
EPiC Series in Computing

Volume 49, 2017, Pages 17–32

PROOFS 2017. 6th International Workshop
on Security Proofs for Embedded Systems

Symbolic Approach for Side-Channel Resistance Analysis

of Masked Assembly Codes

Inès Ben El Ouahma, Quentin Meunier, Karine Heydemann, and
Emmanuelle Encrenaz

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
{ines.ben-el-ouahma, quentin.meunier, karine.heydemann, emmanuelle.encrenaz}@lip6.fr

Abstract

Masking is a popular countermeasure against side-channel attacks, which randomizes
secret data with random and uniform variables called masks. At software level, masking is
usually added in the source code and its effectiveness needs to be verified. In this paper,
we propose a symbolic method to verify side-channel robustness of masked programs. The
analysis is performed at the assembly level since compilation and optimisations may alter
the added protections. Our proposed method aims to verify that intermediate computa-
tions are statistically independent from secret variables using defined distribution inference
rules. We verify the first round of a masked AES in 22s and show that some secure algo-
rithms or source codes are not leakage-free in their assembly implementations.

1 Introduction

Given the continuous growth of the Internet of Things, more and more connected devices col-
lect, process and exchange all types of information. Personal, sensitive or valuable data are
protected with cryptographic algorithms, yet the small size of IoT devices, and thus easy ac-
cessibility, has raised a new security challenge. In fact, embedded devices have been targets of
a particular attack domain called physical attacks. Among them, side channel attacks (SCA),
introduced by Kocher et al. in 1996 [17], aim to retrieve information about sensitive variables
by statistically analysing measured physical characteristics such as power consumption or elec-
tromagnetic emanations of the circuit, closely related to the sensitive data manipulated during
the execution.

These powerful attacks represent a serious threat for the security of embedded devices [22]
[25]. Hence, several mitigation techniques have been proposed in literature in hardware and
in software. Masking is a classical countermeasure which splits a secret x in d+1 shares using
random variables called masks, so that the combination of all the shares is x [19]. The idea
is to process the randomized shares instead of the secrets in order to remove the correlation
of intermediate computations with the latter. A d+1 order masking protects against SCA of
d-th order where an adversary can measure simultaneously d points of the executing program.
Masking schemes differ according to the operation type : for example, boolean masking consists
in XOR-ing a secret variable with a mask, whereas arithmetic masking adds a mask to the secret

U. Kühne, J.-L. Danger and S. Guilley (eds.), PROOFS 2017 (EPiC Series in Computing, vol. 49), pp. 17–32

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

mod 2n. Furthermore, masking a linear function f consists in processing f separately on each
share, and combining the results according to the masking scheme in order to get the expected
result. However, masking a non-linear function requires the definition of another function g,
which is usually done manually. This is error-prone and requires a dedicated analysis to ensure
the effectiveness of the protection. At software level, masking is usually added in the source
code as identification of secret variables is straightforward. However, compilation flow and
optimisations can alter the masking quality. Hence, it is mandatory to ensure at assembly level
that a masked program is really leakage-free. Furthermore such level for the robustness analysis
is more accurate because it can take into account leakages at different architectural points such
as registers, bus or ALU outputs.

The effectiveness of added countermeasures can be validated experimentally [23, 7, 1, 18, 14].
However, this approach requires specific equipment for acquiring side channel traces, which can
be time consuming and error prone. Moreover, any change in the masking of a program needs
a new trace acquisition. Automatic tools for generating traces have been proposed [26, 20].
Still, the trace-based evaluation uses statistical metrics which are by definition approximate
and may omit to detect a leakage [24]. Another verification approach is based on formal
methods which can offer stronger guaranties. For instance, [3] analyses codes in intermediate
representation, which is quite close to the assembly level, but its security notion has been shown
insufficient [12]. However, [12, 2] analyse source code and algorithmic levels, while they still
require compilation that may invalidate the robustness evaluation results after the compilation
optimisations. Therefore, there is a need for a tool able to analyse the side channel resistance
of assembly or binary programs.

Our contributions. In this paper, we propose a formal symbolic approach for verifying
side channel robustness of assembly programs either compiled from source code with masking
countermeasures or hand-written. We focus on first order masked programs and aim to verify
in the value based model that intermediate computations are statistically independent from
involved secret variables. The proposed method is based on an inference system to characterise
in a symbolic approach the distribution of the value of intermediate computations. We compare
experimental results of our method with two enumerative techniques. The first one is a SMT-
based technique that extends Eldib et al.’s work [12] in order to consider both n-width variables
and assembly code. The second one is a brute-force analysis. We test the three methods on
a set of common cryptographic algorithms after compilation. We show that the SMT-based
approach can precisely inform about the distribution of values but is limited to few assembly
instructions manipulating a very limited number of sensitive variables and masks. The brute-
force approach is more efficient but still suffers from a lack of scalability. By contrast, our
approach is efficient, scalable and sound, but not complete: in fact it might sometimes report
some potential leak that may not exist and thus need further investigation.

The paper is organized as follows. Section 2 presents previous works for side channel re-
sistance verification. Section 3 details the principles and modelling of the proposed symbolic
approach. Section 4 discusses experimental results. Section 5 concludes and suggests directions
for future work.

2 Related work

As mentionned in section 1, there are mainly two approaches to evaluate side-channel resistance:
the first one is based on experimental tests using statistical tools and the second one relies on
formal proofs.

