
EPiC Series in Computing
Volume 73, 2020, Pages 298–316

LPAR23. LPAR-23: 23rd International
Conference on Logic for Programming,
Artificial Intelligence and Reasoning

Antiprenexing for WSkS: A Little Goes a Long Way
Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, Ondřej Valeš, and Tomáš Vojnar

FIT, IT4I Centre of Excellence, Brno University of Technology, Czech Republic

Abstract
We study light-weight techniques for preprocessing of WSkS formulae in an automata-

based decision procedure as implemented, e.g., in Mona. The techniques we use are based
on antiprenexing, i.e., pushing quantifiers deeper into a formula. Intuitively, this tries
to alleviate the explosion in the size of the constructed automata by making it happen
sooner on smaller automata (and have the automata minimization reduce the output).
The formula transformations that we use to implement antiprenexing may, however, be
applied in different ways and extent and, if used in an unsuitable way, may also cause an
explosion in the size of the formula and the automata built while deciding it. Therefore, our
approach uses informed rules that use an estimation of the cost of constructing automata
for WSkS formulae. The estimation is based on a model learnt from runs of the decision
algorithm on various formulae. An experimental evaluation of our technique shows that
antiprenexing can significantly boost the performance of the base WSkS decision procedure,
sometimes allowing one to decide formulae that could not be decided before.

1 Introduction
Weak monadic second-order logic of k successors (WSkS) is a logic for describing regular prop-
erties of finite k-ary trees. In addition to talking about trees, WSkS can also encode complex
properties of a rich class of general graphs by referring to their tree backbones [33]. WSkS offers
extreme succinctness at the price of non-elementary worst-case complexity of its satisfaction
problem. As noticed first by the authors of [22] in the context of WS1S (a restriction that speaks
about finite words only), the trade-off between complexity and succinctness may, however, be
turned significantly favourable in many practical cases through a use of clever implementation
techniques and heuristics. Such techniques were then elaborated in the tool Mona [17, 28],
the best-known implementation of decision procedures for WS1S and WS2S. Mona has found
numerous applications in verification of programs with complex dynamic linked data structures
[33, 30, 31, 12, 49], string programs [41], array programs [50], parametric systems [5, 8, 10], dis-
tributed systems [26, 39], hardware verification [4], automated synthesis [38, 25, 23], and even
computational linguistics [34]. Despite these successes, scalability of WSkS solvers is unpre-
dictable. Technology based on solving WSkS is therefore fragile, and users of WSkS are often
forced to either find various workarounds, such as in [31], or give up using WSkS altogether—
possibly at the price of restricting the input of their approach [46]. Clearly, more research effort
needs to be invested to make WSkS solvers truly practical.

Although there have appeared several newer approaches and prototype tools that may beat
Mona on restricted sets of formulae [43, 32, 44, 21], including our own approaches [19, 20, 24],

E. Albert and L. Kovacs (eds.), LPAR23 (EPiC Series in Computing, vol. 73), pp. 298–316

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

Mona is still the most robust tool and handles by far the largest class of practical formulae.
In this work, we focus on further improving the efficiency of Mona. Namely, we elaborate on the
preprocessing technique known as antiprenexing, which pushes quantifiers deeper into a formula,
narrowing their scope. We develop a formula preprocessing technique tuned specifically for
Mona (although the approach is, in principle, relevant to all automata-based WSkS solvers).

Antiprenexing is advantageous for the satisfiability test of Mona for the following reason.
Mona builds an automaton representing all models of the formula and then tests emptiness of
its language. An automaton for a formula is built inductively, starting from predefined atomic
automata for atomic formulae and using automata operations that model logical connectives
to combine automata for sub-formulae to automata for larger formulae. The bottleneck is the
size of the automata built during the process, which may grow with every automata operation,
leading, in the worst case, to a tower of exponentials. For Mona, the logical connective with
the most expensive automata counterpart is quantification, which involves determinization and
is, therefore, exponential in the worst case1. Antiprenexing pushes quantifiers deeper in the
formula, which causes that the costly quantification is applied on formulae with (hopefully)
smaller automata that appear closer to atoms. Morever, since the non-elementary worst-case
complexity comes from the number of quantifier alternations, pushing quantifiers to the atoms
can decrease this number and, therefore, get a formula with a simpler quantifier structure that
can be decided easier by Mona.

Our formula preprocessing is implemented as a set of syntactic rewriting rules, most of
which are well-known rules (or variants of rules) from transformations to the negation normal
form, prenex normal form, or disjunctive normal form. The rules may, however, be applied in
different ways and extent, and, if used in an unsuitable way, they may cause an explosion in
the size of the formula and the automata built while deciding it. This can happen, e.g., due to
unrestricted distribution of disjunctions over conjunctions, which may lead to an exponential
growth of the formula, which would outweigh all potential benefits. To resolve the issue, we use
informed rules that allow us to control the transformations based on how they change the cost
of deciding the formula, which is given by the size of all automata to be constructed during
the decision procedure. Since we, of course, cannot construct the automata beforehand to get
their precise size, we estimate their sizes using a linear model trained from runs of the decision
procedure on various formulae using linear regression.

We have identified parameters of our preprocessing technique that control the balance of
certain trade-offs. Although we have identified several settings of these parameters that appear
to be generally advantageous, they are by no means optimal in all cases. Different classes of
formulae tend to have different optimal settings. Searching through the space of parameter
settings thus gives a good opportunity to solve otherwise unsolvable formulae, or to increase
the efficiency of Mona for specific classes of similar formulae.

We demonstrate on a benchmark set (including all WSkS formulae we could gather) that
our formula preprocessing significantly improves the overall efficiency of Mona (in some cases,
the improvement was in the order of two to three orders of magnitude). Indeed, it allows Mona
to solve several formulae of practical interest that were beyond capabilities of any WSkS solver
(including Mona).

1Mona only works with complete deterministic automata, therefore, complementation, which is usually
considered an expensive automata operation, takes only constant time.

299

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

2 Preliminaries
In this section, we introduce basic notation and essential preliminaries on trees, tree automata,
WSkS, and its decision procedure as implemented in Mona.

2.1 Basics, Trees, and Automata
Let Σ be a finite set of symbols, called an alphabet. The set Σ∗ of words over Σ consists
of finite sequences of symbols from Σ. The empty word is denoted by ε, with ε 6∈ Σ. The
concatenation of two words u and v is denoted by u.v or simply uv. The domain of a partial
function f : X → Y is the set dom(f) = {x ∈ X | ∃y : x 7→ y ∈ f}, and its restriction to
a set Z is the function f|Z = f ∩ (Z × Y). We use f / {x 7→ y} where x ∈ X and y ∈ Y to
denote the mapping (f \ ({x} × Y)) ∪ {x 7→ y}.

Trees. We will consider ordered k-ary trees. We call a word p ∈ {1, . . . , k}∗ a tree position,
and, for each i ∈ {1, . . . , k}, we call p.i its i-th child. Given an alphabet Σ s.t. ⊥ /∈ Σ, a tree
over Σ is a finite partial function τ : {1, . . . , k}∗ → (Σ∪{⊥}) such that (i) dom(τ) is non-empty
and prefix-closed (i.e., for w ∈ Σ∗ and a ∈ Σ, if wa ∈ dom(τ), then also w ∈ dom(τ)), and
(ii) for all positions p ∈ dom(τ), either τ(p) ∈ Σ and p has all k children, or τ(p) = ⊥ and p
has no children, in which case it is called a leaf. The position ε is called the root. We write Σ
to denote the set of all trees over Σ and use a to denote {a} for a ∈ Σ.2

Tree Automata. A k-ary tree automaton (TA) over an alphabet Σ is a quadruple A =
(Q,Σ, δ, I, R) where Q is a finite set of states, δ : Qk×Σ→ 2Q is a transition function, I ⊆ Q is
a set of leaf states, and R ⊆ Q is a set of root states. By |A|, we denote the number of states ofA.
We use (q1, . . . , qk)−{a}→s to denote that s ∈ δ((q1, . . . , qk), a). A run of A on a tree τ is a total
map ρ : dom(τ) → Q such that if τ(p) = ⊥, then ρ(p) ∈ I, else (ρ(p.1), . . . , ρ(p.k))−{a}→ρ(p)
with a = τ(p). The run ρ is accepting if ρ(ε) ∈ R, and the language L (A) of A is the set
of all trees on which A has an accepting run. A is a (bottom-up) deterministic TA (DTA)
if |I| = 1 and ∀q1, . . . , qk ∈ Q, a ∈ Σ : |δ((q1, . . . , qk), a)| ≤ 1, and complete if I ≥ 1 and
∀q1, . . . , qk ∈ Q, a ∈ Σ : |δ((q1, . . . , qk), a)| ≥ 1. A DTA is minimal if it is complete and
there is no complete DTA with strictly less states that accepts the same language. Last,
for a ∈ Σ, we shorten δ((q1, . . . , qk), a) as δa(q1, . . . , qk), and we use δΓ(q1, . . . , qk) to denote⋃
{δa(q1 . . . , qk) | a ∈ Γ} for a set Γ ⊆ Σ.

