
Kalpa Publications in Computing

Volume 9, 2018, Pages 37–48

LPAR-22 Workshop and Short Paper Proceedings

Extending a Verified Simplex Algorithm

René Thiemann

University of Innsbruck

Abstract

As an ingredient for a verified DPLL(T) solver, it is crucial to have a theory solver
that has an incremental interface and provides unsatisfiable cores. To this end, we extend
the Isabelle/HOL formalization of the simplex algorithm by Spasić and Marić. We further
discuss the impact of their design decisions on the development of our extension.

1 Introduction

CeTA [BJTY17] is a verified certifier for checking untrusted safety and termination proofs from
external tools such as AProVE [GAB+17] and T2 [BCI+16]. To this end, CeTA also comprises
a verified SAT-modulo-theories (SMT) solver, since these untrusted proofs contain claims of
validity of several formulas.

The ultimate aim of this work is the optimization of the existing verified SMT solver, because
the current solver is quite basic. It takes as input an arbitrary formula in the theory of linear
integer arithmetic (LIA), translates it into disjunctive normal form (DNF), and then tries to
prove unsatisfiability of each conjunction of literals in the theory of linear rational arithmetic
(LRA) with the verified simplex implementation of Spasić and Marić [SM12]. This basic solver
has at least two limitations. It only works on small formulas, since the conversion to DNF
easily leads to an exponential blowup; and the procedure is incomplete because of the switch
from LIA to LRA.

The second limitation was not a limiting factor up to now, i.e., all formulas in the certificates
of AProVE and T2 have even been valid in LRA. On the other hand, there exist proofs of AProVE
and T2 where certificate checking with the verified SMT solver requires more than a minute.
Clearly, instead of the expensive DNF conversion, the better approach is to verify an SMT
solver which is based on DPLL(T) or similar algorithms [GHN+04, BGS18].

Although there has been recent success in verifying a DPLL based SAT solver [BFLW18],
for DPLL(T) a core component is missing, namely a powerful theory solver. Therefore, in this
paper we will extend the formalization of the simplex algorithm so that in the future it can be
combined with a DPLL algorithm to obtain a fully verified DPLL(T) based SMT solver. We
describe two main features of our work.1

• Instead of just delivering an unsatisfiability flag as result, we return unsatisfiable cores.

1The third feature is an optimization of Dutertre and de Moura that has not been formalized by Spasić and
Marić.

G. Barthe, K. Korovin, S. Schulz, M. Suda, G. Sutcliffe and M. Veanes (eds.), LPAR-IWIL 2018 (Kalpa
Publications in Computing, vol. 9), pp. 37–48

Extending a Verified Simplex Algorithm René Thiemann

• We provide an incremental interface to the simplex method. It permits incremental as-
sertion of constraints, backtracking, etc.

Our formalization is completely based on the incremental simplex algorithm described by
Dutertre and de Moura [DdM06]. This paper was also the basis of the existing implementation
by Spasić and Marić, of which the correctness has been formalized in Isabelle/HOL [NPW02].
Although the size of the existing formalization and our new one only differs a little bit (8134
versus 9956 lines), the amount of modifications is quite significant: 3234 lines have been replaced
by 5047 new ones.

This paper is structured as follows. In Section 2 we provide some background on the kinds
of proofs we are checking with CeTA. Moreover, we also discuss the alternative approach to use
an untrusted proof-emitting SMT solver, whose proofs can be validated in a second step. Then
in Section 3 we describe parts of the formalization of the verified simplex algorithm of Spasić
and Marić. Our main contribution is Section 4 with the development of the extended simplex
algorithm. Finally, we conclude in Section 5.

The whole formalization is available in the Archive of Formal Proofs for Isabelle 2018, entry
Simplex [MST18]. It contains the formalization of Spasić and Marić with our modifications
and extensions.

2 On Verified SMT Proofs

SMT solvers are a crucial tool for automated reasoning. For instance, consider the example
program in Figure 1 and its translation into an integer transition system in Figure 2. In the
latter, a primed variable x′ represents the value of x after the transition.

y := x;

while x < 1000 {

y := 3y - x - 1500;

x := x + 1;

}

Figure 1: Input Program

s1

s2

s3

τ1 : x′ = x ∧ y′ = x

τ2 : x < 1000 ∧ y′ = 3y − x− 1500 ∧ x′ = x+ 1

τ3 : ¬x < 1000 ∧ x′ = x ∧ y′ = y

Figure 2: Transition System

In order to prove that a certain property is satisfied at the end of the program, one can
determine invariants of each state and then show their validity. For instance, for ensuring that
y ≤ x holds at the end of the program, one can show that y ≤ x is an invariant of states s2
and s3. Verifying these invariants amounts to checking the validity of formulas (1)–(3), each
corresponding to one transition.