18

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

A common evaluation approach is to perform a practical side-channel attack on selected
program points considering a leakage model [23, 5, 7]. However, this technique is laborious and
cannot cover the entire code as it is time consuming. Veshchikov et al. [26] have proposed SILK,
a simulator for generating leakage traces of C++ codes for microcontrollers and microprocessors.
Also, Reparaz et al. [20] have described an automatic method to generate simulated power
traces considering C codes. Yet, compilation may apply instruction reordering, replacement
or removal, which are common and necessary as soon as performance (both in computation
time and memory footprint) is a concern. Another example is the ASCOLD tool for AVR
assembly codes. It relies on the trace leakage detection tests as well to find vulnerabilities
related to a specific AVR microcontroller architecture. Once leakage traces are available, leakage
detection using the Welsh t-test is often used to analyse the side channel resistance of protected
implementations [23, 7, 1, 18]. These leakage detection tests aim to detect the influence of secret
variables on measured side channel traces using statistical hypothesis [14]. However, as recently
pointed, it must be used carefully because it may not be able to detect some leakage [24].

The second evaluation approach relies on formal proofs [8, 15]. For instance, Coron et al.
have proposed an algorithm for switching from arithmetic to boolean masking which is theo-
retically proved secure [9]. However, as mentioned previously, compilation does not guarantee
identical operations and order in the generated code. We will show in the experimental results
of our tool that this algorithm appears to contain some flaws after compilation.

Bayrak et al. have proposed a formal verification approach, implemented in the tool Sleuth,
for analysing masked programs at LLVM intermediate representation format [3]. This approach
analyses every instruction in the program according to its dependencies on program variables.
An operation depending on at least one secret variable and no random variable is considered
vulnerable and called a sensitive operation. The analysis of every operation is expressed as
a SAT problem given to a SAT solver in order to assess resistance or to find out a counter-
example. The sensitivity notion has been shown to be insufficient by Eldib et al. [12]. These
authors have proposed an automatic formal verification tool for source codes named SC sniffer
[12]. They consider a stronger security notion called perfect masking and formerly defined by
Blömer et al. [6]. An operation involving a secret is considered perfectly masked if its result does
not statistically depend on this secret. Eldib et al.’s approach considers boolean programs with
boolean variables: given a boolean intermediate computation or a function I(x, k, r) where x is
plaintext, k a secret and r a random variable, this function is perfectly masked if the number
of assignments of I to 1 is the same for each value of k. This property is formalized as a
SMT problem with enumeration along all random variables. However, this method requires to
bit-blast C programs, and to our knowledge there is no automatic tool for this transformation.
Moreover, compilation may compromise the perfect masking in the target code, and therefore
invalidate the result of the analysis performed at source code level. On the other hand, this
approach allows to quantify the amount of information leakage [13].

Barthe et al. [2] propose a formal method for verifying higher-order masking schemes, based
on the notion of t-non-interference which requires that the joint probability distribution of
any t intermediate expressions is independent from secrets. Their logic is mainly based on the
fact that some operators are invertible (e.g. XOR). For instance, the expression e = k ⊕ m,
where k is a secret and m a random mask, is invertible in m. Considering this, their method
replaces k ⊕ m with m, which implies that e contains no more secret deterministic variables.
Consequently, the verification has proved the probabilistic non-interference of e. If no such
invertible operator is found, the expression is simplified using algebraic normalizations in order
to potentially be able to apply the rule of invertible functions. The simplification is applied
only once as it may be costly. They also propose an interesting method for building large sets

19

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

of intermediate variables for high order verifications but we do not discuss this as our work
focuses on first order masking countermeasures. In summary, their approach is appealing and
gives impressive results.

The approach we proposed in this article also works on secret independence, like previously
cited works, but uses finer grain rules to determine statistical independence w.r.t. a secret. In
fact, [2] consider only the probabilistic and deterministic nature of variables, while we define
more precise distribution types. Moreover, our method applies to boolean and arithmetic
operations, while their proof system relies mainly on the existence of invertible functions.

3 Symbolic distribution method

In this section, we present our method for the verification of statistical independence of in-
termediate computations from secret variables. This method relies on a symbolic approach to
characterize the distribution of the values of an expression. The characterization consists of a
type, which specifies either that the distribution is uniform or that it is statistically indepen-
dent from secrets. The goal is to be able to infer, as much as possible, uniform expressions or
else statistically independent from secrets expressions, by combining sub-expressions, depend-
ing of the operator type and the sub-expressions dependencies. To achieve this goal, inference
rules have been defined for different operators, with the resulting types and dependencies. The
starting point is to tag all input variables with the corresponding distribution: uniform for
masks and unknown for secrets. Then, an analysis of the expression tree is performed by type
inference of intermediate nodes, until the root is reached. The tag for this node characterises
the distribution of the global expression result.

In the following, we first define the scheme of verification. Then, we define the distribu-
tion types and the independence notions. Next, we explain the main inference rules and give
an overview of the inference mechanism. Finally, we present a lower granularity analysis for
handling some special cases.

3.1 Verification Scheme

Our approach focuses on implementations of cryptographic algorithms with masking counter-
measures. It considers assembly codes composed of common operators that appear in such
programs like boolean, arithmetic, shift and rotation operations. They may also contain con-
ditional statements, bounded loops and memory accesses. However, the control-flow of the
program to analyse must be statically evaluable; in particular, there must be no indirect jumps
and the number of iterations of loops must be known at compile time. Cryptographic algo-
rithms usually fulfill this requirement. If this number cannot be statically determined, then
the loop break condition is input-dependent which implies that we cannot know when the loop
ends since our analysis is performed on symbolic variables and not on values. In future work,
we can consider to set a maximum number of iterations analysed for such loops.

