
Kalpa Publications in Computing

Volume 1, 2017, Pages 1–10

LPAR-21S: IWIL Workshop
and LPAR Short Presentations

An Interpolation-based Compiler

and Optimizer for Relational Queries
(System Design Report)

David Toman and Grant Weddell

University of Waterloo, Waterloo, ON, Canada
{david,gweddell}@cs.uwaterloo.ca

Abstract

We outline the implementation of a query compiler for relational queries that gener-
ates query plans with respect to a database schema, that is, a set of arbitrary first-order
constraints, and a distinguished subset of predicate symbols from the underlying signature
that correspond to access paths. The compiler is based on a variant of the Craig interpo-
lation theorem, with reasoning realized via a modified analytic tableau proof procedure.
This procedure decouples the generation of candidate plans that are interpolants from the
tableau proof procedure, and applies A*-based search with respect to an external cost
model to arbitrate among the alternative candidate plans. The tableau procedure itself is
implemented as a virtual machine that operates on a compiled and optimized byte-code
that faithfully implements reasoning with respect to the database schema constraints and
a user query.

1 Introduction

In [9], we introduced an approach to finding plans for first order (FO) queries based on Craig
interpolation [5] and analytic tableau [7]. The main technical contributions of this earlier work
were twofold. The first was the introduction of so-called conditional tableau that abstract
reasoning common to all query plans for a given user query Q and a physical design given by
a 2-tuple, 〈Σ,Phys〉, in which Σ is a collection of range-restricted FO sentences comprised of
constraints, dependencies, mapping rules, and so on, and in which Phys is a subset of predicate
names occurring in Σ denoting predicate names that are access paths, that is, names of actual
data structures storing the data.

The second contribution was the introduction of an architecture in which plan search is
made an orthogonal process that interacts with the construction of conditional tableau via so-
called closing sets. Such sets correspond to a selection of ground atoms with predicate names
occurring in Phys, and signal the existence of at least one executable query plan based on data
structures corresponding to these atoms. Closing sets and how plan search is conducted ensure
any query plan found by plan search must then be logically equivalent to an interpolant that
derives from a proof based on analytic tableau of

ΣL ∪ ΣR ∪ ΣLR |= QL → QR,

T.Eiter, D.Sands, G.Sutcliffe and A.Voronkov (eds.), LPAR-21S (Kalpa Publications in Computing, vol. 1),
pp. 1–10

Query Compiler/Optimizer Toman and Weddell

where ΣL and QL (resp. ΣR and QR) denote Σ and Q in which every occurrence of a non-logical
symbol P has been replaced by PL (resp. PR), and where the connection to access paths in a
physical design, hereon called physical atoms, is uniformly captured by ΣLR given by

{∀x.PL(x)↔ P (x),∀x.PR(x)↔ P (x) | P ∈ Phys,x = Fv(P)}.

Note that connecting ΣL and ΣR via ΣLR in this way is a crucial first step in factoring tableau
reasoning shared by alternative query plans for a user query, and is essential to the notion of
conditional tableau mentioned above (see [9] for details; note, however, that the variant of the
conditional tableau introduced in this paper—called henceforth split tableau—is a non-trivial
refinement of [9]). The search for an interpolant outlined in [9] proceeds in two major steps:

1. Build tableau TL using ΣL ∪ {QL(a)}, and tableau TR using ΣR ∪ {QR(a)→ ⊥}; and

2. Generate query plan candidates, orthogonally, using ΣLR and the above-mentioned closing
sets for (TL, TR).

This paper outlines a number of refinements to each of these steps that were incorporated in
the current implementation, in particular:

(i) only ground atoms are stored in the tableau (no complex formulae are created/stored);

(ii) complex formulae are compiled to bytecode common to both TL and TR that is then
interpreted by a virtual machine;

(iii) tableau branching is compactly encoded in tags attached to these atoms;

(iv) complex terms are encoded by fixed-size constants (the terms can be reconstructed if
needed); and

(v) plan generation is based on A* search [8] with a powerful heuristic derived from database
cost models.