2.2 WSkS
Syntax and Semantics of WSkS. WSkS is a logic that allows quantification over second-
order variables, which are denoted by upper-case letters X,Y, . . . and range over finite sets of
tree positions in {1, . . . , k}∗ (the finiteness of variable assignments is reflected in the name weak
and k denotes a number of successors). Atomic formulae (atoms) of WSkS are of the form
(i) X ⊆ Y and (ii) X = Si(Y) for i ∈ {1, . . . , k}. Intuitively, the Si(Y) function returns all
positions from Y shifted to their i-th child. Formulae are constructed from atoms using the
logical connectives ∧,¬, and the quantifier ∃X where X is a finite set of variables (we write ∃X
when X is the singleton set {X}). Other connectives (such as ∨ or ∀) and predicates can be

2Intuitively, the [·] operator can be seen as a generalization of the Kleene star to tree languages (the
symbol is the Chinese character for a tree).

300

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

1

11 12 21

(a) Positions assigned to Y

0 0ε

1 11

0 111

⊥ ⊥

0 112

⊥ ⊥

1 02

0 121

⊥
1 0212

⊥ ⊥

⊥

(b) The minimal encoding of κ

0 0ε

1 11

0 111

0 0111

⊥ ⊥

⊥

0 112

0 0121

⊥ ⊥

⊥

1 02

0 121

⊥
1 0212

⊥ ⊥

⊥

(c) A non-minimal encoding of κ

Figure 1: Consider a set of variables X = {X,Y } and an assignment κ = {X 7→ {1, 2, 212}, Y 7→
{1, 11, 12, 21}} in WS2S. In (a), we show positions assigned to variable Y . The minimal encoding of κ
into a binary tree is shown in (b), and an encoding that is not minimal is shown in (c).

obtained as syntactic sugar. Despite it not being a basic connective, we mention the disjunction
below too since we use specific optimisations to deal with it in the following sections.

A model of a WSkS formula ϕ(X) with the set of free variables X is an assignment ν :
X → 2{1,...,k}

∗
of the free variables of ϕ to finite subsets of {1, . . . , k}∗ for which the formula is

satisfied, written ν |= ϕ. Satisfaction of WSkS formulae is defined as follows:

(i) ν |= X ⊆ Y iff ν(X) ⊆ ν(Y),

(ii) ν |= X = Si(Y) iff ν(X) = {p.i | p ∈ ν(Y)} for i ∈ {1, . . . , k},

(iii) ν |= ϕ1 ∧ ϕ2 iff ν |= ϕ1 and ν |= ϕ2,

(iv) ν |= ϕ1 ∨ ϕ2 iff ν |= ϕ1 or ν |= ϕ2,

(v) ν |= ¬ϕ iff not ν |= ϕ, and

(vi) ν |= ∃X. ϕ iff there is a finite S ⊆ {1, . . . , k}∗ s.t. ν / {X 7→ S} |= ϕ.

Satisfaction of formulae built using Boolean connectives and the quantifier is defined as usual.
A formula ϕ is valid, written |= ϕ, iff all assignments of its free variables are its models, and
satisfiable if it has a model. Wlog, we assume that each variable in a formula either has only
free occurrences or is quantified exactly once. Further, we denote the set of free variables of ϕ
by fv(ϕ) and the set of all sub-formulae of ϕ (including ϕ) by sf(ϕ).

Representing Models as Trees. Let X be a finite set of variables. A symbol ξ over X is
a (total) function ξ : X → {0, 1}; e.g., ξ = {X 7→ 0, Y 7→ 1} is a symbol over X = {X,Y }.
We use ΣX to denote the set of all symbols over X and ~0X to denote the symbol mapping all
variables in X to 0, i.e., ~0X = {X 7→ 0 | X ∈ X}. When X is clear from the context, we write ~0.

A finite assignment ν : X → 2{1,...,k}
∗
of the free variables of a formula ϕ can be encoded

as a finite tree τν of symbols over X where every position p ∈ {1, . . . , k}∗ satisfies the following
conditions: (a) if p ∈ ν(X), then τν(p) contains {X 7→ 1}, and (b) if p /∈ ν(X), then either
τν(p) contains {X 7→ 0} or τν(p′) = ⊥ for some prefix p′ of p (note that the occurrences of ⊥
in τ are limited since τ still needs to be a tree). Observe that ν can have multiple encodings:
the unique minimal encoding τmin

ν and (infinitely many) extensions of τmin
ν with ~0X -only trees.

See Figure 1 for an example of an assignment and its encodings. The language of ϕ is defined
as the set of all encodings of its models L (ϕ) = {τν ∈ ΣX | ν |= ϕ and τν is an encoding of ν}.

301

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

Let ξ be a symbol over X . For a set of variables Y ⊆ X , we define the projection of ξ wrt Y
as πY(ξ) = ξ|X\Y . Intuitively, the projection removes the original assignments of variables in Y,
i.e., Y’s variables can have any value after the projection. We also define the inverse projection
as π−1

Y (ξ) = {ξ′ | ξ = πY(ξ′)}. We define πY(⊥) = ⊥, and write πY if Y is the singleton set {Y }.
As an example, for X = {X,Y }, the projection of ~0X wrt {X} is given as πX(~0X) = {Y 7→ 0}.
The definition of projection can be extended to a tree τ over ΣX so that πY(τ) is given as
πY(τ) = πY ◦ τ and, subsequently, to a language L so that πY(L) = {πY(τ) | τ ∈ L}.

The Decision Procedure for WSkS in Mona. We now recall the variant of the classi-
cal decision procedure for WSkS implemented in Mona. Compared to the textbook version
of the decision procedure (cf. [13]), Mona is specific mainly in that it works with complete
deterministic automata only and uses DTA minimization extensively. We note that Mona uses
a number of other crucial optimizations, such as a symbolic, BDD-based representation of the
transition relation or so-called three-valued automata with “don’t care” states [29], but these
are not directly relevant to our contribution, and so we will not discuss them in this text.

When, e.g., testing satisfiability of a formula ϕ, Mona constructs the minimal DTA Aϕ over
the alphabet Σfv(ϕ) with L (Aϕ) = L (ϕ) and then tests whether L (Aϕ) = ∅. The emptiness
test is a standard least fixpoint computation of the set of states with non-empty languages.
It starts with the set of leaf states and keeps adding states that can be reached from the so-
far encountered states by an application of a transition rule (in a bottom-up direction) until
a fixpoint is reached. The language is non-empty if the fixpoint contains a root state.