τ1 −→ y′ ≤ x′ (1)

y ≤ x ∧ τ2 −→ y′ ≤ x′ (2)

y ≤ x ∧ τ3 −→ y′ ≤ x′ (3)

Similarly, termination proofs can be encoded as validity properties of formulas. For instance,
termination is ensured via the ranking function [CS01] 1000 − x if the following two formulas

38

Extending a Verified Simplex Algorithm René Thiemann

are valid, expressing the decrease of the ranking function (4) and its boundedness (5).

τ2 −→ (1000− x) > (1000− x′) (4)

τ2 −→ (1000− x′) ≥ 0 (5)

So, verifying soundness properties and termination proofs of programs can be performed
via validity checking of formulas, or equivalently, by checking unsatisfiability of the negated
formulas, which can easily be done by invoking an SMT solver.

There is one problem though: since SMT solvers are complex pieces of software, they might
contain errors and therefore wrongly detect unsatisfiability of a formula. To solve this problem,
there are in principle two approaches.

1. One can use a certificate emitting SMT solver and check the validity of each generated
certificate by a verified certificate checker.

2. One can directly develop a verified SMT solver.

The two approaches are mutually incomparable.
Approach 1 has the advantage that it is much simpler to verify a certificate checker than to

verify a full SMT solver. Moreover, this approach will usually be more efficient, since one can
profit from all the (unverified) optimizations that will speed up the proof search in the SMT
solver, so that only the final proof has to be checked by the verified certificate checker.

Approach 2 on the other hand has the advantage, that it is easier to use: one just has to
install one program and there is no risk that there is a synchronization problem, where the
SMT solver and certifier disagree on the format or meaning of the certificate.

CeTA is a verified certificate checker for program properties and especially for termination
proofs. In particular, it can take the above transition system from Figure 2 as input in com-
bination with the set of invariants, or the ranking function or a more complex termination
proof [BJTY17]. Internally, it will create the formulas as illustrated and check the validity of
the invariants or of the ranking function. The soundness of CeTA has been formally verified
in Isabelle/HOL, i.e., if it accepts a set of invariants then they are indeed valid invariants,
and an accepted ranking function will indeed prove termination. When it comes to checking
unsatisfiability of a formula, CeTA currently offers both approaches.

In Approach 1, one has to provide a list of Farkas coefficients from the SMT solver to prove
unsatisfiability.2 For instance, the negation of formula (2) is

y ≤ x ∧ x < 1000 ∧ y′ = 3y − x− 1500 ∧ x′ = x+ 1 ∧ y′ > x′ (6)

which can equivalently be written as the set of non-strict linear inequalities (7)–(13).

−x + y ≤ 0 (7)

x ≤ 999 (8)

−x + 3y − y′ ≤ 1500 (9)

x − 3y + y′ ≤ −1500 (10)

x − x′ ≤ −1 (11)

−x + x′ ≤ 1 (12)

x′ − y′ ≤ −1 (13)

2CeTA does not invoke an external SMT solver to obtain these coefficients on its own, they have to be part
of the certificate that is passed to CeTA. The advantage is that in this way, CeTA keeps its minimal system
requirements: a Haskell compiler suffices to run CeTA.

39

Extending a Verified Simplex Algorithm René Thiemann

The Farkas coefficients in the certificate (3, 1, 0, 1, 1, 0, 1) tell us how to add and multiply
each equation. In the example, computing

3 · (7) + 1 · (8) + 0 · (9) + 1 · (10) + 1 · (11) + 0 · (12) + 1 · (13)

we arrive at the inequality 0 ≤ −503, which directly proves the unsatisfiability of (6) and
therefore the validity of (2). The problem here is the synchronization between the coefficients
in the certificate and the formula: what is the order of linear inequalities (7)–(13), what is
the order of the formulas (1)–(3), etc.? This problem manifested during the integration of
the termination analyzer T2 and the certifier CeTA. To be more precise, complex proofs of
T2 had to be validated by CeTA, where the proofs of T2 contained several validity claims of
formulas, and where most of these formulas are not explicitly spelled out in the certificate,
but are automatically generated from stated invariants, ranking functions, transition formulas,
etc. Overall, it took several iterations of modifying both T2 and CeTA until the precise order of
formulas and Farkas coefficients had been synchronized.