The principle is to analyse the expression of the destination register content for each in-
struction in the program. User annotations must tag registers containing input variables or
memory locations as either secret variable or random uniform mask. Memory store instructions
are ignored because the register content being written in memory has necessarily been already
analysed as the result of a previous instruction. Every memory load is supposed to read initial-
ized data, which is either tagged at the beginning, or which is a result of a previously stored
and thus analysed expression.

20

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

We verify programs in the value-based leakage model in which the leakage is related to
the computed values, which differs from the transition-based model where it is the differential
between the content of a register and the new written value that leaks. A program is 1st
order side-channel free if the distribution of all intermediate computation results is statistically
independent from involved secret variables. The verification process follows the steps below:

• A data dependency graph (DDG) is computed for each instruction i of the program
under test and corresponds to the resulting expression of i. In this graph, leaves are input
variables either loaded from memory or initially stored in registers, that can be either
secret or not. Intermediate nodes correspond to operations of intermediate (previous)
instructions and the root of the graph corresponds to the operation of i.

• The DDG corresponding to an instruction is then analysed independently from other
instructions DDGs in order to check that its distribution is statistically independent from
the secrets appearing in it. This analysis can use simplification rules such as laws of
boolean algebra. For example, the expression (k ⊕ m ⊕ m ⊕ 0) is simplified as k. This
simplification phase has no influence on the distribution of the instruction expression
and the original and simplified expressions are functionally equivalent. In particular,
shift and rotation operations are transformed into a combination of bit extractions and
concatenations.

Consider the assembly code example shown in Figure 1. The registers r0, r1, r2 and
r3 contain respectively a secret variable k and masks m1, m2, m3. Figure 1b shows the data
dependency graph of the last instruction which is associated to the expression (k ⊕ m1) & ((k

⊕ m2) & m3). The verification is applied to every instruction, hence intermediate expressions
are analysed as well.

r0 <- k; r1 <- m1; r2 <- m2;

r3 <- m3

eor r4 , r0 , r1 # k ⊕ m1

eor r5 , r0 , r2 # k ⊕ m2

and r5 , r5 , r3 # (k ⊕ m2) & m3

and r5 , r5 , r4

(k ⊕ m1) & ((k ⊕ m2) & m3)

(a) Assembly code

km1 m2

m3⊕

&

&

⊕

(b) DDG of the last instruction

Figure 1: Assembly code example and DDG of the last instruction. The DDGs of the previous
instructions correspond to subtrees of this DDG

3.2 Distribution types

For a program, we distinguish 2 sets of variables: S the set of secret variables, and M the set
of masks. We call E the union set of S and M. Masks in M are supposed to be uniform and
independent. Masking actually relies on the existence of such an ability to generate uniform
and independent masks. However no assumption is made upon the distribution of variables in
S. These variables can be stored in registers or loaded from memory.

Definition 1. We define the following 4 distribution types for variables and expressions:

21

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

• Random Uniform Distribution (RUD): Let x be a variable or an expression defined on n
bits, x is tagged RUD if and only if P(x = c) = 1

2n ∀ c a constant ∈ [0;2n-1].

• Unknown Distribution (UKD)

• Constant (CST)

• (Statistically) Independent of Secrets Distribution (ISD): a distribution which is not nec-
essarily uniform but is identical for all values of the secrets. Note that a RUD is necessarily
an ISD. For example, let e = (k ⊕ m1) & m2 defined on 1 bit with k a secret and m1, m2
masks. By enumeration over the 3 variables, we obtain the following probabilities: P(e
= 0 | k = 0) = P(e = 0 | k = 1) = 3

4 and P(e = 1 | k = 0) = P(e = 1 | k = 1) = 1
4 .

Therefore, e is ISD, while it is not RUD.

Independence notions. We distinguish 2 notions of dependency for an expression e w.r.t
a variable v. If v appears in the expression of e, then e is said to be structurally depending
on v. If the distribution of the result of e depends on v, then e is statistically depending on
v. Therefore, 2 notions of independence arise: we consider an expression e to be structurally
independent of a variable v if v doesn’t appear in the expression of e. Conversely, we say that
an expression e is statistically independent of v if its distribution is independent of the value
of v, but v can appear in the expression of e.

For example in the common boolean masking scheme, we have the expression e = m ⊕
k where k, a secret variable tagged UKD, is masked with a mask m, tagged RUD (m and k are
independent and on n bits). Here, e is statistically independent of k but structurally depending
on it, as will be shown in section 3.3.

During the analysis, we keep track of structural dependencies because they may invalidate
a masking. For example consider the expression e = ((k ⊕ m) & m) on 1 bit, where k is a
secret so it is tagged UKD and m is a mask so it is tagged RUD. Given the property of XOR,
the sub-expression (k ⊕ m) is tagged RUD. If we analyse the whole expression as (RUD & RUD),
it yields ISD which means that e is statistically independent of k. However, if we compute
the distribution of e, we obtain that P(e = 0 | k = 0) = 1

2 , while P(e = 0 | k = 1) = 1.
Consequently, e is in fact statistically depending on k. Hence, structural dependencies have to
be kept.

Safe types. To show that a register content is statistically independent of secrets, the dis-
tribution of its expression needs to be either RUD, ISD, or UKD with no structural dependency
on any variable in S. Therefore the only unsafe tag is UKD with structural dependency on some
variable in S.

Notations. In the following, an expression e, whose distribution is D, is written e∼D. The
structural dependency of e w.r.t a set dep of variables in E is written e{dep}. For example for
e = m ⊕ k, we write e∼RUD{m,k}. Concerning variables, we write m∼RUD{m} for a mask m since
it depends structurally on itself by definition. Similarly, a secret k is written as k∼UKD{k}.

3.3 Inference rules

In this article, we present a subset of the defined rules where we keep track only of structural
dependencies and dominant masks introduced below. First we define two general rules called
Dom and Disjoint.