The automaton Aϕ is constructed by induction on the structure of ϕ. Namely, if ϕ is an
atomic formula with free variables X , then Aϕ is a pre-defined base minimal complete DTA
over ΣX . The particular base automata for the atomic predicates can be found, e.g., in [13].
Otherwise, if ϕ is not atomic, then Aϕ = min(A∂ϕ), i.e., it is obtained by minimizing the
DTA A∂ϕ, which is created from the automata for ϕ’s sub-formulae by the automata opera-
tion corresponding to the top-level logical operator of ϕ in the following way (the automata
operations preserve determinism and completeness):

• If ϕ = ψ?ψ′ with ? ∈ {∧,∨}, then, forAψ = (Q,ΣX , δ, I, R) andAψ′ = (Q′,ΣX ′ , δ
′, I ′, R′),

the DTA A∂ϕ is obtained by the so-called cylindrification and subsequent product construc-
tion. Namely, cylindrification turns the original two transition relations into a new pair δ̂
and δ̂′ with compatible alphabets, i.e., over variables X∪X ′. Namely, δ̂ consists of all vari-
ants of transitions in δ where the original symbol is extended with any possible assignment
to variables in X ′\X , and δ̂′ is obtained symmetrically from δ′. The product construction
then produces the DTA A∂ϕ = (Q×Q′,ΣX∪X ′ , δ×, I×I ′, R?) with δ×a ((q1, q

′
1), . . . , (qk, q

′
k))

= δ̂a(q1, . . . , qk)× δ̂′a(q′1, . . . , q
′
k) and R? = {(q, q′) ∈ Q×Q′ | q ∈ R ? q′ ∈ R′}.

• If ϕ = ¬ψ, then A∂ϕ is obtained from Aψ by complementing its set of root states. The
operation preserves determinism, minimality, and completeness of the transition relation,
hence Aϕ is taken directly as A∂ϕ, without calling the minimization.

• If ϕ = ∃X. ψ, then the automaton A∂ϕ is constructed as det(πX(Aψ) − ~0) where πX
projects X from Aψ’s alphabet, the operation −~0 saturates the set of leaf states of the
intermediate (in general nondeterministic) TA such that all ~0-labelled sub-trees are ac-
cepted3, and det determinizes the result. In more detail, given a TA A = (Q,ΣX , δ, I, R),

3Intuitively, saturating the set of leaf states is needed to ensure that every encoding of every model
is accepted. Indeed, if some were not accepted, the inductive construction could produce a wrong re-

302

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

the three operations proceed as follows: (1) The projection of a variable X produces the
automaton πX(A) = (Q,ΣX\{X}, δ

πX , I, R) with δπXa (q1, . . . , qk) = δπ−1
X (a)(q1, . . . , qk).

(2) The saturation of the set of leaf states uses a least fixpoint computation similar to
the computation of the set of states with non-empty languages, but it takes into account
transitions labeled by ~0 only. (3) The determinization uses the subset construction to pro-
duce the automaton det(A) = (2Q,ΣX , det(δ), {I}, det(R)) where det(δa)(S1, . . . , Sk) =⋃
q1∈S1,...,qk∈Sk δa(q1, . . . , qk) and det(R) = {S ⊆ Q | S ∩R 6= ∅}.

3 Formula Transformations
In this section, we describe our formula transformation algorithm. It is based on well-known
rules for transformation of formulae to the negation normal form (NNF) and the antiprenex
form (APF) [16], together with distributive laws. Recall that, during transformation into
NNF, negations are pushed deeper into the formula so that they occur in front of atoms only,
and during transformation into APF, quantifiers are pushed deeper into the formula in order
to minimize their scopes (APF can be viewed as the opposite of the prenex normal form).
In the following, we assume that the processed formula contains only existential quantifiers ∃
and Boolean connectives ∧,∨, and ¬. (Note that, strictly speaking, we do not transform the
formulae into the NNF; instead, we transform them into a form where negations are in front of
atoms or ∃ quantifiers.)

We will discuss heuristics for choosing which formula transformation rules to apply and
when to apply them so that the resulting formula is as easy as possible for the automata solver.
We fine-tune the heuristics particularly for the algorithm of Mona and with respect to the
specific way it processes individual logical connectives (cf. Section 2.2). Namely, Mona always
works with complete DTAs (its data structures cannot even directly represent nondeterminism).
Negation is implemented as complementation of such DTAs, which is cheap (it is sufficient to
just invert the acceptance condition). The ∧ and ∨ connectives are implemented through
an automata product construction, which is quadratic (the two constructions differ only in
their treatment of the acceptance condition). Although the potential quadratic blow-up is
not the source of the worst-case non-elementary complexity of WSkS, a sequence of product
constructions is still exponential and in practice is often the main cause of a state explosion.
Projection performed while processing the ∃ connective is the only operation that introduces
non-determinism, and is therefore done together with determinization, which is, in the worst
case, exponential. The non-elementary worst-case complexity of the procedure stems from here.

An important factor in Mona’s performance is that it minimizes automata after every op-
eration. Without minimization, the results of operations would often be many times larger
than the operands, and the construction would quickly explode in size. Minimization is usu-
ally able to keep automata sizes at bay. Its effect is particularly well visible after existential
quantification (which includes determinization) after which the size of the result might explode
significantly, but the minimized automaton is in many cases smaller than the original.

sult. For instance, language complementation would not complement the set of encoded models since some
0ε

11

111

⊥ ⊥

112

⊥ ⊥

02

121

⊥ ⊥

⊥

model could have encodings in both the original language and its complement.
Consider, for example, a formula ψ having the language L (ψ) given by the

tree τν in Figure 1b and all its ~0-extensions. To obtain L (∃X.ψ), it is not
sufficient to make the projection πX(L (ψ)) because the projected language
does not contain the minimal encoding shown in the figure on the right, only
its extensions (the minimal one would hence be present in the complement of
the language). The saturation of the set of leaf states includes the minimal
encoding into the language. See [13] for more details.

303

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

3.1 Cost of Deciding a Formula
Some of the rewriting rules that will be discussed below are driven by heuristic estimates of
the cost of building the DTA representing the transformed formula. The cost of deciding
a formula in automata-based decision procedures is essentially proportional to the sum of the
sizes of all automata that are built while the formula is being decided. Recall that Mona
builds two automata for every non-atomic sub-formula ϕ: the automaton A∂ϕ, resulting directly
from applying the root operator of the sub-formula, and its minimized version Aϕ = min(A∂ϕ).
On the other hand, the base automata Aϕ for atomic formulae are directly generated minimal,
without an intermediate A∂ϕ. The cost of deciding the formula is hence proportional to the sum

‖ϕ‖ =
∑

ψ∈sf(ϕ)

|Aψ|+ |A∂ψ| (1)

where sf(ϕ) is the set of all sub-formulae of ϕ and |A∂ψ| = 0 if ψ is an atomic formula.
Computing the cost of a formula ‖ϕ‖ precisely would require one to actually run through the

entire decision procedure for ϕ and build all the TAs, which is clearly impractical as a means of
optimizing the very same computation. We therefore use a cheap estimate ‖ϕ‖∼. The means
of obtaining the estimate, by linear regression from a sample set of formulae, are discussed in
the next section. In this section, we focus on how the estimates are used to drive the rewriting.

3.2 Quantifier Distribution and Scope Narrowing
The core of our formula rewriting are rules for narrowing the scope of quantifiers by moving
them towards literals. The most important rule is quantifier distribution over disjunction:

∃X . ϕ ∨ ψ (∃X . ϕ) ∨ (∃X . ψ) (QuantDistr)

Using this rule is generally beneficial for the following reasons4. Disjunction is expensive, often
quadratic, and the result is often significantly more complex than the arguments, even after the
result’s minimization. The arguments of the quantifications on the right-hand side of the rule,
Aϕ and Aψ, are hence likely to be substantially smaller than the argument of quantification
on the left-hand side of the rule, Aϕ∨ψ. This is desirable since quantification is often the
most expensive operation, exponential in the worst case. Moreover, minimization often reduces
the size of the result of quantification to even smaller than the size of the automaton before
quantification, in which case the product construction is applied on smaller arguments after the
transformation than before it. We therefore use quantifier distribution whenever applicable.

Quantifier scope narrowing is another way of moving a quantifier towards literals, this time
through a conjunction:

∃X . ϕ ∧ ψ ϕ ∧ (∃X . ψ) provided X are not free in ϕ. (ScopeNarrow)

The rule is justified in a similar way as (QuantDistr): Aψ is probably smaller than Aϕ∧ψ and
applying quantification on a smaller operand is preferable. Secondly, the automaton A∃X .ψ may
be smaller than Aψ, making the product construction cheaper after the transformation too.