This synchronization problem is not at all present in Approach 2, where CeTA needs no
additional information in the certificate to check the validity of formulas, and just invokes its
basic verified SMT solver in order to prove that (6) and other formulas are unsatisfiable. For
instance, the termination analyser AProVE does not provide Farkas coefficients in the certificate
and solely relies upon CeTA’s internal SMT solver for checking its proofs.

In total, both approaches pose some problems: an engineering problem to synchronize certifi-
cates in Approach 1, and a verification problem to obtain a verified SMT solver in Approach 2.
In the remainder of this paper we will only consider Approach 2, i.e., we are interested in
developing an efficient verified SMT solver.

3 Existing Simplex Formalization

The simplex algorithm as described by Dutertre and de Moura works in several phases as
illustrated in Figure 3.

First, in Phase 1 the input constraints are transformed from arbitrary linear (in)equalities
(Layer 1) into a set of non-strict inequalities (Layer 2). Next, in Phase 2 these constraints are
translated into a tableau—a set of linear equations having a specific shape—in combination
with atoms of the form x ≤ c or x ≥ c for variables x and constants c (Layer 3). Then in
Phase 3 the tableau, the atoms and a valuation are modified until a solution or unsatisfiability
is detected. These modifications in Phase 3 can be done incrementally: by asserting a new atom;
by performing cheap, but incomplete deduction; or by a full satisfiability test using pivoting.
Finally, unsatisfiability in Layer 3 is propagated upwards to Layer 1, and a satisfying valuation
of Layer 3 is transformed into a satisfying valuation of Layer 1 by passing Phases 2 and 1 again.

Spasić and Marić formalized most of this algorithm in a modular style via several refine-
ment steps. Specifically, they define several specifications in the form of locales [Bal14] that
describe the required behavior for the individual layers and phases. A locale can demand cer-
tain functions via fixes that satisfy several conditions specified by assumes. For instance, their
specification on Layer 1 is formulated in the locale with name Solve . It postulates a function
solve of a type which takes a constraint list as input and returns an option type. The result
None represents unsatisfiability, and if some valuation v is returned, then this must be a sat-
isfying valuation. Here, the relation |=cs encodes whether a given valuation satisfies a set of
constraints.3

3We identify lists and sets throughout this paper, whereas in the formalization an explicit conversion is
required.

40

Extending a Verified Simplex Algorithm René Thiemann

Layer 1: Arbitrary Constraints

Phase 1: Translation to Non-Strict Constraints

Layer 2: Non-Strict Constraints

Phase 2: Translation to Tableau and Atoms

Layer 3: Tableau and Atoms

Phase 3: Solving Tableau and Atoms

input: cs

ns

(t,as)

Unsat (t,as)

Unsat ns

output: Unsat cs

v |= (t,as)

w |= ns

output: u |= cs

Figure 3: The Layers and Phases of the Simplex Algorithm

locale Solve =

fixes solve :: constraint list ⇒ rat valuation option

assumes solve cs = None =⇒ ¬ (∃ v. v |=cs cs)

and solve cs = Some v =⇒ v |=cs cs

A very similar specification is provided on Layer 2 for non-strict inequalities via the locale
Solve_Ns . Here, |=ns is like |=cs, only the type of constraints is changed from arbitrary to
non-strict constraints, and the domain is changed from rational numbers to some type α of
class lrv , representing linearly ordered rational vectors.

locale Solve_Ns =

fixes solve_ns :: α ns_constraint list ⇒ α valuation option

assumes solve_ns cs = None =⇒ ¬ (∃ v. v |=ns cs)

and solve_ns cs = Some v =⇒ v |=ns cs

The transition between these two specifications, Phase 1, is again just an abstract specifica-
tion. It demands a translation to_ns from arbitrary to non-strict constraints so that they are
equisatisfiable. The translation to_ns will be used for the left path in Figure 3. Moreover, also
a computable translation from_ns is required. It converts a satisfying valuation of the non-strict
constraints into a satisfying valuation of the input constraints, corresponding to the right path
in Figure 3.

locale To_Ns =

fixes to_ns :: constraint list ⇒ α ns_constraint list

and from_ns :: α valuation ⇒ α ns_constraint list ⇒ rat valuation

assumes v |=cs cs =⇒ ∃ w. w |=ns to_ns cs

and w |=ns to_ns cs =⇒ from_ns w (to_ns cs) |=cs cs

The locale Solve_Ns ′ combines both locales Solve_Ns and To_Ns . It then defines the obvious
implementation solve_impl .

