24 65 795.058 498.435 18294

5.4 Evaluation

We evaluate Plingeling, PeneLoPe, Splitter and Pcasso on the full benchmark of 880
instances, allowing each solver to use eight cores and a time limit of two hours. The final
configuration of Pcasso uses the following options: (i) tabu lookahead for creating partitions,
(ii) no solving limit, (iii) sharing vsids+polarity, (iv) dynamic clause sharing 0.3, (v) different
restarts, (vi) decrease clause cleaning interval w.r.t. level, (vii) exploiting the only child scenario
by simulating portfolio, and finally (viii) conflict driven node killing. The result is presented in
the cactus plot in Figure 4. With this data, we can validate our claim posted in the introduction:
search space partitioning solvers have to be considered being state of the art! The new solver
Pcasso (696 instances) outperforms Plingeling (672 instances) on the benchmark, and is
very close to PeneLoPe (704 instances). Furthermore, the median run time on all instances of
Pcasso (136.17 seconds) is close to PeneLoPe (89.39 seconds). The contribution is not due
to a single improvement, but rather due to the sum of all improvements. Adding only a single
improvement of the above sections would not result in the presented performance of solving 135
more instances than the latest search space splitting solver Splitter.

6 Conclusion

We started with the search space splitting solver Splitter, which shows a poor performance
especially on unsatisfiable instances compared to other parallel state-of-the-art SAT solvers,
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Figure 4: Comparing the performance of parallel state-of-the-art SAT solvers

such as Plingeling or PeneLoPe. We then analyzed the design decisions of Splitter
and proposed improvements, where some of them resulted in major improvements already.
For example, we improved the partitioning by adding tabu information and combining look-
ahead and scattering, increasing the number of solved instances by 37.7 %, or we removed the
solving limit per partition, which improves the performance by another 17.8 %. By improved
information sharing about learned clauses, or the variable phase, as well as diversifying the
solver incarnations, or analyzing the unsat result for partitions, we could improve the system
further. Finally, we pointed out special situations where iterative search space partitioning
solvers come very close to portfolio solvers - a situation we call the only child scenario. We
implemented the improved algorithms into the solver Pcasso, resulting in a state-of-the-art
parallel SAT solver that does not rely on search space splitting. Depending on how the only
child scenario is handled, this solver can also simulate portfolio systems.

By comparing the performance of Pcasso and PeneLoPe, which solve a similar amount
of instances, and combining this empirical result with the theoretical and empirical results
of [13], we are convinced that search space partitioning is a good candidate for solving SAT
on more parallel computing architectures. As future work, we suggest to incorporate formula
simplifications into the search engine, as well as using other recently proposed additions like
clause freezing. However, applying modifications to search space splitting solvers will be more
research intense than for portfolio systems, because any modification of the solver incarnations
has to consider the partitioning constraints.
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