4This may be contrary to first-order theorem proving, where the benefit of performing quantifier distribution
comes at the price of an increased number of function symbols when the formula is Skolemized afterwards.

304

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

3.3 Supporting Rules

Further rewriting rules we use push negation deeper into the formula, distribute ∧ over ∨, or
restructure ∧. These rules only have a supporting role; their purpose is to enable (QuantDistr)
and (ScopeNarrow).

Pushing Negation. First, the following rules, standard in the transformation into NNF, are
used essentially whenever applicable for pushing negation inwards by De Morgan’s laws and for
eliminating double negation:

¬(ϕ ∧ ψ) ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) ¬ϕ ∧ ¬ψ
¬¬ϕ ϕ

(PushNeg)

Negation has a negligible cost with DTAs, hence an application of these rules alone does not
normally change the running time of Mona much. Their purpose is to enable applicability of
all other rules. The rules in (PushNeg) ultimately push negations to atoms or to quantifiers.
Negations at atoms can be completely eliminated by DTA complementation. Negations in front
of the ∃ quantifier cannot be pushed inside unless the quantifier itself is first pushed inwards
by (QuantDistr) or (ScopeNarrow) after which the negation can also follow.

Distribution of Conjunction. Second, we use distribution of conjunction (over disjunction
under quantification):

∃X . ϕ ∧ (ψ ∨ ω) ∃X . (ϕ ∧ ψ) ∨ (ϕ ∧ ω) (2)

Applying the rule enables quantifier distribution (rule (QuantDistr)). Its application may,
however, result in a formula that is more difficult to decide due to the following reasons:

(i) The threefold product on the right of the rule might be larger and more expensive than
the twofold product on the left, even after quantifier distribution, especially if Aϕ is large.

(ii) Even though Mona represents a formula as a DAG of its sub-formulae in which all
occurrences of the same sub-formula ϕ correspond to a single node, an iterated application
of distribution that duplicates larger and larger ϕ, might ultimately lead to an exponential
explosion in the size of the formula and its DAG (the formula might be ultimately turned
to the exponentially larger disjunctive normal form).

Therefore, we make the question of whether to apply the distribution of conjunction subject to
a heuristic decision based on the estimated cost of ϕ. Namely, the rule is used in the form

∃X . ϕ ∧ (ψ ∨ ω) ∃X . (ϕ ∧ ψ) ∨ (ϕ ∧ ω) if ‖ϕ‖∼ ≤ DistrThres (∧-Distr)

where DistrThres is a parameter specifying the maximum estimated cost of the formula for
which we allow application of the rule.

Restructuring Conjunctions. Our last transformation rule is used to facilitate quantifier
scope narrowing (rule (ScopeNarrow)). It is the rule of restructuring of conjunctions, denoted
as (Restr&Narrow). Consider a formula ∃X1 . . . ∃Xm. ϕ where ϕ is a (possibly large and nested)
conjunction. The rule can be seen as performing the following three actions: (i) reordering the

305

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

∃X∃Y

∧

∧

ψ1(Y) ψ2(X)

∧

ψ3(X) ψ4(Y)

(a)

∃X∃Y

∧

∧

ψ2(X) ψ3(X)

∧

ψ1(Y) ψ4(Y)

(b)

∧

∃X

∧

ψ2(X) ψ3(X)

∃Y

∧

ψ1(Y) ψ4(Y)

(c)

Figure 2: An example of how conjunction restructuring can help antiprenexing. The tree in (a) repre-
sents the formula ω1 : ∃X∃Y. (ψ1 ∧ ψ2) ∧ (ψ3 ∧ ψ4) where Y is the only free variable of ψ1 and ψ4 and
X is the only free variable of ψ2 and ψ3. Notice that none of the quantifiers can be pushed inside. The
tree in (b) represents a formula obtained from ω1 by applying the associative and commutative laws to
gather sub-formulae with the same free variables together, enabling the use of the (ScopeNarrow) rule.
The tree in (c) is obtained from (b) by applying the rule twice.

sequence of quantifiers ∃X1 . . . ∃Xm into the form most suitable for the next step, (ii) using the
laws of associativity and commutativity for ∧ to restructure the top-most conjunctions of ϕ so
that the scope narrowing (wrt the order induced in the previous step) can have the greatest
possible effect, and (iii) performing (ScopeNarrow) to push quantifiers as deep as possible.

We will start by describing how the restructuring itself is performed. Let p be a permu-
tation of the set {1, . . . ,m}, which induces the following reordering of the quantifiers in the
transformed formula: ∃Xp(1) . . . ∃Xp(m) (we will describe how we obtain p later). Consider
a sequence of quantifiers ρ = ∃Xp(1) . . . ∃Xp(m) and a formula ω. Further, let ω′ be a formula
obtained from ρ. ω by applying (ScopeNarrow) on the top-most conjunctions as long as pos-
sible. We then say that ω is optimal for narrowing wrt ρ if no sequence of applications of
the commutativity and associativity laws on the top-most conjunctions of ω′ enables any more
application of (ScopeNarrow). We use ϕp to denote a formula obtained by restructuring ϕ’s
top-most conjunctions using associativity and commutativity laws that is optimal for narrowing
wrt ∃Xp(1) . . . ∃Xp(m) (there might be more such formulae; picking any of them works for us).
See Figure 2 for an example of how ∧-restructuring enables using the (ScopeNarrow) rule.

Function Restr&Narrow(p):
Ψ := {ψi}ni=1;
for j := m downto 1 do

Φj := {ψi ∈ Ψ | Xp(j) ∈ fv(ψi)};
Ψ := (Ψ \ Φj) ∪ {∃Xp(j).

∧
Φj};

return (
∧

Ψ);

Constructing ϕp for a given permutation p is im-
plemented as a call to the function Restr&Narrow(p),
given in the right. The function not only creates ϕp,
but also performs, on the fly, quantifier scope narrow-
ing (so that it is not necessary to apply (ScopeNarrow)
on the result), producing a formula denoted as ϕsnp .
Assume that ϕ can be written modulo commutativity
and associativity of conjunction as

∧
1≤i≤n ψi where no ψi is itself a conjunction. The function

maintains the set Ψ of the leaves of the current conjunction, initialised as the set {ψi}ni=1.
It then iterates through numbers j from m to 1, and, in each iteration, collects into Φj all
formulae in Ψ that contain Xp(j) as a free variable, and replaces them in Ψ by the formula
∃Xp(j).

∧
Φj . After the m-th iteration, Ψ contains the formula ∃Xp(1). Φ1, and also the origi-

nal formulae ψi that contain no variable from X1, . . . , Xm. Restr&Narrow(p) then returns the
conjunction of all those formulae. (We note that the function works with the generalized n-ary
conjunction; when implemented, the returned formula uses only binary conjunctions.)

Note that, in the previous paragraphs, we were using a permutation p of the quantifiers as
a parameter of the restructuring. The way how quantifiers are ordered is important because it
determines how well the restructuring can be done (see Figure 3 for an example).

306

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

∃Y ∃X

∧

∧

ψ1(X,Y) ψ2(X)

ψ3(X,Y)

(a)

∃X∃Y

∧

∧

ψ1(X,Y) ψ2(X)

ψ3(X,Y)

(b)

∃X∃Y

∧

∧

ψ1(X,Y) ψ3(X,Y)

ψ2(X)

(c)

∃X

∧

∃Y

∧

ψ1(X,Y) ψ3(X,Y)

ψ2(X)

(d)

Figure 3: An example of how reordering quantifiers can help with quantifier scope narrowing. The tree
in (a) represents the formula ω2 : ∃Y ∃X. (ψ1(X,Y) ∧ ψ2(X)) ∧ ψ3(X,Y). Notice that for the order
of quantifiers ∃Y ∃X, the ∧-tree is optimal for narrowing. In (b), we changed the order of quantifiers
to ∃X∃Y . This change enables restructuring the ∧-tree into a more suitable form (the tree in (c)),
which, in turn, allows quantifier scope narrowing (the tree in (d)).