41

Extending a Verified Simplex Algorithm René Thiemann

locale Solve_Ns ′ = Solve_Ns solve_ns + To_Ns to_ns from_ns

begin

definition solve_impl cs = let

ns_cs = to_ns cs

in case solve_ns ns_cs of

None ⇒ None

| Some w ⇒ Some (from_ns w ns_cs)

sublocale Solve solve_impl

end

In the locale, the line starting with sublocale states that solve_impl satisfies the speci-
fication of the locale Solve . The formalization also contains the corresponding proof of this
statement.

Afterwards, the formalization continues to provide an implementation of To_Ns (Phase 1),
and the implementation of Solve_Ns , i.e., a solver for Layer 2. Both of these tasks can be
performed completely independently. The latter task is then split again into a specification and
implementation of Phase 2 as well as specification and implementation of a solver for Layer 3.
This solver is then further split into operations like pivoting, asserting atoms, etc.

So, the overall formalization consists of several specifications, targeting the different phases
and layers. And the overall algorithm is composed by refining several (small) specifications by
verified implementations. Plugging together all the individual algorithms is then an easy task,
since soundness is automatically obtained via the locale structure.

4 New Simplex Formalization

In the following we describe our extension of the formalization of Spasić and Marić by the
integration of unsatisfiable cores (Section 4.1) and the development of an incremental interface
to the simplex algorithm (Section 4.2).

4.1 Unsatisfiable Cores

Our first extension is the integration of an unsatisfiable core, i.e., given a set of unsatisfiable
constraints, we are interested in a subset of the constraints which is still unsatisfiable. Small
unsatisfiable cores are crucial for a DPLL(T) based SMT solver in order to derive small conflict
clauses. For example, already the subset (7,8,10,11,13) of the constraints (7–13) is unsatisfiable.

The first question for our extension is about the representation of unsatisfiable cores. Clearly,
one has to change the return types of the solvers at the various layers—currently α valuation

option—to a sum type β + valuation where β is some type that represents unsatisfiable cores.
The most basic representation, where β is chosen to be a list of constraints, is quite problematic.
For instance, consider Phase 1 and its interface To_Ns . So far, it only contains a translation
from arbitrary input constraints to non-strict constraints, but if the unsatisfiable core comes as
a set of non-strict constraints, then we need a new method to translate them back to a subset of
the input constraints. Should we demand to_ns to be injective? Since these complications with
translating constraints are not appealing, we quickly decided to switch to indexed constraints

42

Extending a Verified Simplex Algorithm René Thiemann

at this point, i.e., constraints (or atoms) became pairs of an index and the actual constraint (or
atom). However, the equations in the tableau do not need any indices since these are global,
i.e., the same equations will be used for every subset of the constraints (or atoms).

In general, we adapted the formalization in a controlled way, i.e., we made several small
changes to it, so that after each change all proofs are still accepted by Isabelle.

The first change was the modification of the return type of the solvers and the switch to
indexed constraints and atoms (i_constraint , i_ns_constraint , etc.) for the input. Here, the
implementation just passes the indices around. For example, where before an arbitrary con-
straint c was translated into a set of non-strict constraints ns, now an indexed constraints (i, c)
is translated into {(i, n) | n ∈ ns}. And whenever unsatisfiability is detected, the implemen-
tation now returns ∅ as an unsatisfiable core instead of just stating unsatisfiability. Of course,
the empty set is not an unsatisfiable core, but this is not a problem: the specifications of all
layers ignore the core and also all indices are ignored via the function flat , which just removes
all indices from indexed constraints and atoms. In this way, the introduction of indices and the
change of the return type to an unsatisfiable core is not that big.