These refinements enable the current implementation to be several orders of magnitude faster
than a semi-naive implementation of the original system reported in [9], and are the focus of
the remainder of the paper.1 In particular, our presentation of these refinements is organized
as follows:

• we develop a virtual machine suitable for generating closing sets for a given query and
schema (see Section 3);

• we develop a complementary query/constraint to byte-code compiler (see Section 4); and

• we propose and develop a query planner based on A* and a novel powerful heuristic
guiding the search for optimal query plans (see Section 5).

We also outline how the current proposal interfaces with additional techniques and supporting
infrastructure, including query plan post-processing which is essential to an accounting of so-
called binding patterns and for efficiently managing duplicates in query results. While these
techniques are not themselves described in this paper, we briefly discuss how the proposed
compiler can take advantage of them.

1The authors are unaware of any benchmarks available or published that can be used to compare the
performance of query compilers or optimizers in general, and thus cannot see any reasonable path towards truly
meaningful experiments beyond summarizing, as we do, the performance benefit over a previous more naive
implementation.

2

Query Compiler/Optimizer Toman and Weddell

Query //
Duplicate,
Compile to
Bytecode

//
Split

Tableau
VM

//

oo
Planner

(A*)

��
OO

// Code
Generator

��

Schema //
Compile to
Bytecode
(optimize)

OO

Postproc.
and Cost

Estimation

C(lang)
and

Linker

//
Execu-

table

Code

Cost

model

OO

Access Path

Libraries

OO

Figure 1: Compiler Architecture

In summary, we focus in this paper on salient issues that we have found to underlie any
implementation of the split tableau-based query compiler originally presented in [9]. Note that
formal correctness proofs are rather long and tedious, and, in the end, simply reduce the issues
to the correctness of the more naive (but more compact) techniques in [9]; they are therefore
omitted in this paper for sake of brevity.

2 System Architecture and Components

The overall architecture of the compiler is depicted in Figure 1, and consists of two main
components:

1. A virtual machine that interprets a byte-code generated from the schema constraints
and the user query, the Split Tableau Virtual Machine (VM), and produces the above-
mentioned closing sets: information that is sufficient to find alternative query plans with-
out any need for further reasoning with sentences comprising the physical design; and

2. An A*-based Planner that uses a cost model and a plan post-processor to choose an
optimal plan among the alternatives.

Note that the Planner operates entirely independently of physical design sentences that capture
dependencies, mapping rules, and so on, since all information needed to generate plans is
encapsulated by closing sets computed by the Split Tableau VM. Note also that the planner
can request the VM to deepen the tableau search. This is a necessary feedback because of the
expressiveness of sentences comprising a schema/physical design (the constraint/query language
is not recursive, and hence it is not possible to have an apriori bound on the tableau expansion
that ensures finding an optimal query plan).

The two main modules are accompanied by a Byte-code compiler and a Code Generator.
The Byte-code compiler converts range-restricted first order formulae (both schema constraints
and user queries) and generates the appropriate byte-code used by the Split Tableau VM. The
Code generator converts query plans (still expressed as annotated first-order formulae) to actual
imperative code, e.g., in C or LLVM (see, e.g., code fragments in [11]). The following sections
now describe each of the modules.

3

Query Compiler/Optimizer Toman and Weddell

queue: a priority queue of (pointers to) conditional atoms;
iterators: an array of (pointers to) conditional atoms;

while (queue is not empty && tableau is not closed) do
iterators[0] = pop(queue); execute(iterators[0].code);

Figure 2: Split Tableau Construction.