Proposition 1. Let m∼RUD{m} be a mask and e∼UKD{dep} be an expression such that m 6∈ dep.
Then (m ⊕ e)∼RUD{{m} ∪ dep}. In particular, we note that this distribution is statistically
independent of e, since it is uniform with no assumption on the distribution of e.

22

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

Proof. Consider expressions and variables on n bits. ∀ v0 ∈ [[0; 2n − 1]], the probability that e
⊕ m takes a value v0 is:

P (e⊕m = v0) =
∑

e0∈[[0;2n−1]]

P (e⊕m = v0|e = e0) · P (e = e0)

=
∑

e0∈[[0;2n−1]]

P (e0 ⊕m = v0|e = e0) · P (e = e0)

=
∑

e0∈[[0;2n−1]]

P (m = e0 ⊕ v0) · P (e = e0) because m and e are independent

=
∑

e0∈[[0;2n−1]]

1

2n
· P (e = e0) because m is uniform

=
1

2n
·

∑
e0∈[[0;2n−1]]

P (e = e0)

=
1

2n

Corollary 1 (Dom). Let e be an expression on n bits that can be written as e = m0 op m1 op
... op mt op e’ such that:

(i) op ∈ {⊕, add mod 2n},
(ii) ∀ j, 0 ≤ j ≤ t, mj ∈M
(ii) dep(e’) ∩ m0 ∩ m1 ∩ ... ∩ mt = ∅,

then e is tagged RUD and mj are said to be dominant masks of e. Informally, if there exists a
mask that XORs an arbitrary expression e’ or is added to it mod 2n, and if this mask does not
appear in e’, then the resulting expression e is random and of uniform distribution.

We keep track of dominant masks for each expression and distinguish a set for XOR dominant
masks and another set for additive dominant masks. Theses sets do no appear in the presented
rules in order to simplify the writing, but they are maintained as follows. If we write dom⊕(e)

the set of xor dominant masks of e and dom+(e) the set of additive dominant masks of e, we
have:

• dom+(e0 ⊕ e1) = ∅
• dom⊕(e0 ⊕ e1) = dom⊕(e0) ∪ dom⊕(e1) − (dom⊕(e0) ∩ dom⊕(e1))

• dom⊕(e0 + e1) = ∅
• dom+(e0 + e1) = dom+(e0) ∪ dom+(e1) − (dom+(e0) ∩ dom+(e1))

Proposition 2 (Disjoint). Let u∼ISD{dep0} and v∼ISD{dep1}. For every binary operation
op, if dep0 ∩ dep1 ∩ M = ∅, then (u op v)∼ISD{dep0 ∪ dep1}. In other words, if the
expressions u and v are ISD, and the masks in u do not appear in v and vice versa, then the
resulting expression of a binary operation of u and v is ISD.

Proof. Since u is statistically independent from S, then each bit of each occurrence of each
secret variable in u is masked with a variable in M (somewhere in the expression tree) so that
the result is uniformly distributed. The same is true for v. Since expressions u and v have no
masks in common, all masked expressions resulting from the occurrences of all secret variables
in u are independent from all masked expressions resulting from secret variables in v. Thus, u
and v are statistically independent for every binary operation op.

In the following, we consider only one secret variable k, and n bit variables, without loss of
generality. ∀ c0 ∈ [[0; 2n − 1]], k0 ∈ [[0; 2n − 1]], we have

23

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

P (u op v = c0 ∧ k = k0) =
∑

u0,v0 | u0 op v0=c0

P (u = u0 ∧ v = v0 ∧ k = k0)

=
∑

u0,v0 | u0 op v0=c0

P (u = u0 ∧ k = k0) · P (v = v0) because (u, k) in-
dependent from v

=
∑

u0,v0 | u0 op v0=c0

P (u = u0) · P (k = k0) · P (v = v0) because u is inde-
pendent from k

= P (k = k0)
∑

u0,v0 | u0 op v0=c0

P (u = u0) · P (v = v0)

= P (k = k0)
∑

u0,v0 | u0 op v0=c0

P (u = u0 ∧ v = v0) because u and v

are independent

= P (k = k0) · P (u op v = c0)

Furthermore, we define specific inference rules for each operation. In the following, we
present the set of rules for the XOR and addition mod 2n that share the same rules, and the set
of rules for AND and OR operators which have common rules as well. We omit to write the rules
that produce UKD tags for the presented operators. The subtraction (u - v) is simplified as
(u + bitwise-not(v) + 1), therefore its analysis relies on the rules of the addition operator.
Analysing the NOT operator amounts to analysing its argument.

XOR and Addition mod 2n In the following rules, the considered dominant masks are
those of the same operator, i.e. dom⊕ for the XOR, and dom+ for the addition modulo 2n.

1. z = u∼RUD{dep0} {⊕, +} v∼RUD{dep1}

• z∼RUD{dep0 ∪ dep1} if ∃ m ∈ M , such that (m ∈ dom(u) and m 6∈ dep1) or (m ∈ dom(v)

and m 6∈ dep0)
Following the corollary 1, we look for a dominant mask in u or in v that can render z RUD.