As a concrete example, in the first change we modified the locale Solve_Ns to the following
one where Inl and Inr are the constructors of Isabelle’s sum-type, and ι is the type of indices.
We use the letter I to abbreviate a list or set of indices.

locale Solve_Ns =

fixes solve_ns :: (ι, α) i_ns_constraint list ⇒ ι list + α valuation

assumes solve_ns cs = Inl I =⇒ ¬ (∃ v. v |=ns flat cs) (* ignore indices and I *)

and solve_ns cs = Inr v =⇒ v |=ns flat cs (* ignore indices *)

The next change was the modification of the specifications of all layers like Solve , Solve_

Ns , etc., so that a returned set of indices can be guaranteed to be an unsatisfiable core. The
implementation was easily changed to meet these specifications by just always returning the set
of all indices in case of unsatisfiability. Note that at this step we do not modify the specifications
of any of the phases like To_Ns .

As an example, the locale Solve is changed into the following one where |=ics and |=ins

are the indexed versions of |=cs and |=ns, e.g., (I,v) |=ics cs if and only if I |=cs {c | (i,c) ∈
cs ∧ i ∈ I}.

locale Solve =

fixes solve :: ι i_constraint list ⇒ ι list + rat valuation

assumes solve cs = Inl I =⇒ ¬ (∃ v. (I,v) |=ics cs) (* new *)

and solve cs = Inr v =⇒ v |=ns flat cs

Moreover, the definition of the implementation solve_impl is changed as follows where map

fst cs encodes the set of all indices.

definition solve_impl cs = let

ns_cs = to_ns cs

in case solve_ns ns_cs of

Inl I ⇒ Inl (map fst cs) (* new *)

| Some w ⇒ Some (from_ns w ns_cs)

These kind of generalizations from unsatisfiability towards unsatisfiability of indexed subsets
had to be carried out for most of the specifications, since unfortunately the original formalization

43

Extending a Verified Simplex Algorithm René Thiemann

of Spasić and Marić includes neither unsatisfiable cores nor a notion of satisfiability of indexed
constraints.

The final step consisted of a sequence of modifications. Each of these treated one particular
phase of the simplex algorithm. For instance, in Phase 1, we strengthened the specification in
one direction to indexed subsets.

locale To_Ns =

fixes to_ns :: i_constraint list ⇒ α i_ns_constraint list

and from_ns :: α valuation ⇒ α ns_constraint list ⇒ rat valuation

assumes (I,v) |=ics cs =⇒ ∃ w. (I,w) |=ins to_ns cs (* new *)

and w |=ns flat (to_ns cs) =⇒ from_ns w (flat (to_ns cs)) |=cs flat cs

With the modified locale To_Ns one can easily prove soundness of the final version of solve_
impl . Instead of always returning the full set of indices, the final version just propagates the
set of indices: the previous line Inl I ⇒ Inl (map fst cs) on page 43 is replaced by Inl I ⇒
Inl I .

The main work w.r.t. the modification of the transition to non-strict constraints is proving
that the implementation of To_Ns still satisfies the strengthened specification. The existing
proof only contains the result that the new condition is satisfied whenever I is the set of all
indices. We do not provide further details at this point, but just state that these generalizations
of the proofs were of different difficulty levels.

• The generalizations for Phases 1 and 2 were rather straight-forward.

• The algorithms of Phase 3 which initially detect unsatisfiability required most adaptations
and some new proofs.

• One of the most complex operations in the simplex algorithm in Phase 3, pivoting, luckily
required hardly any changes: since pivoting only changes the tableau and since the tableau
has no indices, there was not much to adapt. Here, the modular design of Spasić and
Marić was clearly helpful, which separates pivoting via its own abstract specification.

After all these modifications we obtain an implementation that meets the specification of
Solve on page 43. The implementation indeed returns non-trivial unsatisfiable cores, e.g., it
computes (7,8,10,11,13) as unsatisfiable core of (7–13).

The formalization for Isabelle 2018 does not contain proofs of the minimality of the unsatis-
fiable cores. But motivated by a reviewer comment, we started to investigate minimality of the
cores. We soonish detected two side-conditions on the inputs which are essential for obtaining
minimal cores, cf. Example 1.

Example 1. Consider the following indexed constraints [(A, x ≤ 3), (B, x ≤ 5), (B, x ≥ 10)]
where some index (B) refers to two different constraints. If we invoke the verified simplex
algorithm on these constraints, it will detect that x ≤ 3 is in conflict to x ≥ 10 and hence
produce {A,B} as unsatisfiable core. This core is clearly not minimal since {B} is already
unsatisfiable.