3 The Split Tableau VM

To begin, we introduce the virtual machine used to execute a byte code to simulate split tableau
derivations. The state of the split tableau is captured simply as two sets of conditional atoms,
one for TL and one for TR:

Definition 1 (Conditional Atoms). Let R be a ground atom (arguments are constant symbols),
{P1, . . . , Pn} a set of ground physical atoms, and {i1 : j1, . . . , im : jm} a set of pairs of positive
integers such that ik1

6= ik2
for 0 < k1 < k2 ≤ m. We call “R[P1, . . . , Pn]{i1 : j1, . . . , im : jm}”

a conditional atom R depending on ground physical atoms P1, . . . , Pn (called dependencies)
and belonging to tableau branches described by i1 : j1, . . . , im : jm.

Note that the atom R can also be the symbol ⊥ (arity 0) standing for falsehood. Intuitively,
the ground atom R belongs to the tableau T ’s branch identified by the sequence of pairs
i1 : j1, . . . , im : jm, where the first component of each pair identifies a branch point and the
second component the number of a branch emanating from this branch point, and depending
on the atoms P1, . . . , Pn already existing in T in the same branch.

Our approach generates conditional atoms to account for variant tableau proofs of the same
theorem: this is essential to facilitate subsequent plan generation and optimization. In the
actual implementation, both atoms P1, . . . , Pn and the branch identifiers i1 : j1, . . . , im : jm are
sorted arrays to facilitate subsequent set operations, such as set union. The conditional atoms
are then stored in balanced search trees to facilitate their lookup by name and a prefix of their
arguments. There are two search trees per predicate symbol, one for TL and one for TR.

Figure 2 gives the main control loop of the tableau construction. The priority queue is
organized by the complexity of conditional atoms (i.e., by a weighted sum of the number of
branches involved, of the number of conditional atoms, and of the age of the Skolem constants).
The code field attached to conditional atoms contains the byte code executed whenever a new
conditional atom (for a particular predicate) is created, and is defined in terms of the following
abstract instruction set for the Split Tableau VM (and is common to both TL and TR):

Definition 2 (Abstract Instruction Set).

JOIN P n i1 a1 ... in an: This instruction finds the first conditional atom with the pred-
icate symbol P whose first n arguments match the arguments aj of the (preceding)
iterators[ij]. If such an atom is found, it is added to the iterators array as the
next element and the VM proceeds with the execution of subsequent code; otherwise the
VM backtracks. If the JOIN instruction is reached by backtracking, the next conditional
atom for P is looked up and the above procedure is repeated.

MKATOM P i1 a1 ... in an: This instruction creates a new conditional atom for P whose
arguments are filled (left to right) with constants copied from arguments aj of the (pre-
ceding) iterator[ij]. The dependencies and branches for the conditional atom are defined
as the unions (merges) of the dependencies and branches of the individual iterators, re-
spectively. The created atom is then inserted in the appropriate search tree and, if it

4

Query Compiler/Optimizer Toman and Weddell

had not already existed, also in the priority queue. Execution then continues with the
next instruction. (The same applies to any new atoms encountered in the next three
instructions.)

MKOR P j: The instructions creates a conditional atom P that is identical to the conditional
atom iterators[0] but its branches contain additional branch identifier i : j where i is a
global value containing the number of branching points so far and is incremented when
j = 0 (i.e., the leftmost branch of every branch point must be labeled i : 0).

MKSKOLEM P: This instruction creates a conditional atom P whose arguments consist of a new
Skolem constant followed by the arguments of the conditional atom iterators[0]. The
index of the new constant determines its age. The dependencies and branches are shared
with iterators[0].

MKPHYS: This instruction creates a new (physical) conditional atom in the other tableau. This
atom shares the predicate name and arguments of iterators[0], depends on itself and is
associated with an empty set of branches.

SEQ s byte-code-1 byte-code-2: This instruction allows for composing two, independently
backtracking parts of the bytecode: it first executes byte-code-1 by transferring control to
the next instruction, and then byte-code-2 by transferring control to next+s byte code.

RET: This instruction simply backtracks to the most recent JOIN or SEQ, or returns to the
top-level control loop.

