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We present a transformational approach to program verification and software model checking
that uses three main ingredients: (i) Constraint Logic Programming (CLP), (ii) metaprogram-
ming and program specialization, and (iii) proof by transformation. (i) Constraints are used for
representing in a compact way (finite or infinite) sets of values or memory states, and logic is
used for expressing properties of program executions [2, 4, 5]. The least fixpoint semantics and
negation allow us to denote both the least models and the greatest models of programs, and thus
to reason about the (finite or infinite) behaviour of programs. (ii) Metaprogramming is used for
getting a verification technique which is parametric with respect to the programming language
in use. In particular, we introduce a CLP program I which defines the (meta)interpreter of
the programming language in which the program P to be verified is written. Then, in order to
gain efficiency, we remove this interpretation layer by specializing the interpreter I with respect
to the given program P [1, 6, 7]. The property ϕ that should be proved (or disproved) about
program P , is expressed through the CLP clauses that characterize the set of states in which ϕ
holds (or does not hold, respectively). (iii) Having derived a CLP program P̃ whose semantics
represents the behaviour of the given program P and the property ϕ to be verified, we start
a third phase which consists in the proof by CLP program transformation. This transforma-
tion is performed by using unfold/fold rules and also some generalization and goal replacement
rules which all preserve the semantics [8]. By the generalization rule [3] one can derive the
invariants which hold during program execution and are needed to verify the given property.
Rules are applied according to some strategies with the objective of deriving from program P̃ a
new CLP program P̃1 so that a selected atom, say prop, either belongs to P̃1 (in which case ϕ

holds) or no clause for prop belongs to P̃1 (in which case ϕ does not hold). We have designed
a few (semi)automatic strategies which make the transformation process to terminate. Obvi-
ously, they are all incomplete due to undecidability limitations, but they work well on many
non-trivial examples.
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