Another problem arises if the input contains ground constraints. For the constraints [(A, 0 ≤
1), (B, 0 ≥ 2)], the solver will first transforms them into the tableau s = 0 and the indexed
atoms (A, s ≤ 1) and (B, s ≥ 2), where s is a new slack-variable. Asserting both of these
atoms then detects a conflict between them and the result is the non-minimal unsatisfiable core
{A,B}.

44

Extending a Verified Simplex Algorithm René Thiemann

We show that the problems in Example 1 are the only ones which prohibit the generation
of a minimal unsatisfiable core. In a more recent version of the formalization (AFP revision
dd35fc1288c14) we proved minimality of the unsatisfiable cores for all layers under mild pre-
conditions: On Layer 3 the tableau must not contain any equation of the form x = 0, and all
indices in the atoms must be distinct. In order to satisfy these preconditions of Layer 3, we
demand in Layer 2 that the indices of the non-strict constraints are distinct, and that there is
no ground constraint 0 ≤ c or 0 ≥ c for a constant c. Finally, on Layer 1 we again demand
distinctness of the indices and we forbid ground constraints and equality constraints. The lat-
ter are problematic since each indexed equality constraint will be translated into two non-strict
inequalities that share the same index and therefore violate distinctness of indices on Layer 2.

Interestingly, the integration of minimal unsatisfiable cores required us to modify the locale
structure. For instance, the locale for asserting a new atom was previously completely inde-
pendent from the pivoting operation. In contrast, now pivoting is used for proving that each
proper subset of an unsatisfiable core is satisfiable, whenever the assertion operation detects
unsatisfiability.

4.2 Incremental Simplex

The specification Solve is monolithic: one has to invoke the function solve on every new
input so that the computation will start from scratch, even if two inputs differ only in a single
constraint. Hence, the existing formalization of Spasić and Marić definitely does not specify an
incremental simplex algorithm, despite the fact that some sub-algorithms of Phase 3 provide
an incremental interface.

Since incrementality of a theory solver is a crucial requirement for developing a DPLL(T)
based SMT solver, the second big modification is to make the existing simplex formalization
incremental at each layer. For the exact incremental interface, we closely follow Dutertre and
de Moura who propose the following operations.

• Initialize the solver by providing the set of all possible constraints. This will return a
state where none of these constraints has been asserted.

• Assert a constraint. This invokes a computationally inexpensive deduction algorithm and
returns an unsatisfiable core or a new state.

• Check a state. Perform an extensive deduction algorithm that decides satisfiability of the
set of asserted constraints. It returns an unsatisfiable core or a checked state.

• Extract a solution of a checked state.

• Compute some checkpoint information of a checked state.

• Backtrack to a state with the help of some checkpoint information.

In Isabelle we specify this informal interface for Layer 1 in the locale Incremental_Simplex_

Ops where the type-variable σ represents the state and γ is the checkpoint information.

locale Incremental_Simplex_Ops =

fixes init :: ι i_constraint list ⇒ σ

and assert :: ι ⇒ σ ⇒ ι list + σ

and check :: σ ⇒ ι list + σ

4This version of the AFP compiles with Isabelle revision dff89effe26b.

45

Extending a Verified Simplex Algorithm René Thiemann

and solution :: σ ⇒ (var, rat) mapping

and checkpoint :: σ ⇒ γ

and backtrack :: γ ⇒ σ ⇒ σ

and invariant :: ι i_constraint list ⇒ ι set ⇒ σ ⇒ bool

and checked :: ι i_constraint list ⇒ ι set ⇒ σ ⇒ bool

assumes checked cs {} (init cs)

and checked cs J s =⇒ invariant cs J s

and invariant cs J s =⇒ assert j s = Inr s ′ =⇒ invariant cs ({j} ∪ J) s ′

and invariant cs J s =⇒ assert j s = Inl I =⇒ I ⊆ {j} ∪ J ∧ @ v. (I, v) |=ics cs

and invariant cs J s =⇒ check s = Inr s ′ =⇒ checked cs J s ′

and invariant cs J s =⇒ check s = Inl I =⇒ I ⊆ J ∧ @ v. (I, v) |=ics cs

and checked cs J s =⇒ solution s = v =⇒ (J, v) |=ics cs

and checked cs J s =⇒ checkpoint s = c =⇒ invariant cs K s ′ =⇒
backtrack c s ′ = s ′′ =⇒ J ⊆ K =⇒ invariant cs J s ′′

The interface consists of the six operations init , . . . , backtrack to invoke the algorithm,
and the two invariants invariant and checked , where the latter entails the former.