2. z = u∼RUD{dep0} {⊕, +} v∼ISD{dep1}
• z∼RUD{dep0 ∪ dep1} if ∃ m ∈ M such that m ∈ dom(u) and m 6∈ dep1

3. z = u∼RUD{dep0} {⊕, +} v∼UKD{dep1}
• z∼RUD{dep0 ∪ dep1} if ∃ m ∈ M such that m ∈ dom(u) and m 6∈ dep1

4. z = u∼RUD{dep} {⊕, +} v∼CST

• z∼RUD{dep}
5. z = u∼ISD{dep0} {⊕, +} v∼ISD{dep1}
• z∼ISD{dep0 ∪ dep1} if dep0 ∩ dep1 ∩ M = ∅ (cf. Rule Disjoint)

AND, OR

1. z = u∼RUD{dep0} {&, |} v∼RUD{dep1}
• z∼ISD{dep0 ∪ dep1} if dep0 ∩ dep1 ∩ M = ∅
• z∼ISD{dep0 ∪ dep1} if ∃ m0 such that m0 ∈ dom(u) and m0 6∈ dep1, or if ∃ m1 such that
m1 ∈ dom(v) and m1 6∈ dep0

24

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

2. z = u∼RUD{dep0} {&, |} v∼ISD{dep1}
• z∼ISD{dep0 ∪ dep1} if dep0 ∩ dep1 ∩ M = ∅ (cf. rule Disjoint))

3. z = u∼RUD{dep} {&, |} v∼CST

• z∼ISD{dep}
4. z = u∼ISD{dep0} {&, |} v∼ISD{dep1}
• z∼ISD{dep0 ∪ dep1} if dep0 ∩ dep1 ∩ M = ∅ (cf. rule Disjoint)

Inference mechanism. Algorithm 1 describes the analysis performed recursively on a DDG,
starting from the root operation of the instruction. It tries to infer the RUD type, then the ISD

type. If no rule is found, an UKD type is raised, meaning that no specific information on the
distribution and statistical dependencies is known.

Algorithm 1 Distribution inference algorithm

1: function infer(e)

2: if e is a leaf then
3: if e ∈ S then return UKD{e}
4: else if e ∈ M then return RUD{e}
5: else return CST

6: else
7: le{ld} = infer(e.left child)

8: re{rd} = infer(e.right child)

9: if ∃ rule for (le{ld} e.op re{rd}) that returns RUD{dep} then
10: return RUD{dep}
11: else if ∃ rule for (le{ld} e.op re{rd}) that returns ISD{dep} then
12: return ISD{dep}
13: else return UKD{dep}

Example. We use our running example to illustrate the inference mechanism. Figure 2 shows
the resulting inference tags for the expression (k ⊕ m1) & ((k ⊕ m2) & m3) corresponding
to the last instruction in the example in figure 1. The root of the DDG is tagged ISD so the
result of this instruction is statistically independent from the secret k.

km1 m2

m3⊕

&

&

⊕

RUD{m1}

RUD{m3}

RUD
{k, m1}

RUD
{k, m2}

ISD {k,
m2, m3}

ISD {k, m1, m2, m3}

RUD{m2}UKD{k}

Figure 2: Distribution inference of the running example

25

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

3.4 Bit level analysis

For cases where the distribution analysis fails to prove independency from the secrets, a finer
grain strategy is used, in which the resulting expression is split into several expressions, with a
bit granularity: for each bit of the resulting expression, the corresponding dependency graph is
created and analysed. If all these expressions are RUD, a dominant mask is searched which does
not appear in the other sub-expressions (at the bit granularity). In that case, this means that
all the bit expressions are independent and that the global result is RUD. If this not the case, we
try to check if the result is ISD, using the fact that the concatenation of an ISD bit with a CST
expression and the deduplication of an ISD bit both produce an ISD result. If this strategy can
work well with shift and bitwise operators, it is more costly and does not necessarily give good
results with arithmetic operators, since the carry computation is more complex and typically
mixes the mask bits ranks. Yet, this strategy allows to deal with expressions in the form of
bit-fields concatenations (e.g. (e0 & 0xF0) | (e1 & 0xF)).

4 Experiments

In this section, we present experimental results of our method on a set of first order masked
assembly programs described in literature. We implemented our method in a tool that analyses
ARM Thumb-2 assembly codes. Widely used in embedded devices, ARM processors have a
32-bit instruction set with 16 general registers numbered from 0 to 15. The Thumb mode
allows to mix 16-bit and 32-bit instructions to reduce the code size, which is useful in resource
constrained devices. To model a program, we used z3py, the Python binding of Z3 (a SMT
solver) [21]. The Python binding facilitates the writing of expressions thanks to the accessibility
to Python structures (loops, if-else, assignments...). Therefore, we implemented our distribution
inference algorithm in Python, using the data structures of z3py for representing variables of
the assembly programs; however, we limited the use of z3py functions to the simplify function,
which performs local simplifications in expressions.

As said in Section 1, we compare our method with two enumeration-based techniques which
are described in the following. Afterwards, we present the selected test examples and pro-
vide experimental results for our method and the two compared methods. We discuss these
results and expose the advantages and limitations of our method that we compare with the
enumeration-based methods scores. Finally, we conclude by proposing a possible extension of
our method for higher order masked programs and for the transition-based leakage model.

4.1 Enumeration techniques

We implemented two enumeration techniques. The first one, called C-enumerative generates a
C program in which the result of the expression is computed for all possible combinations of
variable values. Then, the expression distributions are compared according to the secret values,
showing the distribution type. The second enumeration technique, called SMT-enumerative, is
based on Eldib’s SMT technique [12] presented in Section 2. The SMT formulation enumerates
explicitly on values of masks and implicitly (i.e. via the solver) on values of secret variables.
Finally it asks the solver to find two different values of a secret variable for which the resulting
expression gives different distributions. In the SMT-enumerative method, we extended Eldib’s
approach to deal with multi-bit variables. The SMT problems are generated in the SMT-lib
standard format in order to be checked by different solvers if desired. The C-enumerative
method can serve as a reference for resulting distributions, and return whether an expression

26

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

Table 1: Benchmark characteristics

Program #ASM inst Size in bits #Masks #Secrets #Vulnerabilities

in literature

P6 [12] 8 1 3 3 2

Masked Chi [12] 8 1 2 3 0

Goubin Conversion [15] 8 4 2 1 0

Coron Conversion [9] 37 4 3 1 0

Masked AES 1st round [16] 422 8 6 16 + 16 0

Simon TI 1st round [23] 15 32 5 3 + 2 0

is vulnerable or if it is RUD or ISD following the tag definitions of the symbolic approach.
The SMT-enumerative technique only gives statistical dependence (or independence) w.r.t. the
secrets, which is enough for tracking our leakage model.

