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Abstract
Inspired by the success of the DRAT proof format for certification of boolean satisfiability (SAT),

we argue that a similar goal of having unified automatically checkable proofs should be sought by
the developers of automatic first-order theorem provers (ATPs). This would not only help to fur-
ther increase assurance about the correctness of prover results, but would also be indispensable for
tools which rely on ATPs, such as “hammers” employed within interactive theorem provers. The
current situation, represented by the TSTP format, is unsatisfactory, because this format does not
have a standardised semantics and thus cannot be checked automatically. Providing such semantics,
however, is a challenging endeavour. One would ideally like to have a proof format which covers
only-satisfiability-preserving operations such as Skolemisation and is versatile enough to encompass
various proving methods (i.e. not just superposition) or is perhaps even open-ended towards yet to
be conceived methods or at least easily extendable in principle. Going beyond pure first-order logic
to theory reasoning in the style of SMT, or beyond proofs to certification of satisfiability are further
interesting challenges. Although several projects have already provided partial solutions in this direc-
tion, we would like to use the opportunity of ARCADE to further promote the idea and gather critical
mass needed for its satisfactory realisation.

1 The challenge
We would like to propose to the first-order ATP community the challenge of designing, implementing
and bringing into practice a unified mechanically checkable proof format along with an efficient proof
checker. The format should support the whole reasoning pipeline including formula preprocessing, be
sufficiently general to cover all the solving techniques currently employed by ATPs, and be open to
future extensions for proof recording of techniques yet to be developed. In this paper, we summarise
the current situation regarding proof output of ATPs, explain why we think striving for a mechanically
checkable proof format is a worthy effort, list the main properties we believe an ideal format should
satisfy, attempt to give an overview of work already done in the first-order ATP community and related
areas, and, finally, suggest possible avenues and the next steps to be taken for meeting the challenge.

At this point we add the disclaimer that other people have already examined this challenge in various
ways. We attempt to present this previous work and do not claim that what we are suggesting is novel,
but instead we are calling for further work in this area. Our main aim at ARCADE is to solicit opinions
from experts on why the proposed idea has not yet made its way to practice and on how exactly should
the community proceed to achieve the envisioned goal.
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2 Why (mechanically checkable) proofs?
There are various reasons why we might want a reasoning system to provide a proof as a justification
for its answer. First of all, a proof may serve as an explanation for the user, showing why exactly
the established result holds. This is, roughly speaking, why mathematicians are interested in proofs.
Although improving human understanding of machine generated proofs is an interesting research topic,
it is separate from our challenge and we do not pursue it here.

As a second perspective, we may view a proof as a certificate supporting the claim of the reasoner,
thus increasing our confidence that the reported result actually holds. In fact, a mechanically checkable
proof completely lifts the trust burden from the reasoner—which may be e.g. too complex to be fully
trusted—because it provides an independent means for verifying the result. As a side note in this context,
we point out that an automatic proof checker can serve as an indispensable tool for debugging the
reasoner during its development [43].

Finally, a proof can be understood as the primary output of the reasoner to be further processed
by other tools. A proof may be, e.g., 1) communicated to another tool within a combined reasoning
system such as a static program analyser, 2) used for extracting interpolants [29, 35], or 3) visualised
[54]. An important category of tools which rely on ATPs and on proofs generated by them are the so
called hammers [40, 30, 1]. A hammer is a tactic in an interactive theorem prover which harnesses the
power of ATPs to improve the user experience by trying to discharge selected proof obligations. These
tools typically employ proof reconstruction techniques to lift a proof found by an ATP to their internal
format.

We can see that mechanically checkable proofs are clearly desirable, especially in the context where
the correctness of the reasoner’s result is of high importance but its code cannot be fully trusted. It
seems intuitively clear that a necessary step on the way to full automation relies on providing not only
syntax but also a formal semantics for the proposed proof format. Existence of unified syntax and
semantics should also make the development of hammers much easier. Not only because there would
be no need to interface each individual employed ATP separately, but also because it should allow for
a provably unfailing translation from the ATP proof to the internal format of the interactive theorem
prover. Currently, proof reconstruction in a hammer may fail for several reasons [8].

