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Abstract

Modern medicine aspire to improve the effectiveness of treatment for some diseases
through, so called, personalized medicine. However, totally personalized medicine or per-
sonalized treatment of even one disease is a very ambitious goal. Subgroup analysis of
patients is a preliminary step to the total personalization. Several completely different
views on the principles and usefulness of subgroup analysis for treatment personalization
exist. This paper is limited to data-driven subgroup discovery, when collected data ana-
lyzed for significant treatment-biomarker interactions in post-hoc manner, and presents a
brief overview of key methods for this type of subgroup analysis.
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1 Introduction

The general idea of treatment personalization is that the treatment should be tailored to a
specific patient. As there is no unique definition of treatment personalization, it consolidates
a variety of approaches. One of them is identification and analysis of subgroups where one
of the compared treatment strategies outperforms others. Two types of subgroup analysis are
distinguished in clinical trial literature: confirmatory and exploratory [1]. The main difference
is that while confirmatory subgroup analysis focuses on assessment of predefined subgroups,
exploratory analysis deals with subgroups defined or derived from the data in post-hoc manner
and is intended to retrieve new knowledge. According to [1], exploratory analysis has several
subtypes. One of them is subgroup discovery, which allows us to choose the most promising sub-
groups among the large family of candidate subgroups by employing data mining and machine
learning algorithms. This paper presents the brief overview of subgroup discovery techniques.

The rest of the paper is organized as follows. In Section 2, we provide a reader with main
definitions and notation. Section 3 presents a taxonomy of methods for data-driven subgroup
discovery and overviews methods of each class of this taxonomy, and Section 4 concludes the
paper.

2 Preliminaries

Let n be the number of patients in an analyzed trial, and p potential biomarkers are used
to define subgroups. Let xi = {xi1, ..., xip} denote observed values of biomarkers for the i-
th patient evaluated before the start of the treatment. Let ti denote the treatment which was
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assigned to the i-th patient. Control and experimental treatments are compared, and we assume
ti = 0 if the i-th patient received control treatment, and ti = 1, if the i-th patient received
experimental treatment. Let yi denote an outcome evaluated on the i-th patient, and higher
yi corresponds to a better response. By X, Y and T we denoterandom variables corresponding
to xi, yi and ti. A subgroup S(X) is defined by a rule which selects a subset of the overall
population based on the vector of potential biomarkers X.

Let f(x, t) = E(Y |X = x, T = t) denote the expected response of a patient as a function
of potential biomarkers X and treatment assignment T at x and t, respectively. As the higher
values of Y are preferable, we assume that the goal of personalization is for any x to choose
t which maximizes f(x, t). In [2] a mild condition E(Y |X, T ) = h(X, z(X)T ), where z(·) is
monotone and h(·) is monotone with respect to its second argument, is proposed. Under this
condition the choice of treatment depends only on the second argument z(X)T . The particular
case is when f(X, T ) is modeled by g(q(X) + l(z(X)T )), where g(·) and l(·) are monotone
functions. In this class of models prognostic biomarkers are those that contribute only to q(X),
whereas predictive biomarkers also contribute to z(X). Hence, under mentioned condition the
choice of treatment depends only on predictive biomarkers and the goal of the methods for
treatment personalization is to recover z(X). Then, one possible way to define the subgroup of
interest is z(X) > δ ⇒ X ∈ S, where δ is some appropriate threshold.

One of the easiest examples of f is f(X, T ) = f(X, 0) + z(X)T . Here z(X) can be rewritten
as f(X, 1)− f(X, 0).

3 Principled approaches to subgroup discovery

A general taxonomy of principled approaches to subgroup discovery and biomarker evaluation
was proposed in [3] and slightly modified in [1]:

• Global outcome modeling methods (modeling f(X, T )).

• Global treatment effect modeling methods (modeling z(X)).

• Local modeling methods (direct search for subgroups with higher values of z(X) without
modeling it).

While in [1] a detailed overview on the methods of the proposed classes was presented,
this paper briefly retells it and supplements it with several groups of methods which were not
mentioned, but still fit the taxonomy.

Before we move on to the first class of the taxonomy we should mention basic methods, such
as univariate regression approach and tree-based regression approach. In univariate regression
approach, a series of regression models with treatment, biomarker and treatment-biomarker
interaction components of the expected response are fitted. The resulting biomarkers are those
biomarkers for which the interaction component of the corresponding regression model is sig-
nificant at a pre-specified significance level. These resulting biomarkers are used to define
subgroups such that each subgroup is defined by one resulting biomarker, no interaction be-
tween the biomarkers are taken into account. Such models do not work well when predictive
component z(X) depends on two independent biomarkers, for instance, z(X) = X1X2, where
X1 and X2 are two independent continuous biomarkers.

In tree-based regression approach, which is usually based on CART methodology [4], both
treatment indicator and potential biomarkers are used as predictors, and the outcome variable
is used as a target. Basic methods of this type allow us to find more complex interactions and
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to define subgroups through several biomarkers. As this approach does not distinguish between
patient’s features and a treatment variable, the resulting model may not contain treatment,
which means that it is not a model of treatment personalization. Another case of not resulting
in a model of treatment personalization is when only prognostic biomarkers are found due to
the higher effect of the prognostic biomarkers on the outcome than of the predictive ones (which
seems to be likely in practice). In [1] a reader can also find some artificial examples of datasets
when basic methods do not perform well. Hence, neither univariate regression approach nor
tree-based regression approach to modeling the outcome variable are not good solutions for
treatment personalization and should be used only as basic benchmarks for other methods.