4.2 Benchmarks

Table 1 presents the characteristics of the test suite we considered. The first column lists the
program names and their references. The second and third columns show respectively the
number of assembly instructions and the data width. Next, columns 4 and 5 give the number
of input masks and secret variables of each program. We consider plain texts encrypted by a
cipher as secrets, like in [10]. The last column contains the number of vulnerabilities for each
program according to their description in references at source or algorithmic level.

Our benchmark starts with two small boolean programs: P6 1 which is a logic design of the
AES S-Box from the test suite in [12], and a masked C version of a bit blasted Chi function
synthesised in [11]. Subsequently, we considered an algorithm of Goubin et al. [15] that converts
a boolean masking to an arithmetic masking, and an algorithm of Coron et al. [9] which performs
the reverse. The latter contains a loop for which the number of iterations increases with the
input size, and for simplicity we considered 4-bit data requiring a single iteration. Goubin
and Coron algorithms are designed for functions combining different types of operations, for
instance boolean and arithmetic, which require different types of masking. Next, the AES being
a state of the art algorithm, we implemented a masked version of 128-bit AES according to
the masking scheme in [16]. In this scheme, 6 masks are used to harden the entire algorithm
with no mask refresh between rounds. Finally, the Simon block cipher for 32-bit words ends
the benchmarks. Introduced in 2013 [4], it is a family of lightweight block ciphers optimized for
hardware implementations that offers a trade off between size and security level for constrained
hardware and software environments. We implemented a masked version of this block cipher
as explained in [23] which is based on the Threshold Implementation (TI) protection with two
shares. All benchmarks implementations were done in C and compiled to the targeted ARM
assembly with GCC and the optimisation level -O2, commonly used for combined performance
and size optimisations.

1http://www-bcf.usc.edu/~wang626/project_sniffer.htm

27

http://www-bcf.usc.edu/~wang626/project_sniffer.htm

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

4.3 Results

Table 2 draws a parallel between analysis results of our method and those of the enumeration-
based methods. For the symbolic distribution method, it gives the number of instructions tagged
with each of the 4 defined distribution types presented in 3.2. For the C-enumerative technique,
it shows the number of instruction results which are RUD, ISD or which are vulnerable, i.e. for
which there exist two different secret values that produce different distributions for the expres-
sion. The SMT-enumerative detects the same vulnerable instructions as the C-enumerative,
however it cannot distinguish between ISD and RUD.

The assembly code of P6 program contains instructions which all have independent distri-
butions from secrets, while its source code is leaky [12]. The masked Chi C implementation
has been shown to have all its intermediate computations statistically independent from se-
crets [12]. However, the corresponding assembly code appears to have 4 vulnerable instructions
using enumerative techniques, which are the same 4 instructions typed as unsafe by the sym-
bolic distribution method. This is due to instruction reordering or computation simplification
performed by the compilation phase. These vulnerabilities were not present in table 1 and
illustrate the necessity to verify the efficiency of added masking protections after compilation.

In [15], each computation of the Goubin Conversion algorithm is shown to be independent
from the secret, thus it is proven secure. According to enumerative methods, the generated
assembly program turns out to have no vulnerable instructions either. However, the symbolic
method gives 3 instructions tagged UKD, thus it cannot say anything about their distributions.
Similarly, [9] demonstrates that each intermediate variable in the Coron Conversion algorithm is
uniformly distributed. Yet, the assembly program presents 7 vulnerable instructions according
to the enumeration techniques. These 7 instructions are included in the 13 instructions tagged
unsafe by the symbolic method. Again, we observe the need to check side channel resistance
at assembly level since these leakages result from some compiler reordering or optimization.
Also, these examples illustrate the incompleteness of our method which cannot demonstrate
statistical independence from secrets for 6 instructions, while they are leakage-free according
to the enumeration methods.

The masked AES algorithm is proved secure against first order side channel attacks in [16].
The generated assembly implementation cannot be verified by the enumeration techniques be-
cause of the number of input variables and their size in bytes. On the other hand, our symbolic
distribution method can perform an analysis of the first round in a reasonable amount of time
(less than a minute, cf. Table 3). In this round, all instructions are tagged with safe tags.

Simon TI algorithm with two shares does not meet the TI requirements for hardware im-
plementations, but is said to be suited for software implementations if an order process can
be forced [23]. In our C implementation, we introduced parenthesis to specify the requested
computation order. However, the computation order imposed by added parenthesis was not
respected by the compiler which applied reordering based on the commutative and associative
laws of XOR; the generated code produced a leaking intermediate result. As in the case of AES,
Simon TI program cannot be analysed by the enumerative methods. Concerning the symbolic
distribution analysis, 3 unsafe instructions were found in the first round and 2 in the next five
rounds. The expression of one of the 3 potentially vulnerable instructions is: ROL(t0,8) ⊕
ROL(m2,8) ⊕ ROL(m2,8), in which ROL stands for a left rotation, t0 is one of the two plain
text words and m2 a mask. In fact, this expression is reducible to ROL(t0,8), hence the plain
text is revealed, while it must be masked as considered secret.