Both invariants take the same list of arguments invariant cs I s and checked cs I s . Here,
cs is the global set of indexed constraints that is encoded in state s . It can only be set by
invoking init cs and is kept constant otherwise. The parameter I indicates the subset of all
constraints that has been asserted in state s .

We shortly explain the specification of assert and backtrack and leave the usage of the
remaining functionality to the reader.

For the assert operation there are two outcomes. If the assertion of index j was successful
and delivers a new state s ′ then the newly asserted set of constraints is indeed increased by
precisely the index j . Otherwise, the operation returns some unsatisfiable set of indices I such
that I is a subset of everything that has been asserted, including j , and the set of all I -indexed
constraints is unsatisfiable.

The backtracking facility works as follows. Assume one has computed the checkpoint infor-
mation c in state s , which is only permitted if s satisfies the stronger invariant for some set of
indices J . Afterwards, one may have performed arbitrary operations to switch to state s ′ which
corresponds to a superset of indices K ⊇ J. Then purely from s ′ and c one can compute a new
state s ′′ via backtrack that corresponds to the old set of indices J . Of course, the implementa-
tion should be done in a way that c is small in comparison to s , so in particular c should not be
s itself. And indeed our implementation behaves in the same way as the informally described
algorithm by Dutertre and de Moura: for a checkpoint we store (indexed) atoms, but not the
tableau.

In order to implement the incremental interface, we took the same approach as Spasić and
Marić. We began by constructing specifications like Incremental_Simplex_Ops for the other two
layers. Next, in order to implement some layer, we tried to use the existing functionality of the
various phases which often required further generalizations.

For instance, the operations of Phase 3 could mostly be taken from the existing formalization,
but a few generalizations w.r.t. indexed atoms had to be integrated. Similarly, Phase 1 requires
another generalization in the locale To_Ns : now, both directions enforce indexed variants.

locale To_Ns =

fixes to_ns :: i_constraint list ⇒ α i_ns_constraint list

46

Extending a Verified Simplex Algorithm René Thiemann

and from_ns :: α valuation ⇒ α ns_constraint list ⇒ rat valuation

assumes (I,v) |=ics cs =⇒ ∃ w. (I,w) |=ins to_ns cs

and (I,w) |=ins to_ns cs =⇒ (I,from_ns w (flat (to_ns cs))) |=ics (I,cs) (* new *)

Interestingly, in the translation of a satisfying assignment via from_ns , it is not required
to first filter cs to those constraints that have an index from I because of some newly proven
monotonicity property. The benefit of not having to filter can then be exploited in the im-
plementation. In the verified algorithm, the previously computed non-strict constraints to_

ns cs are reused, whenever a satisfying assignment needs to be converted via from_ns .
As final result of our formalization, we combine the implementations of all phases and layers

to obtain a fully verified implementation of the simplex algorithm w.r.t. the specification defined
in the locale Incremental_Simplex_Ops .

5 Conclusion

We developed an Isabelle/HOL formalization of an incremental simplex algorithm with unsat-
isfiable core generation.

It is mainly an extension of the simplex formalization of Spasić and Marić. The modular
structure of their proof was clearly beneficial. It supported a step-by-step integration of the
required changes to provide unsatisfiable cores. In particular, we did not have to touch the
pivoting function, one of the most complex operations of the existing formalization. However,
the refinement approach of the existing formalization was also sometimes cumbersome. Since
the top-level specification was non-incremental and did not include unsatisfiable cores, we had
to integrate these features into several layers of the refinement.

The new incremental simplex formalization is only a stepping stone towards our initial
goal, the development of a verified SMT solver that is based on the DPLL(T) approach. It
remains to figure out if and how it can be coupled with the existing DPLL based verified SAT
solver [BFLW18]. Moreover, our current simplex algorithm only supports the theory of LRA.
Here, the integration of techniques like branch and bound or Gomory cuts would be interesting
for the support of LIA, or, more generally, mixed integer problems [DdM06, Chapter 4 of
Technical Report]. In order to formally prove termination, a recent transformation [Bro18]
might be useful which turns arbitrary mixed integer problems into bounded ones.