3 Current situation
Most current first-order ATPs, such as E [45], iProver [34], or Vampire [36], output proofs in the TSTP
(Thousands of Solutions from Theorem Provers) format [51] from the TPTP initiative [50].1 This for-
mat has a standard syntax and fixed conventions [53]. It is naturally centred around the notion of an
inference that connects a list of premise formulas to a conclusion formula and records an identifier of
the used inference rule. It is expected that a typical inference is sound, i.e. that the premises imply the
conclusion, although a mechanism exists for marking certain inferences (such as Skolemisation steps)
as satisfiability preserving only. In general, however, it is left unspecified what exact formula manipu-
lation each individual inference represents and the inference rule identifiers are used simply as tags in a
system dependent manner.2

Clearly TSTP can be used to capture a lot of the needed information about proofs. However, since
TSTP has no official semantics it precludes reliable automatic checking. Still, all the inferences which
are marked as logical entailments can be independently verified by a trusted system, as done for example
by the GDV verifier [49]. Vampire provides a similar functionality [41]. However, we remark there is no

1 One exception is SPASS [57], which generates proofs in its custom DFG (Deutsche Forschungsgemeinschaft) format.
2 Although see [9] on extension of the TSTP framework to support semantic specification of inference rules used in proofs.
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guarantee a trusted system will be able to reprove every sound inference within the given resource limits,
because even for simple steps like resolution the resulting proof obligation may be far from trivial.3

4 An ideal proof format
We argued that it is desirable to have a mechanically checkable proof format for first-order ATPs. Here
we explicitly state additional properties we believe such a format should have.

Generality The format should be sufficiently general to cover all the solving techniques currently em-
ployed by ATPs. It should be able to accommodate not only the mainstream calculi such as
resolution and superposition [2, 37], but also less traditional ones (e.g. InstGen [33], Model Evo-
lution [6], or Geometric Resolution [20]).4 Ideally, however, we envision a format open to future
extensions for recording of techniques yet to be developed.

Preprocessing and “unsound” steps Although the traditional view of a proof is that of a sequence of
sound inferences, i.e. ones in which the conclusion logically follows from the premises, the proof
format we envision should cater for steps which violate this condition. This is, in particular, im-
portant for capturing preprocessing and normal form transformation rules such as formula naming
and Skolemisation [39, 42] which introduce new symbols and are logically unsound.5 Another
useful technique that would fit into this category would be symmetry breaking [22].

Efficiency We believe that a good proof format should be checkable efficiently, i.e. ideally in low order
polynomial time. Note that is in general incompatible with leaving up to the checker to perform
any kind of search and might require recording more information than provers traditionally do,
such as the applied unifier or the term position where demodulation is applied [41].

Easy implementation and low overhead Slightly incompatible with the previous item is the require-
ment that proof output generation should be easy to implement and should not slow down the
actual execution of the prover more than by a small margin.

General adoption Finally, an ideal proof format is generally accepted by the community and supported
by all the major tools. This signals to the developers of new systems or auxiliary tools that their
investment into adopting the format will have the highest possible impact.

Although the last requirement is “societal” rather than technical, we admit it may play the role of the
major obstacle to our challenge.

5 Some previous work and related approaches
One piece of inspiration for this proposal is the existence of the DRAT proof format for certifying
propositional satisfiability (SAT) solvers [26, 27]. It is a proof format that—in the context of SAT—
appears to satisfy all the properties listed in the previous section. DRAT is general enough to capture
most if not all the presently known SAT techniques, goes beyond sound inferences to accommodate
recording of preprocessing and in-processing steps [28], and relies on a small fixed set of rules which
makes it easy to both emit and check [58]. Recent work has focused on developing a verified checker for

3In our own experience checking Vampire proofs in this way, a small percentage of proof steps were only reproducible by
earlier versions of Vampire, and a (very) few (manually verified) steps were not reproducible by any other solver.

4Another well known challenge is that of capturing clause splitting rules [56, 55].
5A correct application of such a rule relies on checking a global “freshness” condition for the new symbol.
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DRAT [15, 16]. While it may be too optimistic to assume that an analogous sufficiently versatile small
fixed set of rules can be found for first-order logic, the idea should nevertheless be seriously considered
as topic for research. Some groundwork has already been laid by Kiesl and Suda [32].

An alternative approach to achieving generality of a proof format is by framing it as a translation
into a sufficiently strong target logic, ideally already equipped with a trusted checker. For instance, the
certifier for automatically generated termination proofs CeTA [52] ultimately relies on formalisation in
Isabelle/HOL [38]. It is backed up by the library IsaFoR (Isabelle Formalization of Rewriting) which
can be gradually extended as new termination techniques are invented. Moreover, thanks to Isabelle’s
support for code-generation [24], CeTA arises as a standalone executable providing arguably higher
performance of certification than could be achieved by targeting Isabelle itself and checking the proofs
through its LCF-style trusted kernel [23].