(Restr&Narrow) then works as follows: it searches through all permutations p of the set
{1, . . . ,m}. For each p, it constructs the formula ϕsnp using Restr&Narrow(p) and computes its
estimated cost ‖ϕsnp ‖∼. Finally, the formula ϕsnp with the smallest estimated cost is returned.

The basic version of (Restr&Narrow) described above enumerates all permutations p of the
set {1, . . . ,m} and for each constructs the formula ϕsnp and computes an estimate of its cost.
Performing this computation for a larger number of quantifiers is obviously infeasible (there
are m! permutations over them). We therefore propose the following three heuristics: First,
we do not distinguish permutations that induce formulae whose cost is obviously the same.
In particular, we group together variables that (i) always or (ii) never occur free together in all
formulae ψi from {ψi}ni=1. We then treat each such group as a single variable when generating
the permutations (when later generating the final formula, we fix an arbitrary permutation of
the variables within each group). For example, in the formula ∃X∃Y ∃Z. ψ1(X,Z) ∧ ψ2(Y,Z),
the variables X and Y never appear together, so we consider only the following two orderings
of quantifiers: (i) ∃{X,Y }∃Z. ψ1(X,Z) ∧ ψ2(Y, Z) and (ii) ∃Z∃{X,Y }. ψ1(X,Z) ∧ ψ2(Y,Z).

The second heuristic works as follows. If the number of possible orderings is still too high,
we split the sequence of quantifiers ∃X1 . . . ∃Xm into subsequences of the length h (except the
last one which can be shorter), i.e., ∃X1 . . . ∃Xh; ∃Xh+1 . . . ∃X2h; . . . ; ∃Xjh . . . ∃Xm, for some j,
and try to find the best ordering for every such subsequence independently. The constant h is
controlled by the parameter R&NSeqMax. The third heuristic addresses the situation when,
despite the optimizations above, the application of (Restr&Narrow) may still be too costly.
We therefore use the parameter R&NThres to bound the maximum size of the conjunction
{ψi}ni=1 for which (Restr&Narrow) can be applied.

3.4 Top-level Algorithm

The top-level algorithm executing formula transformations works as follows. It runs in itera-
tions, the number of which is controlled by the parameter Iters. In each iteration, the rules
are applied in one of the following two sequences Full and Simple:

Full = (PushNeg)↓;
(
(Restr&Narrow) + (QuantDistr)

)↓
; (∧-Distr)↑ and

Simple = (PushNeg)↓;
(
(ScopeNarrow) + (QuantDistr)

)↓
.

307

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

where “;” denotes sequential composition of operations and “+” denotes interleaved application
of operations; “↓” denotes that the rewriting rule is applied using a pre-order traversal of the
syntax tree of a formula (i.e., top-down), while “↑” applies the rules in a post-order traversal
(i.e., bottom-up). The majority of the rules are applied top-down; this corresponds with the
fact that the rules are pushing quantifiers inside the formula. The only rule applied bottom-up
is (∧-Distr); the reason for this is that if we applied it top-down, the distribution would be done
on larger formulae, while when applied bottom-up, the formulae it is applied on are smaller
(since this rule does not push quantifiers inside, but only enables the pushing, we perform an
additional (QuantDistr)↓ after the last iteration).

In both sequences, each iteration is started by pushing negations deeper into a formula using
(PushNeg). Then, in Full, the rule (Restr&Narrow) is interleaved with (QuantDistr) to push
quantifiers into conjunctions and distribute ∃ over ∨. Finally, (∧-Distr) is used to distribute ∧
over ∨. On the other hand, in Simple, (PushNeg) is followed just by interleaving quantifier
scope narrowing with distributing ∃ over ∨. (Note that it may seem that (ScopeNarrow) is
only used by Simple and not by Full; in fact, the rule is used in Full internally within
(Restr&Narrow).) The particular sequence of operations (Full or Simple) to be used is de-
termined by the size of the input formula ϕ. In particular, if |sf(ϕ)| ≤ SimpleThres, we
pick the more expensive Full, otherwise we pick the cheaper Simple, where SimpleThres is
a parameter whose value specifies the threshold.

Predicate Inlining. The last preprocessing step we use is inlining of user-defined predicates,
a specific syntactic feature of Mona. User-defined predicates are named formulae with free
variables that can be used (non-recursively) in other formulae. Their use improves the read-
ability of formulae in Mona, but, on the other hand, restricts applications of our transformation
rules (e.g., we cannot push quantifiers beyond a predicate boundary). We therefore introduce
a Boolean parameter Inline that, when set to true, enables inlining all user-defined predicates.

4 Automata Size Estimation

We will now discuss how to cheaply compute the estimate ‖ϕ‖∼ of the formula cost ‖ϕ‖,
which is a parameter of the rules in the previous section (in particular, the rules performing
informed distribution and conjunction restructuring). Computing the precise number would be
as difficult as deciding the formula itself, hence we seek an inexpensive, yet good approximation.
The approximation we use is based on the estimates |Aψ|∼ and |A∂ψ|∼ of the sizes of the DTAs
Aψ and A∂ψ, respectively, for each sub-formula ψ of ϕ. Namely, we compute ‖ϕ‖∼ in the form

‖ϕ‖∼ =
∑

ψ∈sf(ϕ)

|Aψ|∼ + |A∂ψ|∼ . (3)

We propose an approach that learns a function estimating automata sizes based on the following:
(i) the estimates of the sizes of automata resulting from the direct sub-formulae of ϕ, and (ii) the
type of the top-level logical connective of ϕ. Moreover, if ϕ is a conjunction or disjunction,
we include as the third parameter of the estimation function the number of shared variables
between the conjuncts/disjuncts. In our experience, this number tends to strongly correlate
with the size of the resulting TA. Formally, we learn estimation functions ` and `∂ , indexed by

308

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

the formula top-level operator, which are then used to estimate automata sizes as follows:

ϕ = ψ ∧ ψ′ : |Aϕ|∼ = `∧(|Aψ|∼, |Aψ′ |∼, n) |A∂ϕ|∼ = `∂∧(|Aψ|∼, |Aψ′ |∼, n)

ϕ = ψ ∨ ψ′ : |Aϕ|∼ = `∨(|Aψ|∼, |Aψ′ |∼, n) |A∂ϕ|∼ = `∂∨(|Aψ|∼, |Aψ′ |∼, n)

ϕ = ∃X.ψ : |Aϕ|∼ = `∃(|Aψ|∼) |A∂ϕ|∼ = `∂∃(|Aψ|∼)

ϕ = ¬ψ : |Aϕ|∼ = |Aψ|∼ |A∂ϕ|∼ = 0

ϕ = ψa : |Aϕ|∼ = |Aψa | |A∂ϕ|∼ = 0

Above, n = |fv(ψ)∩ fv(ψ′)| and ψa is an atomic formula. Since Mona uses minimal DTAs, the
automaton for ¬ψ is the same as Aψ except the set of root states, hence no intermediate DTA
is generated. Similarly, base automata are generated directly minimal and deterministic, hence
there is no intermediate automaton A∂ψa .

The first obvious choice for the functions ` and `∂ would be to use the worst-case size of the
automata, i.e., `∂?(|Aψ|∼, |Aψ′ |∼, n) = |Aψ|∼ · |Aψ′ |∼ for ? ∈ {∧,∨}, `∂∃(|Aψ|∼) = 2|Aψ|

∼
, and

`• = `∂• for • ∈ {∧,∨,∃} (in the worst case, minimization is performed, but has no effect). When
analyzing the sizes of automata produced by Mona, we, however, noticed that the worst case
happens only exceptionally, and in reality, the sizes are much smaller. In particular, the size
of A∂∃X.ψ (resp. A∃X.ψ) is usually linear to the size of Aψ rather than exponential (with a few
outliers where the explosion happened). Furthermore, we also noticed that there is a linear
correlation between the size of A∂ϕ?ψ (resp. Aϕ?ψ) and the value ‖Aϕ‖ · ‖Aψ‖.