Note that, unlike the MKATOM instruction that genuinely depends on conjunctions of condi-
tional atoms, the MKOR and MKSKOLEM instructions depend only on the original conditional
atom (iterators[0]): this is intentional to reduce the number of new Skolem constants and
branches due to eliminating conditional atoms derived multiple times (since these will never
be reinserted in the tableau nor in the priority queue). Similarly, the MKPHYS instruction only
makes sense for an already existing physical atom.

4 Transforming Schema and Query to VM Code

To use the instruction set defined above, we argue that (range-restricted) first order formulae
are compiled to the above instructions in such a way that executing these byte codes (as defined
by the algorithm in Figure 2) simulates correct tableau expansion.

It is straightforward to see that every (closed) range-restricted formula in first-order logic
can be represented as an equivalent set of formulae in one of the following three forms necessary
to consider for compilation (up to the introduction of new auxiliary predicate symbols).2 The
compilation of these three forms to abstract bytecode for the Split Tableau VM is as follows:

1. A1(x1) ∧ . . . ∧Ak(xk)→ B1(y1) ∧ . . . ∧B`(y`): For each Ai(xi), we generate the code frag-
ment

JOIN A1 n1 args(x1) . . . JOIN Ai−1 ni−1 args(xi−1)
JOIN Ai+1 ni+1 args(xi+1) . . . JOIN Ak nk args(xk)

MKATOM B1args(y1) . . . MKATOM B` args(y`) RET

where nj is the length of the prefix of variables in xj that have appeared in one of xi, for
i < j, and args(xj) is the list of pairs (i a) describing the position in which the particular

2For range-restricted formulae that start with an existential quantifier we need to introduce an auxiliary
unary predicate symbol and insert an appropriate atom to the initial tableau. In practice this case does not
occur (and we don’t cover it here).

5

Query Compiler/Optimizer Toman and Weddell

variable has occurred (i corresponds to the subscript of xi and a to the offset of the
variable from the left).3

2. A(x)→ ∃y.B(y,x): We generate “MKSKOLEM B RET”.

3. A(x)→ B1(x) ∨ . . . ∨Bk(x): We generate “MKOR B1 0 . . . MKOR Bk k RET”.

In the above, Ais are predicate symbols, Bis are predicate symbols or ⊥, and x, and y are
lists of variables. We also assume that the formulae do not contain constants and are closed
universally. In addition, for every physical predicate we generate “MKPHYS”. To generate the
ultimate code for a predicate A, we collect all the code fragments for this predicate defined
above and connect them in a single byte code stream using the SEQ instruction.

User Query. We assume that the user query is atomic and of the form Q(x).4 We then
add the byte code “JOIN Q′ k 0 0 . . . k k MKATOM ⊥” to the byte code for Q, and insert
a conditional atom Q(a)[]{} in TL and in queue, and Q′(a)[]{} in TR, where a are distinct
constants substituted for x (this is justified by Skolemizing the negation of QL → QR in
ΣL ∪ ΣR ∪ ΣLR |= QL → QR). In this way, whenever Q(a) is derived in TR, it will match
the conditional atom Q′ and yield ⊥ (originating from the negation of Q for TR). Correctness
of the byte code and the overall procedure reduces to the case explored in [9] and is based on
tedious case analysis.

Example 3. A database schema Σ = {S(x) ↔ U(x) ∨ ∃y.G(x, y), G(x, y) → ¬U(x)} stating
that S tudents are either U ndergraduate or Graduate (with an advisor), but not both, normal-
izes to {G(x, y)→ S(x), U(x)→ S(x), S(x)→ U(x) ∨G1(x), G1(x)→ ∃y.G2(y, x), G2(y, x)→
G(x, y), U(x) ∧G(x, y)→ ⊥} (utilizing auxiliary symbols G1 and G2). The code generated is:

S: SEQ 2 MKPHYS RET MKOR U 0 MKOR G1 1 RET

G: SEQ 2 MKPHYS RET SEQ 5 MKATOM S 0 0 RET JOIN U 1 0 0 MKATOM ⊥ RET

G1: MKSKOLEM G2 RET

G2: MKATOM G 0 1 0 0 RET

U : SEQ 5 MKATOM S 0 0 RET JOIN G 1 0 0 MKATOM ⊥ RET

Note that only the S and G predicates are assumed to be in Phys (that our physical design
does not explicitly store the set of undergraduate students).