An independently developed universal proof format Dedukti is based on λΠ-calculus modulo [14,
10]. Dedukti comes equipped with a proof checker and translators from several existing proof formats
[21] and has been used to encode resolution and superposition proofs [13], among others. It seems that
the Dedukti proof format deserves more attention from the ATP community than it has received so far.

A similarly ambitious initiative based on the same foundations in the context of SMT is the LFSC
proof format proposed by Stump et al. [47, 46, 48]. Here, LF stands for the Edinburgh Logical Frame-
work [25] (also based on λΠ-calculus as its meta-language) and SC stands for Side Conditions, which
are pieces of trusted code in a small custom programming language used to express more complicated
rules. LFSC is the proof language currently employed by the SMT solver CVC4 [4].6

There have been other efforts by the SMT community to devising a common proof format. One
example is the proposal by Besson et al. [7] inspired in syntax by the SMT-LIB 2.0 standard and cur-
rently adopted by veriT [12].7 Another format is used in Z3 [17, 18]. These differ by the level of detail
provided, which correlates with the ease of generation and the efficiency of subsequent proof checking.
We refer the reader to a recent survey of the landscape of proof formats in SMT [5].

6 Wrapping up
While the above list of references is by no means complete, it shows that a lot has already been done
in the direction of universal automatically checkable proof formats. We believe that the developers
of first-order ATPs should closely follow especially the developments in the SMT community for the
following reasons: 1) many-sorted first-order logic, the input logic of state-of-the-art ATPs, is subsumed
by the SMT input format, namely by the (quantified) theory of uninterpreted functions; 2) at the same
time, there is already a growing interest in extending the capabilities of ATPs to supporting other theories
such as forms of arithmetic; 3) application areas such as program analysis and verification would clearly
benefit from a common format.

Before attempting a new solution, sufficient time should be spent on analysing the existing ap-
proaches, their advantages and disadvantages, and especially the possible reasons why none of them
has yet become a standard in its target domain. The above mentioned survey [5] lists the following as
possible reasons why none of the proposed formats have caught on as a general proof language: low
priority of the proof output effort amongst other development tasks, differences of opinion on what fea-
tures should be included in the standard, and the overhead connected with switching from the currently
adopted approach to a different one. It is also universally acknowledged that an effective incentive for
the developers is requiring proof output during systems’ competitions. We hope that by formulating this
challenge as a topic for discussion at ARCADE, we are further contributing to its successful realisation.

6 Recent work on proof output in CVC4 focuses on efficient lazy proof generation [31].
7 While the original proposal openly avoided dealing with preprocessing to keep the exposition simple, in a more recent work

Barbosa et al. [3] focus exactly on this topic. They remark that work has already been done in this direction by De Nivelle [19].
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7 Post Workshop Reflections
We have chosen to include a brief section summarising discussions at the ARCADE workshop, rather
than attempting to inline the results of these discussions.

Are we ready? It was pointed out that we are perhaps not ready for a general proof format and that
trying to create one before it is clear what it should be might restrict future work. This seems espe-
cially true if we are trying to accommodate both superposition-based ATPs and CDCL(T)-style SMT
solvers. First-order theorem proving was contrasted with SAT solving and it was highlighted that there
is no prime calculus in the first-order case, i.e., we are not discussing variants of, e.g., resolution but
fundamentally different calculi.

What do we want? Our starting point was that we want checkable proofs where the reason for cor-
rectness was easy to understand. There were two counterpoints to this. Firstly, one person argued that
they just want to know that the proof is correct, not why. This seems a reasonable lesser goal for many
use-cases. However, we feel that the why is still important in some cases. Secondly, and more signifi-
cantly, within the interactive theorem proving setting (e.g. the application of so-called Hammers) it was
suggested that

1. a proof should be at the same level of abstraction as the input; and

2. a proof should be short

both of which are (to different degrees) at odds with our goal of checkable proofs. The shortness
requirement comes from the fact that these systems view proofs as proof sketches; they do not want to
trust the proofs but want to use them to attempt to reconstruct proofs in their own systems and therefore
they need proofs to be short. However, one approach to producing a checkable proof format would be to
define a simple calculus where inferences in a particular system are translated into multiple steps in this
simple calculus i.e. proofs would become longer. In general, including enough information to support
checkability will necessarily lengthen a proof.

Competition support? It was generally agreed that if a general proof format is to be developed then
it would need to be supported by competitions such as CASC and SMT-COMP. It should be noted that
these two competitions are at different places in their requirement for proofs – (semi-formal) proofs are
required in CASC but not in SMT-COMP, reflecting the different statuses in the related two fields.

