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Abstract

Solving systems of parametric linear equations with parameters varying within closed
intervals is a hard computational problem. However, we may reduce the problem dimension
and thus make the problem more tractable by utilizing the monotonicity of the solution
components with respect to the parameters. In this paper, we propose two improvements of
the standard monotonicity checking techniques. The first improvement relies on creating
a system with original variables and their derivatives as unknowns, and the second one
employs the so-called p-solution. By a series of numerical experiments we show that the
improved monotonicity approach outperforms the standard one.

1 Introduction

In solving real-life problems, we often deal with data that are not know exactly due to various
kinds of inexactness – measurement errors, incomplete knowledge, data estimation etc. In this
paper, we assume that lower and upper bounds on uncertain data are known; i.e., we assume
that we are dealing with interval valued quantities. Using intervals is advantageous because of
their ability to track rounding and truncation errors and what follows to produce guaranteed
solutions. However, due to the so-called dependency problem, classical interval computations
often lead to large overestimation which makes their results irrelevant. Therefore, we address
here a more general problem with dependencies between interval entries. More specifically,
we focus on solving systems of linear equations with entries dependent on parameters varying
within prescribed intervals.

Formally, consider an n-dimensional system of linear equations

A(p)x = b(p),

in which the constraint matrix A(p) and the right-hand side vector b(p) depend on parameters
p1, . . . , pK . The parameters are assumed to vary within compact intervals, i.e., for k = 1, . . . ,K,
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pk ∈ pk = [p
k
, pk]. Thus, instead of a single parametric linear system, we have the following

family of parametric linear systems

A(p)x = b(p), p ∈ p, (1)

where p = (p1, . . . , pK) and p = (p1, . . . ,pK)T .
As a special case, we will also discuss systems with affine-linear dependencies, meaning that

the entries of A(p) and b(p) are affine-linear functions of parameters. In this case, A(p) and
b(p) can be expressed as

A(p) =
K
∑

k=1

A(k)pk, b(p) =
K
∑

k=1

b(k)pk,

where A(k) ∈ Rn×n and b(k) ∈ Rn are fixed and known a priori.
The solution set of the system (1) is usually defined as the set of solutions to all systems

from the family (1), i.e.,

Σ , {x ∈ R
n | ∃p ∈ p : A(p)x = b(p)}.

The (also called united) solution set Σ is hard to characterize, even for particular classes of
the affine-linear case. For example, the explicit description of the symmetric systems (where
the symmetry of the constraint matrix defines the linear dependencies) was developed, e.g., in
[4, 18, 19]. The general case of affine-linear dependencies was characterized by Popova [26] in
particular. In such case, the shape of the solution set is described by quadrics (see Fig. 1).
Handling Σ is computationally hard. Many questions, such as nonemptiness, boundedness or
approximation, are NP-hard even for very special subclasses of problems; see [15, 16, 20].

Example 1. Consider the following three-dimensional parametric interval linear system with
nonlinear dependencies in the right-hand side vector:





1 p1 p2
p1 2 p1
p2 p1 3



x =





1
p21
p21



 , (2)

where p1 ∈ [0, 1], p2 ∈ [0, 0.9]. The solution set of the system is depicted in Fig. 1. To give
a better idea, we display the solution set from two different perspectives there.

Let us now introduce some interval notation. An interval vector is defined as

x , {x ∈ R
n | xi 6 xi 6 xi, i = 1, . . . , n},

where x, x ∈ Rn, x 6 x, are given. The midpoint of an interval x is denoted by xc , 1
2 (x+ x),

and its radius by x∆ , 1
2 (x−x). The set of n-dimensional interval vectors and the set of n×m

interval matrices are denoted by IR
n and IR

n×m, respectively. The smallest (w.r.t. inclusion)
interval vector containing a bounded Σ is called an interval hull of Σ and is denoted by ✷Σ.

The basic problem that we consider here is to compute a tight outer interval enclosure of
the solution set Σ, i.e, to find an interval vector x ∈ IR

n such that Σ ⊆ x. There exist various
approaches to finding such an enclosure. For the case of affine-linear dependencies, various
iterative methods were investigated, e.g., in [3, 8, 12, 21, 28, 30, 31]. The so called direct
methods were given in [1, 5, 10, 13, 32]. The problem of computing the tightest enclosure,
the interval hull of Σ, was addressed in Kolev [9, 11, 13] and Skalna [35]. The general case of
dependencies was discussed, e.g., in [9, 23, 36].
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Figure 1: Solution set of system (2) viewed from different perspectives.