Tableau Closure. The next issue to consider is when to stop expanding the tableau (i.e.,
running the bytecode) and consider generating query plans. This crucially depends on the
above-mentioned notion of closing sets which we now define:

Definition 4 (Closing Sets). A closing set S for a tableau T is a smallest set of ground physical
atoms such that if R[P1, . . . , Pn]{B} is used to close branch B then (i) {¬R,P1, . . . , Pn} ⊆ S,
and (ii) if i : j ∈ B then a conditional atom belonging to branch i : j′ for all j′ 6= j applicable
to branch point i must also be a part of S.

Closing sets for (TL, TR) is a pair of sets ClosSet(TL) and ClosSet(TR), the first containing all
closing sets for TL, and the second containing all closing sets for TR.

3We require that a prefix of arguments of xj variables appears in the previous atoms. This allows us to
efficiently utilize the search trees for conditional atoms in the JOIN instructions at the cost of having to duplicate
certain atoms with varying argument orderings, which is preferable to quadratic searches needed otherwise.

4Given an non-atomic query ϕ with free variables x, we simply add the formula ∀x.Q(x) ↔ ϕ to Σ.

6

Query Compiler/Optimizer Toman and Weddell

P : LP RP

:R(a) : {{¬R(a)}} {{R(a)}}
P1 ∧ P2 : LP1

∪ LP2
{S1 ∪ S2 | S1 ∈ RP1

, S2 ∈ RP2
}

P1 ∨ P2 : {S1 ∪ S2 | S1 ∈ LP1 , S2 ∈ LP2} RP1 ∪RP2

¬P1 : RP1 LP1

∃x.P1[x/a] : LP1
RP1

Figure 3: Plan Fragments and their Closing sets.

Example 5. Closing sets for our running example with respect to the query U(x) (asking for
all undergraduate students) are as follows:

ClosSet(TL) = {{¬S(s0)}, {G(s0, s2)}} and ClosSet(TR) = {{¬G(s0, s2), S(s0)}}

and are constructed using conditional atoms B(s0)[]{} and ⊥[G(s0, s2)]{} that appear in TL,
and ⊥[S(s0)]{2 : 0} and G(s0, s2)[S(s0)]{2 : 1} that appear in TR.

Deriving the closing sets every iteration would be expensive: we use a heuristic to make this
test infrequently, typically after thousands of tableau expansions. Also, existence of the closing
sets alone does not guarantee that the split tableau can be closed with the help of ΣLR. We
use the following construction (inspired by propositional resolution):

(C,D,R), (C ′, D′, R′) ∈ S and L ∈ C, L̄ ∈ D′ then (C − {L}, D′ − {L̄}, R ∪R′ ∪ {L}) ∈ S (∗)

where L and L̄ are complementary literals, C,C ′, D,D′, R,R′ are sets of ground literals, and S
is a set of triples of such sets. Then the following proposition gives the needed condition:

Property 6 (Closure). A split tableau (TL, TR) can be closed using ΣLR if applying (∗) on
{(C, ∅, ∅) | C ∈ ClosSet(TL)} ∪ {(∅, C, ∅) | C ∈ ClosSet(TR)} yields (∅, ∅, R) for some R.

The intuition behind this construction is that every step of (∗) corresponds to using a phys-
ical atom (or its negation) together with the associated formula in ΣLR in the interpolant/plan
for the query. In our running example, these are the two literals S(s0) and ¬G(s0, s2).