Table 4 shows the number of types obtained with the symbolic method at word level and
at bit granularity. For instance, the column #RUDw gives the number of instructions tagged as

28

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

Table 2: Analysis results

Program
Ref (enumeration) Symbolic

RUD # ISD # Vuln # RUD # ISD # UKD # CST

P6 6 2 0 6 2 0 0

Masked Chi 2 2 4 2 2 4 0

Goubin Conversion 7 1 0 5 0 3 0

Coron Conversion 19 11 7 14 10 13 0

Masked AES 1st round - - - 302 0 0 120

Simon TI 1st round - - - 7 4 3 1

Table 3: Verification time

Program
Symbolic
indep

Enum C/SMT

indep
Total
indep

Symbolic
time

Enum C
time

SMT
time

P6 8 8 8 <1s <1s <1s

Masked Chi 4 4 4 <1s <1s <1s

Goubin Conversion 8 8 8 <1s <1s 35mn

Coron Conversion 24 30 30 2s 1s 5,6h

Masked AES 1st round 422 - 422 22s - -

Simon TI 1st round 13 - 13 8.5s - -

RUD after the word analysis, while the column #RUDb gives the number of instructions that were
first tagged UKD and which resulted RUD after the analysis at bit level. The columns #<tag>
total give the final number of instructions tagged as <tag>. We notice that for the Coron
conversion and Simon programs, the bit level analysis allows to give safe types for around 40%
of the instructions initially tagged as unsafe. In the case of the AES, it even removes all unsafe
tags. Although it requires to breakdown an expression and performs more analyses, the bit
level analysis appears to be very useful as it can render safe a relatively considerable percentage
of initially unsafe instructions.

Scalability and accuracy. Both enumerative methods may not terminate due to the com-
binatorial blow-up of the enumeration over all variables of an expression. Eldib et al. analyse
bit-blasted codes with their SMT tool; however this transformation is not trivial, and to the
best of our knowledge there is no tool for bit-blasting programs. There is clear evidence that
this aspect decreases the scalability of both enumerative methods, as shown in the experiments.
On the other hand, the distribution method is independent from the data size and is linear in
the number of variables and operations of the analysed expression. When the bit granularity
is needed, each bit is analysed separately, which multiplies the required computations by the
number of bits.

Quite evidently, the C-enumerative and SMT-enumerative methods are sound. The sym-

29

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

Table 4: Breakdown results for the symbolic method

Program #RUDw #RUDb

#RUD

total #ISDw #ISDb

#ISD

total #UKDw #UKDb

#UKD

total #CST

#total
inst

P6 6 0 6 2 0 2 0 0 0 0 8

Masked Chi 2 0 2 2 0 2 4 4 4 0 8

Goubin Conv. 0 0 5 0 0 0 3 3 3 0 8

Coron Conv. 10 4 14 6 4 10 21 13 13 0 37

Masked AES

1st round 222 80 302 0 0 0 80 0 0 120 422

Simon

1st round 7 0 7 0 3 3 7 4 4 1 15

bolic distribution method is sound as well, since the inference system guaranties the statistical
independence from secrets when stated. However, only the enumerative methods are complete
(when they terminate). Indeed, the symbolic method can tag an expression as UKD with struc-
tural dependencies on some secret (i.e. unsafe), while in fact its distribution does not truly
depend on this secret.

Compared to Barthe et al. [2], we think that our method can analyse finer expressions, such
as (k ⊕ m1 ⊕ m2) & (k ⊕ m2), for which it can conclude ISD whereas from our understand-
ing, their algorithm cannot conclude. Besides, the bit-level analysis with bit-field concatenations
and constant propagation is another case easily processed with our method for which [2] seems
not to be very adapted.

Masking order and transition-based leakage model. We presented our method for the
analysis of first order side channel robustness in the value based model. The presented method
is not directly applicable to higher order masking. However, it can be extended to analyse such
programs using the following approach. Once the analysis of all expressions at the first order
is complete, all the tuples of values (pairs at the second order, triples at the third order, etc.)
need to be checked to ensure that no combination can reveal dependence with the secret. At the
second order, this can be done for instance by checking that for each pair, one of the expressions
of the pair has a dominant mask which does not appear in the structural dependencies of the
other expression. More generally, at order k, considering a set of expressions (e0, ..., ek−1), there
must be an expression ep such that a dominant mask in ep does not appear in the structural
dependencies of any of the ei(i 6= p), and such that (e0, ..., ep−1, ep+1, ..., ek−1) does not leak
information at the order k − 1.

Another leakage model is the transition-based model. In this model, the value leaked by an
instruction is a combination of the result of the instruction and the previous value contained
in the destination register. In the more general framework, we can consider that both values
are entirely leaked. The analysis in a first order transition-based model is then equivalent to
an analysis in a second-order value-based model (if we consider initial register values to be
irrelevant). A less general framework is to consider that the value leaked is the result of the
XOR of both the previous and the new values of the register, following the idea that the leak

30

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

is highly dependent on the modified bits. In this case, the presented method can be adapted
by computing the XOR of the current instruction with the value previously contained in the
destination register before performing the expression analysis. Of course, this approach requires
more computations, since expressions are globally twice larger.