1.1 Monotonicity approach

A monotonicity approach was investigated by Kolev [7], Popova [22], Rohn [29], Skalna [34],
and Skalna & Duda [38]. The idea is as follows. If A(p) is non-singular, then the solution of
the system A(p)x = b(p) is x = A(p)−1b(p). So, the solution is a real valued function of p,
i.e., x = x(p). If xi(p) is monotonic on p with respect to all parameters, then the smallest and
largest values of xi(p) on p (i.e., minimum and maximum of Σ in ith coordinate) are attained
at the respective endpoints of p.

If xi(p) is monotonic with respect to some parameters only, then we can fix these parameters
at the respective endpoints and then bound the range of xi(p) on a box of a lower dimension.
Suppose that

• xi(p) is nondecreasing on p in variables pk, k ∈ K1,

• xi(p) is nonincreasing on p in variables pk, k ∈ K2,

• xi(p) is non-monotonic on p in variables pk, k ∈ K3.

Define the restricted set of parameters p1 and p2 as follows

p1
k =











p
k

k ∈ K1,

pk k ∈ K2,

pk k ∈ K3,

p2
k =











pk k ∈ K1,

p
k

k ∈ K2,

pk k ∈ K3,

Then

(✷Σ)
i
= min{xi | x ∈ Σ} = min{xi | ∃p ∈ p1 : A(p)x = b(p)},

(✷Σ)i = max{xi | x ∈ Σ} = max{xi | ∃p ∈ p2 : A(p)x = b(p)}.

In this way, the computation reduces to two problems of smaller dimension.
The question now is how to check for monotonicity of xi(p) in parameter pk. The standard

way is to determine the sign of the partial derivative ∂xi(p)
∂pk

on p. We can determine the sign of
∂xi(p)
∂pk

for all i = 1, . . . , n by solving the following parametric interval linear system

A(p)
∂x(p)

∂pk
=

∂b(p)

∂pk
−

∂A(p)

∂pk
x(p), p ∈ p. (3)
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In particular, for the affine-linear case, the system (3) takes the form

A(p)
∂x(p)

∂pk
= b(k) −A(k)x(p), p ∈ p.

Since the vector x(p) in (3) is not known a priori, it is usually estimated by an outer interval
enclosure of the solution set. That is, let x ⊇ Σ, and consider the parametric interval linear
system

A(p)
∂x(p)

∂pk
=

∂b(p)

∂pk
−

∂A(p)

∂pk
x, x ∈ x, p ∈ p. (4)

For the affine-linear case, the system (4) takes the form

A(p)
∂x(p)

∂pk
= b(k) −A(k)x, x ∈ x, p ∈ p. (5)

Let d be an enclosure of the solution set of the system (4). If di > 0, then xi(p) is nondecreasing
in pk, and similarly if di 6 0, then xi(p) is nonincreasing in pk.

By solving the system (4) for each k = 1, . . . ,K, we obtain the interval vectors d1, . . . ,dK .
Provided that 0 6∈ dk

i for every k = 1, . . . ,K and i = 1, . . . , n, we can compute the exact range
of the solution set Σ as follows. For every k = 1, . . . ,K and i = 1, . . . , n define

p1,ik =

{

p
k

dki > 0,

pk d
k

i 6 0,
p2,ik =

{

pk dki > 0,

p
k

d
k

i 6 0.

By solving a pair of real linear systems of equations

A
(

p1,i
)

x1 = b
(

p1,i
)

, (6a)

A
(

p2,i
)

x2 = b
(

p2,i
)

, (6b)

we obtain

(✷Σ)
i
= x1

i ,

(✷Σ)i = x2
i .

By solving n pairs of real linear systems (6), we obtain the range of the solution set in all
coordinates, that is, ✷Σ. The number of equations to be solved can be decreased by removing
redundant vectors from the list

L =
{

p1,1, . . . , p1,n, p2,1, . . . , p2,n
}

.

If only some of the partial derivatives have constant sign on p, then, in the worst case, instead
of 2n real systems, we must solve 2n parametric interval linear systems with a smaller number
of interval parameters.

2 New approach

The main deficiency of the approach described above follows from replacing x(p) in (4) by the
interval vector x such that Σ ⊆ x. This replacement causes some loss of information about
the dependencies. We will overcome this shortcoming by introducing suitable modifications.
The general idea of the presented modifications was mentioned in [37]. This work extends this
general idea by some new theoretical results. Moreover, several numerical examples are solved
to compare the efficiency and accuracy of different variants of the monotonicity approach.
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2.1 Augmented system

The first idea is to consider ∂x(p)/∂pk, k = 1, . . . ,K, as additional variables in (3). This
approach was suggested by prof. L. Kolev, however, as far as we know, the result was not
published anywhere. For each k = 1, . . . ,K, we create the following parametric interval linear
system

(

A(p) 0

∂A(p)
∂pk

A(p)

)(

x
∂x
∂pk

)

=

(

b(p)