5 Query Planning and Optimization

Figure 3 associates two sets of literals with every range-restricted formula constructed from
physical atoms (called henceforth a plan fragment).

Definition 7 (Admissible Fragments and Plans (variation on [9])). Let (TL, TR) be a split
tableau for a query Q(x). A fragment P is admissible if, for every C ∈ LP , there is C ′ ∈
ClosSet(TL) such that C ⊆ C ′, and, for every C ∈ LR, there is C ′ ∈ ClosSet(TR) such that
C ⊆ C ′. We say that P is a plan for Q if (i) the above inclusions are set equalities, and (ii)
no Skolem constants except those corresponding to the x variables appear in P .

In this way, the sets LP and RP restrict which fragments are considered as parts of the
query plans and thus define the search space for the planning process. It also defines the
initial fragments: fragments of the form R(a) and ¬R(a) that satisfy the above condition. To
guide the search, we assume that we are given a function cost that maps plan fragments to
their (estimated) cost that is monotone (fragments are more costly than their parts). For a

7

Query Compiler/Optimizer Toman and Weddell

queue: a priority queue of fragments with priorities determined by g(f) + h(f);

for all initial fragments f do insert(quantify(f),queue);
while (queue not empty && (f1=top(queue)) is not a plan) do
if (there is a fragment f2 that has not been combined with f1)
then for all f3 ∈ quantify(admissible-combination(f1,f2)) do
if (not dominates(f4,f3) by any fragment f4)
then insert(f3,queue); for all f4 dominates(f3,f4) do remove(f4,queue);

else pop(queue);

Figure 4: Plan Search.

particular example of such a function see, e.g., [1]. We use this function to direct A* search for
query plans. As usual in A*, the search is directed by the sum of the cost of the current state,
g, in our case, the cost of the fragment under consideration, and a heuristic estimate of the cost
of reaching the goal, f , in our case, a query plan. The heuristic f is based again on the closing
sets for (TL, TR) for a given query, and is given as follows:

1. We define reduced closing sets to be the closing sets for (TL, TR) in which LP (RP) are
removed from one of the closing sets for TL (TR, resp.).

2. We find the smallest value of
∑

L∈R cost(L) over all triples (∅, ∅, R) derived from the
reduced closing sets by (∗).

Intuitively, we underestimate the cost of the remainder of the plan by simply adding the costs
of the physical atoms that still need to appear in the plan, assuming each is used just once
(rather than, e.g., in a join operator (that implements conjunctions). This yields an admissible
heuristics5 for A* search. The A* algorithm used is outlined in Figure 4 and uses the following
auxiliary functions:

admissible-combination(f1,f2): Generate all admissible binary combinations of f1 and f2
using “∧” and “∨”6;

quantify(f): Replace all Skolem constants that occur in atoms of f but not in the rest of
the closing sets oldest to youngest (the constant ids implicitly carry this information);
constants introduced in TL are replaced by an existential quantifier, those from TR by
a negation of the existential quantifier applied on ¬f (in combination with the heuristic
for “admissible-combination”); eager use of this function corresponds to the standard
“pushing of quantifiers” database query optimization heuristic;

dominates(f1,f2): For fragments with Lf1 = Lf2 and Rf1 = Rf2 (i.e., that achieve the same
effect), we return the Boolean value g(f1) < g(f2), and false otherwise.

Soundness of the fragment construction reduces to the interpolant extraction procedure in [7].

Example 8. The fragments considered for our running example are S(s0), ¬G(s0, s2),
¬∃y.G(s0, y), and S(s0) ∧ ¬∃y.G(s0, y), which yields the ultimate plan for the query (still
to be handed off to the actual code generator).

The code for the plan is then a C get-first/get-next iterator representing a nested loops join
applied on S and a simple complement of G, as outlined in [11].

5The heuristic is admissible with respect to the cost model due to the monotonicity assumption. Note,
however, that the cost model only approximates the actual execution cost, which can be lower than the estimate.