Acknowledgments

This research was supported by the Austrian Science Fund (FWF) project Y757. We thank
Ralph Bottesch, Max W. Haslbeck and the anonymous reviewers for their helpful comments.

References

[Bal14] Clemens Ballarin. Locales: A module system for mathematical theories. J. Autom. Rea-
soning, 52(2):123–153, 2014.

[BCI+16] Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf, and Nir Piterman. T2:
Temporal property verification. In Marsha Chechik and Jean-François Raskin, editors,
Tools and Algorithms for the Construction and Analysis of Systems, 22nd International
Conference, TACAS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, vol-
ume 9636 of Lecture Notes in Computer Science, pages 387–393. Springer, 2016.

47

Extending a Verified Simplex Algorithm René Thiemann

[BFLW18] Jasmin Christian Blanchette, Mathias Fleury, Peter Lammich, and Christoph Weidenbach.
A verified SAT solver framework with learn, forget, restart, and incrementality. J. Autom.
Reasoning, 61(1-4):333–365, 2018.

[BGS18] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan Shankar. Proofs in
conflict-driven theory combination. In June Andronick and Amy P. Felty, editors, Proceed-
ings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, pages 186–200. ACM, 2018.

[BJTY17] Marc Brockschmidt, Sebastiaan J. C. Joosten, René Thiemann, and Akihisa Yamada. Cer-
tifying safety and termination proofs for integer transition systems. In Leonardo de Moura,
editor, Proceedings of the 26th International Conference on Automated Deduction (CADE
2017), volume 10395 of Lecture Notes in Computer Science, pages 454–471. Springer, 2017.

[Bro18] Martin Bromberger. A reduction from unbounded linear mixed arithmetic problems into
bounded problems. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors,
Automated Reasoning, 9th International Joint Conference, IJCAR 2018, Oxford, UK, July
14-17, 2018, Proceedings, volume 10900 of Lecture Notes in Computer Science, pages 329–
345. Springer, 2018.

[CS01] Michael Colón and Henny Sipma. Synthesis of linear ranking functions. In Tiziana Margaria
and Wang Yi, editors, Tools and Algorithms for the Construction and Analysis of Systems,
7th International Conference, TACAS 2001, Genova, Italy, April 2-6, 2001, Proceedings,
volume 2031 of Lecture Notes in Computer Science, pages 67–81. Springer, 2001.

[DdM06] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic solver for
DPLL(T). In Thomas Ball and Robert B. Jones, editors, Computer Aided Verification, 18th
International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings,
volume 4144 of Lecture Notes in Computer Science, pages 81–94. Springer, 2006. Extended
version available as Technical Report, CSL-06-01, SRI International.

[GAB+17] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel,
C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann.
Analyzing program termination and complexity automatically with AProVE. J. Autom.
Reasoning, 58:3–31, 2017.

[GHN+04] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
DPLL(T): Fast decision procedures. In Rajeev Alur and Doron A. Peled, editors, Computer
Aided Verification, 16th International Conference, CAV 2004, Boston, MA, USA, July 13-
17, 2004, Proceedings, volume 3114 of Lecture Notes in Computer Science, pages 175–188.
Springer, 2004.

[MST18] Filip Marić, Mirko Spasić, and René Thiemann. An incremental simplex algorithm with
unsatisfiable core generation. Archive of Formal Proofs, August 2018. http://isa-afp.

org/entries/Simplex.html, Formal proof development.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL – A Proof Assis-
tant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer,
2002.

[SM12] Mirko Spasić and Filip Marić. Formalization of incremental simplex algorithm by stepwise
refinement. In Dimitra Giannakopoulou and Dominique Méry, editors, FM 2012: Formal
Methods - 18th International Symposium, Paris, France, August 27-31, 2012. Proceedings,
volume 7436 of Lecture Notes in Computer Science, pages 434–449. Springer, 2012.

48

http://isa-afp.org/entries/Simplex.html
http://isa-afp.org/entries/Simplex.html

	Introduction
	On Verified SMT Proofs
	Existing Simplex Formalization
	New Simplex Formalization
	Unsatisfiable Cores
	Incremental Simplex

	Conclusion