∂b(p)
∂pk

)

, p ∈ p, (7)

and solve it in order to obtain, hopefully narrower, bounds for ∂x
∂pk

(p) over p. Then we proceed
analogously as described in the previous section. Let us notice that for the affine-linear case,
the system (8) takes the form

(

A(p) 0

A(k) A(p)

)(

x
∂x
∂pk

)

=

(

b(p)

b(k)

)

, p ∈ p, (8)

which is also a parametric interval linear system with affine-linear dependencies.
The presented modified version of the monotonicity approach eliminates the problem of the

“lost of information”, however, instead we have to solve several systems which are twice larger
than the original system. Since the basic version of the method is already quite expensive,
hence for larger problems the modified method might be inefficient.

2.2 p-solution

Below, we present a new approach to the “lost of information” problem, which relies on replacing
x(p) in the right hand side of (3) with a more precise object. For this purpose, we employ the
p-solution that was introduced by Kolev [13, 14], and later studied by the authors in [39]. This
type of solution has the parametric form x(p) = Lp+a, where L is a real n×K-matrix and a is
an interval column vector. Substituting x(p) with this type of solution, we obtain the following
parametric interval linear system

A(p)
∂x

∂pk
= b(p)−

∂A(p)

∂pk
Lp−

∂A(p)

∂pk
a, a ∈ a, p ∈ p, (9)

where the elements of interval vector a are treated as new interval parameters, independent
from p. In the affine-linear case, the linear system (9) takes the form

A(p)
∂x

∂pk
= b(k) −A(k)Lp−A(k)a, a ∈ a, p ∈ p. (10)

2.3 Properties of p-solution approach

In this subsection, we consider the affine-linear case only. From many perspectives the system
(10) is not more complicated than the original system (1).

Proposition 1. Consider the class of problems where matrices A(p), for all p ∈ p, are

nonsingular and the solution set is convex resp. polyhedral for any right-hand side vector b(p).
Then the solution set of (10) is convex resp. polyhedral, too.

Proof. Under the assumption, the solution set is bounded and each realization of interval data
yields a system that is uniquely solvable. Further, for a fixed a ∈ a, the solution set of (10)
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is convex resp. polyhedral. The image of A(k)a over a ∈ a is a zonotope, which is a convex
polyhedron. Due to linearity of the solution x = A(p)−1b(p) with respect to b(p), we have that
the solution set of (10) is a Minkowski sum of the convex resp. polyhedral set (corresponding
to fixed a := ac) and a zonotope. Therefore, the whole solution set remains convex resp.
polyhedral.

Popova [24, 25] defines the so-called 1st class parameters as those parameters pk that appear
in only one equation of the system (1). If all parameters are of the 1st class, then the solution
set Σ is characterized as

|A(pc)x− b(pc)| 6
K
∑

k=1

p∆k

∣

∣

∣A(k)x− b(k)
∣

∣

∣ . (11)

We will now show that a similar property holds for the system (10) under slightly more general
assumptions avoiding the right-hand side structure.

Corollary 1. Suppose that each parameter appears in at most one row of the parametric matrix

A(p). Then the solution set of (10) is characterized by the system

∣

∣

∣

∣

A(pc)
∂x

∂pk
− b(k) +A(k)Lpc +A(k)ac

∣

∣

∣

∣

6 |A(k)|a∆ +

K
∑

k=1

∣

∣

∣

∣

A(k) ∂x

∂pk
+A(k)L∗k

∣

∣

∣

∣

p∆k , (12)

where L∗k denotes the kth column of L.

Proof. Under the assumption, each matrix A(k) has only one non-zero row. Hence also matrix
A(k)L has only one non-zero row. Therefore, the system (10) satisfies the assumption of the
first class parameters, and the characterization (11) takes the form of (12).

The above observations are generally not true for the augmented system (8) since the
dependencies in the constraint matrix are doubled, making the problems more complicated.

2.4 Time complexity

The asymptotic time complexity of the MA method is O(K · κ + 2n · τ), where κ is the time
complexity of the method used to solve the parametric interval linear system (4) and τ is the
time complexity of the method used to solve the systems (6). The asymptotic time complexity of
the MA1 method is O(K ·κ′+2n·τ), where κ′ is the time complexity of the method used to solve
the system (7). The asymptotic time complexity of the MA2 method is O(K ·κ+n · τ ′), where
τ ′ is the time complexity of the method used to compute the p-solution. In the experiments
presented in the next section we use Interval-affine Gauss-Seidel iteration (IAGSI) method [39]
both to solve parametric interval linear systems and to obtain the p-solution. This choice is
dictated by the fact that IAGSI is one of best methods for solving parametric interval linear
systems and, what is more important, it is able to produce the p-solution. However, the method
is quite expensive, so in the future we will try to employ some other methods.