Therefore, we chose to use linear functions for `• and `∂• . In particular, the functions `?
and `∃ are represented as the lines (the lines for `∂ are similar with different parameters)

`?(|Aψ|∼, |Aψ′ |∼, n) = a?n · (|Aψ|∼ · |Aψ′ |∼) + b?n and

`∃(|Aψ|∼) = a∃ · (|Aψ|∼) + b∃
(4)

(strictly speaking, `? is a more general curve in a three dimensional space, but we always work
with the product |Aψ|∼ · |Aψ′ |∼ as the input). We obtain the particular parameters a∃, b∃ and
a?n, b

?
n for every n (and their variants for `∂) by learning from runs of Mona. As the learning

algorithm, we used linear regression (its particular version is discussed in Section 5), which
is an optimization technique based on fitting input data (points in a Euclidean space) with
a hyperplane such that the least square error is minimized [36]. We chose this method for its
simplicity and well-predictable behaviour.

5 Evaluation
We have implemented the antiprenexing transformations for WSkS formulae introduced in
Section 3 as a Haskell/Python prototype tool named AntiMona (Antiprenexing for Mona)5.
The tool works as a preprocessor for Mona; it reads a file in the Mona format, applies the
transformations, and produces a new file in the same format, which can then be passed to
Mona. Our goal is to evaluate the impact of our optimization on Mona. Although there have
recently appeared new techniques for deciding WSkS, e.g. [20, 19, 24, 14, 44, 21], we do not
focus on comparing with them because the alternative tools are far less mature than Mona.
Although they can win over Mona on limited classes of formulae, from our experience, Mona
performs better overall and, up to our knowledge, can still be considered the only robust and
practically usable tool.

5The tool is available at https://github.com/vhavlena/lazy-wsks.

309

https://github.com/vhavlena/lazy-wsks

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

Table 1: Parameters of the selected settings of AntiMona.
Name Iters DistrThres SimpleThres Inline R&NSeqMax R&NThres

AntiPrxInl 5 5,000 3,000 true 5 5
AntiPrxPr1 5 5,000 3,000 false 5 5
AntiPrxPr2 3 5,000 2,000 false 5 ∞

We implemented only a light-weight estimation of the costs of formulae (cf. Section 4).
In particular, our implementation does not consider Mona’s DAGification optimization, which
first transforms a formula into a DAG where nodes corresponding to similar sub-formulae6 are
merged into one, and then constructs automata only for the nodes in the DAG (see [29] for
more details). Instead, we work with the syntax tree of a formula and therefore return an
over-approximation of the formula’s cost estimate (some nodes are counted multiple times) .

Experimental Settings. We have evaluated our technique on formulae we were able to find
in the literature or obtain by personal communication (in cases where the appropriate research
was not published due to problems with the scalability of Mona) and which our tool could parse.
Particularly, our benchmark includes formulae from the Strand benchmark [31], formulae from
the authors of Mona [29], benchmarks for synthesis of regular specifications [23], families of
parametric WS1S formulae [20], LTL formulae from [48] translated to the MSO(Str)7 logic [18],
and an experimental translation of separation logic formulae into MSO(Str) [6]. In total, our
benchmark set has 103 formulae (95 WS1S and 8 WS2S), available in the tool’s repository.

The experiments were run on a 64-bit Debian GNU/Linux workstation with Intel(R)
Xeon(R) E5-2630 v2 CPU running at 2.60GHz with 32GiB of RAM, using Mona v1.4-17.

Learning Formula’s Cost Estimate. The function performing size estimates of automata
constructed from formulae is learnt from runs of Mona on all sub-formulae obtained from a set
of selected WS1S formulae (in total, this gave us 7,112 formulae).

We used the functions lm and rlm from R [1] to learn the linear estimation model. The
lm function is a basic library function that infers a linear model using the method of least
squares. On the other hand, rlm (from the R’s MASS package) implements robust fitting of
linear models, which uses a modification of the method of least squares that can deal with
outliers (see the documentation of rlm for more information). We use the output from rlm
whenever it is available; in some cases (e.g., when the number of data points was too small), the

Table 2: Results of learning

op n a a∂

∃ — 0.899 0.900

∧ 0 0.666 0.667
∧ 1 0.056 0.275
∧ 2 0.086 0.087

∨ 3 0.066 0.073

computation of rlm did not produce a result, and so we used the
output of lm (this can happen because rlm works in iterations with
giving data points different weights; if the computation does not
converge in a set number of iterations, the function produces no
output). Moreover, we analyzed the learnt models (in particular
using the R2 statistical measure [36]) and discarded those with
a low fidelity—this affected models of `∧ and `∨ with the number of
shared variables n for which we did not have enough training data.
The discarded models were substituted by a model for a number
closest to n that had a high-fidelity. In some cases, we obtained
linear models ax+ b with a large value of b, which caused a large bias in the computed values,

6Two sub-formulae ϕ and ϕ′ are similar if there is an order-preserving renaming of variables of ϕ such that
after the renaming ϕ becomes identical to ϕ′ [29].

7MSO(Str), monadic second-order logic over strings, is a dialect of WS1S interpreted over finite strings
where a formula describes a regular language. Every MSO(Str) formula can be easily translated into WS1S.

310

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

0.
01

0.
10

1.
00

10
.0
0

10
0.
00

0.01 0.10 1.00 10.00 100.00
Mona

A
n
ti

P
r
x
P
r

1

0.
01

0.
10

1.
00

10
.0
0

10
0.
00

0.01 0.10 1.00 10.00 100.00
AntiPrxInl

A
n
ti

P
r
x
P
r

1

Figure 4: (left) A comparison of the runtime of Mona on unprocessed formulae and on formulae
after AntiPrxPr1, (right) a comparison of our two settings of the antiprenexing procedure. The
axes are logarithmic and the dashed lines represent the cases where Mona ran out of memory or our
antiprenexing did not finish (the timeout for antiprenexing was 300 s).

especially for smaller formulae; in those cases, we modified the model by setting b = 0. In
Table 2, we provide learnt values of the parameters a (for `op) and a∂ (for `∂op) for some cases.

Parameters of Antiprenexing. We experimented with different settings of parameters of
our antiprenexing procedure from Section 3 and chose three that give the best overall perfor-
mance on our benchmark set; their overview is in Table 1.

Results of Experiments. For each formula ϕ in our benchmark set, we compared the run-
time of Mona on ϕ (denoted as Mona) with the runtime of Mona on the formulae obtained
after the antiprenexing transformations (denoted by the corresponding transformation). We
do not mention the timeout for Mona because when Mona failed to decide a formula, it was
always because it ran out of memory (note that Mona is optimised for 32 bits, therefore it
could not use all the available memory). The timeout for antiprenexing was set to 300 s.

In the left-hand plot of Figure 4, we give a comparison of Mona and AntiPrxPr1. Note
that there are many cases where antiprenexing significantly shortens the time to decide a formula
(the data points at the bottom of the plot) and also many formulae that can be decided only
after antiprenexing (the vertical dashed line).

In the right-hand plot of Figure 4, we compared AntiPrxInl with AntiPrxPr1. The
plot shows that AntiPrxPr1 more often behaves better. There are, however, two interesting
cases of formulae that can only be decided by one of the settings. These are the formulae sl
(which can be decided by AntiPrxInl in 18.43 s; AntiPrxPr1 and AntiPrxPr2 timeout)
and von-neumann-add (which can be decided by AntiPrxPr1 in 7.83 s, by AntiPrxPr2

in 5.36 s and by Mona in 6.87 s; AntiPrxInl timeouted). The formula sl comes from an
experimental translation of separation logic into MSO(Str) [6] (in particular of the property of
the existence of a path in a symbolic heap) and the formula von-neumann-add encodes the fact
that an 8-bit von Neumann adder is equivalent to a standard carry-chain adder [29].

In Table 3, we give a selection of interesting benchmarks where the first half of the table
contains formulae from practical scenarios and the second half contains artificially constructed
(parameterised) formulae. The column |DAG| denotes the size of the DAG obtained by Mona

311

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

Table 3: A selection of interesting benchmarks; “–” denotes that Mona ran out of memory (OOM) or
that our antiprenexing did not finish (the timeout for antiprenexing was 300 s). The column |DAG|
gives a measure of the size of the input formula. The time reported does not include preprocessing.