References
[1] Jesse Alama. Escape to mizar from atps. In Pascal Fontaine, Renate A. Schmidt, and Stephan Schulz, editors,

Third Workshop on Practical Aspects of Automated Reasoning, PAAR-2012, Manchester, UK, June 30 - July
1, 2012, volume 21 of EPiC Series in Computing, pages 3–11. EasyChair, 2012.

[2] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume I, chapter 2, pages 19–99. Elsevier Science, 2001.

[3] Haniel Barbosa, Jasmin Christian Blanchette, and Pascal Fontaine. An efficient proof-producing framework
for formula processing. In CADE 2017, 2017. To appear.

[4] C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and C. Tinelli. CVC4.
In G. Gopalakrishnan and S. Qadeer, editors, Proceedings of the 23rd International Conference on Computer
Aided Verification, number 6806 in Lecture Notes in Computer Science, pages 171–177. Springer-Verlag,
2011.

59



Checkable Proofs for First-Order Theorem Proving Giles Reger and Martin Suda

[5] C. Barrett, L. de Moura, and P. Fontaine. Proofs in satisfiability modulo theories, 2015. All about Proofs,
Proofs for All.

[6] Peter Baumgartner and Cesare Tinelli. The model evolution calculus. In Franz Baader, editor, Automated
Deduction - CADE-19, 19th International Conference on Automated Deduction Miami Beach, FL, USA, July
28 - August 2, 2003, Proceedings, volume 2741 of Lecture Notes in Computer Science, pages 350–364.
Springer, 2003.
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[8] Jasmin Christian Blanchette, Sascha Böhme, Mathias Fleury, Steffen Juilf Smolka, and Albert Steckermeier.
Semi-intelligible Isar proofs from machine-generated proofs. J. Autom. Reasoning, 56(2):155–200, 2016.

[9] Roberto Blanco, Tomer Libal, and Dale Miller. Defining the meaning of TPTP formatted proofs. In Boris
Konev, Stephan Schulz, and Laurent Simon, editors, IWIL@LPAR 2015, 11th International Workshop on the
Implementation of Logics, Suva, Fiji, November 23, 2015, volume 40 of EPiC Series in Computing, pages
78–90. EasyChair, 2015.

[10] Mathieu Boespflug, Quentin Carbonneaux, and Olivier Hermant. The lambda-pi-calculus modulo as a uni-
versal proof language. In David Pichardie and Tjark Weber, editors, Second International Workshop on Proof
Exchange for Theorem Proving, 2012.

[11] Maria Paola Bonacina, editor. Automated Deduction - CADE-24 - 24th International Conference on Auto-
mated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings, volume 7898 of Lecture Notes in
Computer Science. Springer, 2013.

[12] Thomas Bouton, Diego Caminha Barbosa De Oliveira, David Déharbe, and Pascal Fontaine. veriT: An open,
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[52] René Thiemann and Christian Sternagel. Certification of termination proofs using CeTA. In Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics,
22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings, volume
5674 of Lecture Notes in Computer Science, pages 452–468. Springer, 2009.

[53] TPTP format for derivations. http://www.cs.miami.edu/˜tptp/TPTP/QuickGuide/
Derivations.html. Accessed: 2017-06-09.

[54] Steven Trac, Yury Puzis, and Geoff Sutcliffe. An interactive derivation viewer. Electr. Notes Theor. Comput.
Sci., 174(2):109–123, 2007.

[55] Andrei Voronkov. AVATAR: The architecture for first-order theorem provers. In Armin Biere and Roderick
Bloem, editors, Computer Aided Verification, volume 8559 of Lecture Notes in Computer Science, pages
696–710. Springer International Publishing, 2014.

[56] C. Weidenbach. Combining superposition, sorts and splitting. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume II, chapter 27, pages 1965–2013. Elsevier Science, 2001.

[57] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and Patrick Wis-
chnewski. SPASS version 3.5. In Schmidt [44], pages 140–145.

62

http://www.cs.miami.edu/~tptp/TPTP/QuickGuide/Derivations.html
http://www.cs.miami.edu/~tptp/TPTP/QuickGuide/Derivations.html


Checkable Proofs for First-Order Theorem Proving Giles Reger and Martin Suda

[58] Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and trimming using
expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability
Testing - SAT 2014 - 17th International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in Computer Science, pages
422–429. Springer, 2014.

63


	The challenge
	Why (mechanically checkable) proofs?
	Current situation
	An ideal proof format
	Some previous work and related approaches
	Wrapping up
	Post Workshop Reflections