5 Conclusion and perspectives

We proposed a symbolic method for verifying side channel robustness of first-order masked
programs in the value-based model. The analysis relies on an inference system which charac-
terises the distribution of an expression according to defined distribution types. An expression
is leakage-free if its distribution is statistically independent from all the secrets appearing in
it. We implemented our method for the analysis of programs at the assembly level in order
to take into consideration the compilation process. We compared this symbolic method with
two enumerative approaches, one in C and one using a SMT formulation, and showed that the
symbolic method scales much better when the size of the expression grows. For instance, the
symbolic method was able to verify a full round of the AES, while the enumerative methods
quickly reach their limits in computation time. Besides, the symbolic approach allowed to reveal
two flaws in a masked Simon implementation which was supposed to be safe at the software
level, due to compilation optimisations. Yet, the drawback of the symbolic method is that it is
not complete, meaning that in some cases, instructions cannot be tagged as safe while in fact
they are.

Future work include refinement of the set of rules to reduce the number of unsafe tags
making our method incomplete, and eventually define cases where the leakage can be stated with
certainty, which avoids the need for further analysis of the given expression. The refinement
of the bit level analysis can improve the results accuracy as well. In cases where the bit
level analysis fails to state the statistical independence, we can consider using the enumerative
approach at the bit level but need to take into account inter-bit dependencies. As discussed in
the results section, another line of research would be the extension of the symbolic approach
to consider other leakage models or to analyse the side channel resistance of higher masking
orders.

References

[1] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-Xavier Standaert.
On the cost of lazy engineering for masked software implementations. In International Conference
on Smart Card Research and Advanced Applications, pages 64–81. Springer, 2014.

[2] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and
Pierre-Yves Strub. Verified proofs of higher-order masking. In Eurocrypt 2015, number 9056, 2015.

[3] Ali Galip Bayrak, Francesco Regazzoni, David Novo, Philip Brisk, François-Xavier Standaert, and
Paolo Ienne. Automatic application of power analysis countermeasures. IEEE Trans. Computers,
64(2):329–341, 2015.

[4] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis
Wingers. The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology ePrint
Archive, 2013:404, 2013.

[5] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen. Higher-
order threshold implementations. In Lecture Notes in Computer Science, volume 8874, pages
326–343. Springer-Verlag, 2014.

31

Symbolic Approach for Side-Channel Resistance Analysis Ben El Ouahma, Meunier, Heydemann, Encrenaz

[6] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably secure masking of aes. In
International Workshop on Selected Areas in Cryptography, pages 69–83. Springer, 2004.

[7] Cong Chen, Mehmet Sinan Inci, Mostafa Taha, and Thomas Eisenbarth. Spectre: A tiny side-
channel resistant speck core for fpgas. IACR Cryptology ePrint Archive, 2015:691, 2015.

[8] Jean-Sébastien Coron. Higher order masking of look-up tables. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 441–458. Springer, 2014.

[9] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Kumar Vadnala. Conver-
sion from arithmetic to boolean masking with logarithmic complexity. In International Workshop
on Fast Software Encryption, pages 130–149. Springer, 2015.

[10] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side channel cryptanalysis of a
higher order masking scheme. In International Workshop on Cryptographic Hardware and Embed-
ded Systems, pages 28–44. Springer, 2007.

[11] Hassan Eldib and Chao Wang. Synthesis of masking countermeasures against side channel attacks.
In CAV, volume 8559, pages 114–130, 2014.

[12] Hassan Eldib, Chao Wang, and Patrick Schaumont. Formal verification of software countermea-
sures against side-channel attacks. ACM Transactions on Software Engineering and Methodology
(TOSEM), 24(2):11, 2014.

[13] Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Schaumont. Quantitative masking strength:
quantifying the power side-channel resistance of software code. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 34(10):1558–1568, 2015.

[14] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing methodology for
side-channel resistance validation. In NIST non-invasive attack testing workshop, pages 158–172,
2011.

[15] Louis Goubin. A sound method for switching between boolean and arithmetic masking. In Cryp-
tographic Hardware and Embedded SystemsCHES 2001, pages 3–15. Springer, 2001.

[16] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An aes smart card implementation
resistant to power analysis attacks. In ACNS, volume 3989, pages 239–252. Springer, 2006.

[17] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems.
In Annual International Cryptology Conference, pages 104–113. Springer, 1996.

[18] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards secure 1st-order masking
in software. IACR Cryptology ePrint Archive, 2017:345, 2017.

[19] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal secu-
rity proof. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 142–159. Springer, 2013.

[20] Oscar Reparaz. Detecting flawed masking schemes with leakage detection tests. In Lecture Notes
in Computer Science. Springer-Verlag, 2016.

[21] Microsoft Research. Z3py-python interface for the z3 theorem prover, 2012.

[22] Eyal Ronen, Colin OFlynn, Adi Shamir, and Achi-Or Weingarten. IoT Goes Nuclear: Creating a
ZigBee Chain Reaction. Technical Report 1047, 2016.

[23] Aria Shahverdi, Mostafa Taha, and Thomas Eisenbarth. Lightweight side channel resistance:
Threshold implementations of simon. IEEE Transactions on Computers, 66(4):661–671, 2017.

[24] François-Xavier Standaert. How (not) to use welch’s t-test in side-channel security evaluations.
IACR Cryptology ePrint Archive, 2017:138, 2017.

[25] D. Strobel, D. Oswald, B. Richter, F. Schellenberg, and C. Paar. Microcontrollers as (in)security
devices for pervasive computing applications. Proceedings of the IEEE, 102(8):1157–1173, Aug
2014.

[26] Nikita Veshchikov. Silk: high level of abstraction leakage simulator for side channel analysis.
In Proceedings of the 4th Program Protection and Reverse Engineering Workshop, page 3. ACM,
2014.

32

	Introduction
	Related work
	Symbolic distribution method
	Verification Scheme
	Distribution types
	Inference rules
	Bit level analysis

	Experiments
	Enumeration techniques
	Benchmarks
	Results

	Conclusion and perspectives