Formula |DAG| Mona AntiPrxInl AntiPrxPr1 AntiPrxPr2 Source

four-weights 145 0.77 0.03 0.01 0.02 [23]
smoothing 221 17.94 5.30 5.38 0.46 [23]
tree-weights-min 153 12.00 10.83 10.83 10.50 [23]
von-neumann-add 267 6.87 – 7.83 5.36 [29]
sl 77 – 18.43 – – [6]

lift_8.ltl0 255 – 0.35 0.3 – [48]
lift_b_7.ltl0 380 – 0.10 0.13 – [48]
horn_sub17 39 2.10 0.02 0.01 0.01 [20]
horn_sub18 41 5.42 0.01 0.01 0.01 [20]
horn_sub19 43 – 0.02 0.02 0.01 [20]

Total OOM 18 1 1 5

from the input formula before further reductions and is used as a measure of the size of the input
formula. Notice that antiprenexing can significantly decrease the runtime of Mona (smoothing)
or be necessary for deciding a formula at all (e.g., the formula sl cannot be, to the best of our
knowledge, solved by any current automatic tool other than AntiMona). In the second half
of the table, observe the horn_subN family of formulae, which denotes formulae of the form
∃X. ∀Y1 . . . ∀YN. (Y1 ⊆ X ⇒ Y2 ⊆ X) ∧ . . . ∧ (YN−1 ⊆ X ⇒ YN ⊆ X). Note that the increase
of N makes the formula significantly harder for Mona (for N = 19, Mona cannot handle the
formula at all). Antiprenexing seems to mitigate this exponential behaviour of Mona.

We note that our benchmark set does not contain two of the available benchmarks from [18],
lift_b_8.ltl0 and lift_b_9.ltl0, because Mona and all of the settings of AntiMona pre-
sented above timeouted on them (AntiMona during antiprenexing). Nonetheless, by slightly
tuning the parameters of AntiPrxInl2 (SimpleThres = 5, 000), we obtained a setting under
which AntiMona quickly produced a formula that could be easily decided by Mona.

Discussion. The experimental results obtained from our prototype implementation show that
our antiprenexing techniques can significantly reduce the time for deciding WSkS formulae—or
allow the formula to be decided at all. The settings we have provided in Table 1 were selected for
their ability to give good overall performance on the whole benchmark set, which mixes formulae
of varying character. These settings are, however, not universally the best, the optimal settings
for particular formulae may vary significantly. Hard formulae may be decided through tailoring
the parameters to fit, as is indeed witnessed by the two last formulae mentioned above. Our
parametric framework also makes it possible to fine-tune the parameters for a specific class of
similar formulae, which typically come from specific application domains (such as verification
conditions of programs of a certain kind or by translation from some given logic). As a part of
our future work, we wish to automate the process of tuning the parameters for a given class of
WSkS formulae (possibly using some machine learning approach again).

6 Related Work

The seminal works [11, 35] on the automata-logic connection were the milestones leading to
what we call here the classical tree automata-based decision procedure for WSkS [42]. Its

312

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

non-elementary worst-case complexity was proved in [40], and the work [22] presents the first
implementation, restricted to WS1S, with the ambition to use heuristics to counter the high
complexity. The authors of [13] provide an excellent survey of the classical results and literature
related to WSkS and tree automata.

The tool Mona [17] implements the classical decision procedures for both WS1S and WS2S.
It is still the standard tool of choice for deciding WS1S/WSkS formulae due to its all-around
most robust performance (any WSkS formula can be encoded into WS2S). The efficiency of
Mona stems from many optimizations, both higher-level (such as automata minimization, the
encoding of first-order variables used in models, or the use of multi-terminal BDDs to encode the
transition function of the automaton) as well as lower-level (e.g. optimizations of hash tables,
etc.) [29, 27]. The M2L(Str) logic, a dialect of WS1S, can also be decided by a similar automata-
based decision procedure, implemented within, e.g., jMosel [43] or the symbolic finite automata
framework of [14]. In particular, jMosel implements several optimizations (such as second-
order value numbering [32]) that allow it to outperform Mona on some benchmarks (Mona
also provides an M2L(Str) interface on top of the WS1S decision procedure).

Recently, several works on lazy approaches to the automata decision procedure appeared,
namely our works [24, 19, 20] and a similarly focused work [44]. The idea behind these ap-
proaches is that, instead of constructing automata explicitly, they work with an implicit tran-
sition relation, which is defined inductively to the structure of a formula. These works allow
for efficient on-the-fly pruning of the state space inspired by the automata antichain algorithms
such as [15, 47, 9, 2] and for an efficient use of early termination, allowing entirely skipping
large irrelevant portions of the state space of automata. The lazy approaches, however, require
heavier data structures and are incompatible with automata minimization. Another alternative
to the classical procedure was proposed by Ganzow and Kaiser [21] who developed a decision
procedure for the weak monadic second-order logic on inductive structures (a generalization
of WSkS) within their tool Toss. Their approach completely avoids automata; instead, it is
based on Shelah’s composition method.

Implementations of these alternative methods outperform Mona on certain classes of formu-
lae. In practice, however, Mona is still substantially most robust by a large margin (partially
owing to the relative immaturity of the alternative tools). Variants of our antiprenexing tech-
niques would certainly be relevant for the lazy automata approaches [24, 19, 20, 44]. In [19, 20],
we have actually successfully used a simple variant of antiprenexing (namely the quantifier dis-
tribution rule (QuantDistr)). Our more advanced techniques that use other rules according to
a cost estimate cannot, however, be used directly. One would have to come up with different
strategies and cost estimation techniques specific to these algorithms. For this reason, and also
because most of the formulae from our benchmark are beyond the reach of other tools than
Mona, we do not consider them in our experimental evaluation.

Basic principles of the transformation to antiprenex (or miniscope) form are a well-known
folklore in theorem proving, QBF, and SMT solving. Its values were recognised, for instance,
in [16, 7, 3, 37], and its origins reach at least to [45].

Acknowledgement

We thank the anonymous reviewers for their helpful comments on how to improve the expo-
sition in this paper. The work on this paper was supported by the Czech Science Foundation
project 20-07487S, the FIT BUT internal project FIT-S-20-6427, and the Czech Ministry of
Education, Youth and Sports from the National Programme of Sustainability (NPU II) project
IT4Innovations excellence in science—LQ1602, and the ERC.CZ project LL1908.

313

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

References

[1] The R project for statistical computing, 2020. https://www.r-project.org/.
[2] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, Richard Mayr, and Tomáš Vojnar. When sim-

ulation meets antichains. In Proc. of TACAS’10, volume 6015 of LNCS, pages 158–174. Springer,
2010.

[3] Matthias Baaz and Alexander Leitsch. On Skolemization and proof complexity. Fundam. Inform.,
20(4):353–379, 1994.

[4] David Basin and Nils Klarlund. Automata based symbolic reasoning in hardware verification. In
Proc. of CAV’98, LNCS, pages 349–361. Springer, 1998.

[5] Kai Baukus, Saddek Bensalem, Yassine Lakhnech, and Karsten Stahl. Abstracting WS1S systems
to verify parameterized networks. In Proc. of TACAS’00, volume 1785 of LNCS, pages 188–203.
Springer, 2000.

[6] Josh Berdine. Private communication, 2015.
[7] Wolfgang Bibel. An approach to a systematic theorem proving procedure in first-order logic.

Computing, 12(1):43–55, 1974.
[8] Jean-Paul Bodeveix and Mamoun Filali. FMona: A tool for expressing validation techniques over

infinite state systems. In Proc. of TACAS’00, volume 1785 of LNCS, pages 204–219. Springer,
2000.

[9] Ahmed Bouajjani, Peter Habermehl, Lukáš Holík, Tayssir Touili, and Tomáš Vojnar. Antichain-
based universality and inclusion testing over nondeterministic finite tree automata. In Proc. of
CIAA’08, volume 5148 of LNCS, pages 57–67. Springer, 2008.

[10] Marius Bozga, Radu Iosif, and Joseph Sifakis. Structural invariants for parametric verification of
systems with almost linear architectures. Technical Report arXiv:1902.02696, 2019.