6For “∨”, we use a heuristic that applies De-Morgan rule to disjunctions in which one of the atoms is negated.

8

Query Compiler/Optimizer Toman and Weddell

6 Beyond Basic Interpolation and Summary

The paper develops a practical path to implementing a query optimizer based on the theoretical
foundations in [9]. There are additional issues addressed in the implementation, a full exposition
of which is beyond the scope of this paper:

Dealing with Equality. To achieve an acceptable level of performance, a paramodulation-
style inference for equalities via specialized instructions in our VM is used in combination with
the ability to efficiently locate first occurrences of Skolem constants (due to our restrictions on
the use of the MKSKOLEM instruction).

Range-restrictions and Binding Patterns. [4] shows that for range restricted schemas and
queries, if an interpolant exists, it will be domain-independent. However, in practice physical
atoms are often equipped with access restrictions (called binding patterns [11]) and additional
care needs to be taken to satisfy these.

Duplicate semantics. Implementation of quantifiers and connectives (e.g., existential quan-
tifiers by relational projection) often leads to undesirable duplication of answers (that need
to be eliminated). We apply techniques [10, 11] (that require additional schema reasoning) to
alleviate this issue in post-processing.

On related work, query reformulation under constraints has been studied extensively in the
database literature. The two most prominent current approaches are based on chase&backchase
[6] and Craig interpolation [2, 4, 9, 11]. Detailed comparison of the approaches is beyond the
scope of this paper and can be found in [3, 11].

References

[1] Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran, Jim Gray,
Patricia P. Griffiths, W. Frank King III, Raymond A. Lorie, Paul R. McJones, James W. Mehl,
Gianfranco R. Putzolu, Irving L. Traiger, Bradford W. Wade, and Vera Watson. System R:
relational approach to database management. ACM Trans. Database Syst., 1(2):97–137, 1976.

[2] Michael Benedikt, Balder ten Cate, and Efthymia Tsamoura. Generating low-cost plans from
proofs. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pages 200–211, 2014.

[3] Michael Benedikt, Balder ten Cate, and Efthymia Tsamoura. Generating plans from proofs. ACM
Trans. Database Syst., 40(4):22:1–22:45, 2016.

[4] Alexander Borgida, Jos de Bruijn, Enrico Franconi, Inanç Seylan, Umberto Straccia, David Toman,
and Grant E. Weddell. On finding query rewritings under expressive constraints. In Proceedings
of the Eighteenth Italian Symposium on Advanced Database Systems, SEBD, pages 426–437, 2010.

[5] William Craig. Three uses of the Herbrand-Genzen theorem in relating model theory and proof
theory. Journal of Symbolic Logic, 22:269–285, 1957.

[6] Alin Deutsch, Lucian Popa, and Val Tannen. Physical data independence, constraints, and opti-
mization with universal plans. In VLDB’99, Proceedings of 25th International Conference on Very
Large Data Bases, pages 459–470, 1999.

[7] Melvin Fitting. First-Order Logic and Automated Theorem Proving, Second Edition. Graduate
Texts in Computer Science. Springer Publishers, 1996.

9

Query Compiler/Optimizer Toman and Weddell

[8] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Systems Science and Cybernetics, 4(2):100–107, 1968.

[9] Alexander K. Hudek, David Toman, and Grant E. Weddell. On enumerating query plans using an-
alytic tableau. In Automated Reasoning with Analytic Tableaux and Related Methods TABLEAUX,
pages 339–354, 2015.

[10] Vitaliy L. Khizder, David Toman, and Grant E. Weddell. Reasoning about duplicate elimination
with description logic. In Computational Logic - CL 2000, pages 1017–1032, 2000.

[11] David Toman and Grant E. Weddell. Fundamentals of Physical Design and Query Compilation.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

10

	Introduction
	System Architecture and Components
	The Split Tableau VM
	Transforming Schema and Query to VM Code
	Query Planning and Optimization
	Beyond Basic Interpolation and Summary