Global outcome modeling.The goal of the methods from this class is to fit the model
of response with a potentially large number of variables selected from candidate biomarkers
and treatment-biomarker interactions. The resulting global model is then used to estimate the
differential treatment effect (e.g. f(X, 1) − f(X, 0)) and select subsets of patients by defining
thresholds for the estimated differential treatment effect. Parametric methods in this class of
methods are often based on regularized regression models. For instance, in [5] the authors
assume that prognostic and predictive components should be regularized separately as the
influence of predictive components is usually lower than of prognostic ones. A large range of
methods of Bayesian nature exists in this class too (e.g. [8]).

Another group of methods in this class deals with the concept of potential outcomes. Two
potential outcomes Ỹi(1) and Ỹi(0) for the i-th patient are hypothetical outcomes of treatment
assignments T = 1 and 0 to the i-th patient, respectively. If the i-th patient received treatment
T = t then Ỹi(t) = Yi and Ỹi(1 − t) is unobserved and is estimated from the data. Potential
outcomes can be estimated both parametrically (e.g. in [6] through Cox regression model) and
non-parametrically (e.g. in [7] through random forest).

Global treatment effect modeling. In contrast to global outcome modeling, methods of
this class do not model prognostic effects, they focus only on predictive biomarkers and model
treatment contrast as a function of biomarkers. As for parametric approaches, in [12] it was
shown that assuming equal randomization to treatment arms we can consider the problem of
fitting z(X) as a classical supervised learning problem.

A bunch of methods of this class is based on recursive partitioning procedures which split
the space of biomarkers into non-overlapping subgroups. That procedures greedily maximize
the difference between two parts of a split with respect to z(X) at every step. The examples
of such methods are interaction trees [9], model-based recursive partitioning [10], qualitative
interaction trees [11] and so on. Here we could say that these methods provide us with a
piecewise models of z(X).

In this class of methods we also should notice separately methods of optimal treatment
regimes modeling. A treatment regime (individual treatment rule) d(X) is defined as the
function that maps the vector of biomarkers to one of the treatment strategies (T = 0 or 1).
Optimal treatment regime is defined as dopt(X) = E

[
Ỹ (1)d(X) + Ỹ (0)(1 − d(X))], the rule

that maximizes an expected reward [13]. The observation that the problem of fitting optimal
treatment regime may be transformed into the problem of fitting optimal treatment contrast
led to outcome-weighted learning methodology for estimating optimal treatment rules [14].

Another group of methods came from modeling of marketing data and is called uplift model-
ing. Uplift is defined as m(X) = E(Y |X, T = 1)−E(Y |X, T = 0) = f(X, 1)−f(X, 0), which is a
variant of z(X). The first uplift modeling methods modeled f(X, 1) and f(X, 0) independently
[15], therefore they were from the class of methods modeling global outcome. Nevertheless, we
consider uplift modeling as a version of global treatment effect modeling because today there
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is a series of uplift modeling methods which model directly the uplift function, for instance:
regression-based [16], tree-based [17], SVM-based [18],, and even ensemble methods [19].

Local modeling. This is the third class of methods for subgroup discovery. The methods
which can be referred to this class do not intend to model z(X) or f(X, T ) over the entire
space of potential biomarkers, but study subsets of this space and try to identify subsets with
desirable properties.

One of the examples of local modeling methods is subgroup identification based on differen-
tial effect search [20] which has a recursive partitioning nature. At each step parent subgroup
is split into two child subgroups such that the treatment effect in one child subgroup differs
from the effect in the other one as much as possible, and the splitting process stops when some
predefined condition has been satisfied. The main difference from modeling global treatment
effect is that the there is no need to predict z(X) on the whole feature space, it is just enough
to find regions with high treatment effect.

In [21] another idea how to discover subgroups in a tree-based manner locally is presented.
To begin, a measure of patient similarity is defined and is computed for all pairs of patients
assigned to different treatment regimes. Some patients are allowed to be incomparable. With
the help of Deferred-Acceptance procedure [22] with similarity relation using for preferences
pairs of similar patients receiving different treatment are obtained. As Deferred-Acceptance
does not aim at finding stable and optimal matching, the obtained pairs may not consist of
the most similar patients, and this fact can be thought, on the one hand, as a disadvantage
of the method or, on the other hand, as preservation from overfitting, that should be explored
experimentally. To decide which treatment is better for each obtained pair of patients, a mean-
ingful rule is defined and each pair is marked with the corresponding label (control treatment
is better, experimental treatment is better, or no difference). For instance, for continuous Y ,
ti = 0 and tj = 1, where i and j are similar patients from one of the obtained pairs, we say that
control treatment is better when yi ≥ yj , and experimental treatment is better when yi < yj .
Finally, to obtain interpretable descriptions of subgroups a classification tree is learned with
given marks.

The last example of local modeling methods is a pattern-structure based method [23]. Its key
difference from other recursive partitioning algorithms is that it does not optimize some measure
of goodness of split locally, but try to arrange locally obtained subgroups into a global structure
(lattice) and derive the most promising subgroups from it. The general idea is to reduce an
exhaustive search of all possible subgroups in a considered class of subgroups through mining
only those specifications of subgroups, which contain maximal number of biomarkers describing
the same subset of patients. However, the pattern-structure based search of subgroups remains
exponential in time complexity.

4 Conclusion

Treatment personalization is tightly bound to statistics, data mining and machine learning.
Although these disciplines progress rapidly, their adaptation to medical solutions often faces
more problems then to other areas as the cost of errors is human health and life. Moreover, some
medical problems may require the invention of new methods of data analysis. In this paper, we
show the variety of approaches to data-driven subgroup discovery for treatment personalization
which aims at exploratory identification of subgroups of patients with significant prevalence in
effect of one treatment strategy over another. Hence, in this paper we find a place for uplift
modeling, matching-based and pattern-structure-based methods in the taxonomy of data-driven
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exploratory subgroup discovery methods proposed earlier in [1].
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