[11] Julius R. Büchi. On a decision method in restricted second-order arithmetic. In International
Congress on Logic, Methodology, and Philosophy of Science, pages 1–11. Stanford University Press,
1962.

[12] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Automated verification
of shape, size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program., 77(9):1006–1036, 2012.

[13] Hubert Comon, Max Dauchet, Remi Gilleron, Christof Löding, Florent Jacquemard, Denis Lugiez,
Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications. 2008.

[14] Loris D’Antoni and Margus Veanes. Monadic second-order logic on finite sequences. In Proc. of
POPL’17, pages 232–245. ACM, 2017.

[15] Laurent Doyen and Jean-François Raskin. Antichain algorithms for finite automata. In Proc. of
TACAS’10, volume 6015 of LNCS, pages 2–22. Springer, 2010.

[16] Uwe Egly. On the value of antiprenexing. In Proc. of LPAR’94, volume 822 of LNCS, pages 69–83.
Springer, 1994.

[17] Jacob Elgaard, Nils Klarlund, and Anders Møller. MONA 1.x: New techniques for WS1S and
WS2S. In Proc. of CAV’98, volume 1427 of LNCS, pages 516–520. Springer, 1998.

[18] Loris D’Antoni et al. AutomatArk: LTL-finite (M2L-Str), 2018. https://github.com/
lorisdanto/automatark/tree/master/m2l-str/LTL-finite.

[19] Tomáš Fiedor, Lukáš Holík, Petr Janků, Ondřej Lengál, and Tomáš Vojnar. Lazy automata
techniques for WS1S. In Proc. of TACAS’17, volume 10205 of LNCS, pages 407–425. Springer,
2017.

[20] Tomáš Fiedor, Lukáš Holík, Ondřej Lengál, and Tomáš Vojnar. Nested antichains for WS1S. Acta
Inf., 56(3):205–228, 2019.

[21] Tobias Ganzow and Lukasz Kaiser. New algorithm for weak monadic second-order logic on induc-
tive structures. In Proc. of CSL’10, volume 6247 of LNCS, pages 366–380. Springer, 2010.

314

https://www.r-project.org/
https://github.com/lorisdanto/automatark/tree/master/m2l-str/LTL-finite
https://github.com/lorisdanto/automatark/tree/master/m2l-str/LTL-finite

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

[22] James Glenn and William Gasarch. Implementing WS1S via finite automata. In Workshop on
Implementing Automata, volume 1260 of LNCS, pages 50–63. Springer, 1996.

[23] Jad Hamza, Barbara Jobstmann, and Viktor Kuncak. Synthesis for regular specifications over
unbounded domains. In Proc. of FMCAD’10, pages 101–109. IEEE, 2010.

[24] Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Tomáš Vojnar. Automata terms in a lazy WSkS
decision procedure. In Proc. of CADE-27, volume 11716 of LNCS, pages 300–318. Springer, 2019.

[25] Thomas Hune and Anders Sandholm. A case study on using automata in control synthesis. In
Proc. of FASE’00, volume 1783 of LNCS, pages 349–362. Springer, 2000.

[26] N. Klarlund, M. Nielsen, and K. Sunesen. A case study in automated verification based on trace
abstractions. In Formal System Specification, The RPC-Memory Specification Case Study, volume
1169 of LNCS. Springer, 1996.

[27] Nils Klarlund. A theory of restrictions for logics and automata. In Proc. of CAV’99, volume 1633
of LNCS, pages 406–417. Springer, 1999.

[28] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICS, Department of
Computer Science, Aarhus University, January 2001. Notes Series NS-01-1. Available from http:
//www.brics.dk/mona/. Revision of BRICS NS-98-3.

[29] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA implementation secrets.
International Journal of Foundations of Computer Science, 13(4):571–586, 2002.

[30] P. Madhusudan, Gennaro Parlato, and Xiaokang Qiu. Decidable logics combining heap structures
and data. In Proc. of POPL’11, pages 611–622. ACM, 2011.

[31] P. Madhusudan and Xiaokang Qiu. Efficient decision procedures for heaps using STRAND. In
Proc. of SAS’11, volume 6887 of LNCS, pages 43–59. Springer, 2011.

[32] Tiziana Margaria, Bernhard Steffen, and Christian Topnik. Second-order value numbering. In
Proc. of GraMoT’10, volume 30 of ECEASST, pages 1–15. EASST, 2010.

[33] A. Møller and M.I. Schwartzbach. The pointer assertion logic engine. In Proc. of PLDI’01. ACM,
2001.

[34] F. Morawietz and T. Cornell. The logic-automaton connection in linguistics. In Proc. of LACL’97,
volume 1582 of LNAI. Springer, 1997.

[35] Michael O. Rabin. Decidability of second order theories and automata on infinite trees. Transac-
tions of the American Mathematical Society, 141:1–35, 1969.

[36] John O. Rawlings, Sastry G. Pantula, and David A. Dickey. Applied Regression Analysis: A
Research Tool. Springer-Verlag New York, New York, 2 edition, 1998.

[37] John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Reasoning (in 2
volumes). Elsevier and MIT Press, 2001.

[38] Anders Sandholm and Michael I. Schwartzbach. Distributed safety controllers for web services. In
Proc. of FASE’98, volume 1382 of LNCS, pages 270–284. Springer, 1998.

[39] Mark A. Smith and Nils Klarlund. Verification of a sliding window protocol using IOA and MONA.
In Proc. of FORTE/PSTV’00, volume 183 of IFIP, pages 19–34. Kluwer, 2000.

[40] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (preliminary report).
In Proc. of STOC’73, pages 1–9, New York, NY, USA, 1973. ACM.

[41] Takaaki Tateishi, Marco Pistoia, and Omer Tripp. Path- and index-sensitive string analysis based
on monadic second-order logic. ACM Trans. Comput. Log., 22(4):33:1–33:33, 2013.

[42] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to a
decision problem of second-order logic. Mathematical systems theory, 2(1):57–81, 1968.

[43] Christian Topnik, Eva Wilhelm, Tiziana Margaria, and Bernhard Steffen. jMosel: A stand-alone
tool and jABC plugin for M2L(Str). In Proc. of SPIN’06, volume 3925 of LNCS, pages 293–298.
Springer, 2006.

[44] Dmitriy Traytel. A coalgebraic decision procedure for WS1S. In Proc. of CSL’15, volume 41 of
LIPIcs, pages 487–503, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-

315

http://www.brics.dk/mona/
http://www.brics.dk/mona/

Antiprenexing for WSkS V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar

matik.
[45] H. Wang. Toward mechanical mathematics. IBM Journal of Research and Development, 4(1):2–22,

Jan 1960.
[46] Thomas Wies, Marco Muñiz, and Viktor Kuncak. An efficient decision procedure for imperative

tree data structures. In Proc. of CADE-23, volume 6803 of LNCS, pages 476–491. Springer, 2011.
[47] Martin De Wulf, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Antichains:

A new algorithm for checking universality of finite automata. In Proc. of CAV’06, volume 4144 of
LNCS, pages 17–30. Springer, 2006.

[48] Martin De Wulf, Laurent Doyen, Nicolas Maquet, and Jean-François Raskin. Antichains: Alter-
native algorithms for LTL satisfiability and model-checking. In Proc. of TACAS’08, volume 4963
of LNCS, pages 63–77, 2008.

[49] Karen Zee, Viktor Kuncak, and Martin C. Rinard. Full functional verification of linked data
structures. In Proc. of POPL’08, pages 349–361. ACM, 2008.

[50] Min Zhou, Fei He, Bow-YawWang, Ming Gu, and Jiaguang Sun. Array theory of bounded elements
and its applications. J. Autom. Reasoning, 52(4):379–405, 2014.

316

	Introduction
	Preliminaries
	Basics, Trees, and Automata
	WSkS

	Formula Transformations
	Cost of Deciding a Formula
	Quantifier Distribution and Scope Narrowing
	Supporting Rules
	Top-level Algorithm

	Automata Size Estimation
	Evaluation
	Related Work