Let us notice that the computational time of all three methods can be further decreased
by computing the bounds of the derivatives in parallel. This can be done easily, since these
computations are completely independent from each other.

75



Enhancing monotonicity checking Skalna, Hlad́ık

3 Numerical experiments

In the examples presented in this section, we compare the presented three variants of the
monotonicity approach in terms of speed and accuracy. All computations were carried out by
using authors own software (implemented in C++ and compiled with Visual Studio 2017 C++
Compiler; the program was run on a computer with Windows 10 OS and Intel(R) Core(TM)
i5-7200U CPU @ 2.50GHz processor).

For the purposes of the comparison and further analysis we will refer to the basic version
of the monotonicity approach (Section 1.1) as the MA method, the monotonicity approach
involving the augmented system (7) (Section 2.1) will be referred to as the MA1 method,
whereas the approach utilizing the p-solution (Section 2.2) will be referred to as the MA2
method.

Example 2. Consider the parametric interval linear system

(

p1 p1
p1 p1 + 0.01

)(

x1

x2

)

=

(

p2
p2 + 0.01

)

, (13)

where p1 ∈ [0.9, 1.1], p2 ∈ [1.9, 2.1]. If we neglect the dependencies, then the interval matrix
contains a singular matrix; and thus the solution set is unbounded. So taking into account
dependencies is crucial in this case. Moreover, if we neglect the rounding errors, then we will
obtain the bound [0.9999999999999716, 0.9999999999999716] for x2 that is not guaranteed. The
results of the MA, MA1 and MA2 methods, which take into account both the dependencies
and rounding errors, are presented in Table 1. As can be seen from the table, all three methods
produced guaranteed solutions; i.e., the resulting interval vectors enclose the interval hull
solution ✷Σ = ([8/11, 4/3], [1, 1])T = ([0.72, 1.3], [1, 1])T . The MA1 method turned out to
be the best (in terms of accuracy) in this case, whereas the MA and MA2 methods produced
the same results. The computational time of all three methods is ≈ 0.003s.

Method Outer enclosure

MA [0.7090307597988463, 1.333333333333602]
[0.9999999999997983, 1.000000000000145]

MA1 [0.7272727272725469, 1.333333333333561]
[0.9999999999997983, 1.000000000000145]

MA2 [0.7090307597988463, 1.333333333333602]
[0.9999999999997983, 1.000000000000145]

Table 1: Outer interval solutions obtained using MA, MA1 and MA2 methods for Example 2.

Example 3. Consider the following parametric interval linear system









2p1 p2 − 1 −p3 p2 + 3p5
p2 + 1 0 p1 p4 + 1
2− p3 4p2 + 1 1 −p5
−1 2p5 + 2 0.5 2p1 + p4

















x1

x2

x3

x4









=









1 + 2p3
−p4 + 2
3p4 + p5

p1 + p2 + 2p5









, (14)

where pk ∈ [0.8− δ, 1.1 + δ], k = 1, . . . ,K = 5.
We solve the system for δ = 0.01, 0.02, 0.03, 0.04, 0.05. The computational times are given

in Table 2. As we can see from the table, the MA and MA2 methods perform similarly, whereas
the MA1 method is twice slower.
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δ MA MA1 MA2

0.01 0.04 0.08 0.04
0.02 0.05 0.08 0.04
0.03 0.05 0.08 0.04
0.04 0.05 0.09 0.05
0.05 0.05 0.10 0.05

Table 2: Computational times (in seconds) for Example 3.

Table 3 presents the obtained interval enclosures (the results are rounded to four decimal
places). We can see from the table that for δ = 0.01, 0.02, 0.03 the standard version of the
monotonicity approach produced the worst results. For δ = 0.01, the results of the MA1
method and the MA2 method coincide, whereas for δ = 0.02, 0.03 the MA1 method is slightly
better than the MA2 method. For δ = 0.04 the advantage of MA1 over two other methods is
significant, and for δ = 0.05 all the methods produced the same result. In order to show that it
is important to take into account the dependencies in the system, we also provide in Table 3 the
results of the Combinatorial Approach1 (CA) method (see, e.g., [35]). The CA method produces
the interval hull solution of the corresponding interval linear system (obtained by neglecting
the dependencies, i.e., by computing the interval extensions of A(p) and b(p) over p).

Method δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.04 δ = 0.05
MA [0.0334, 1.0028] [−0.1152, 1.1007] [−0.1723, 1.1630] [−0.2345, 1.2306] [−0.3027, 1.3042]

[0.5935, 1.2378] [0.5702, 1.2657] [0.5459, 1.2949] [0.5204, 1.3255] [0.4936, 1.3577]
[−1.5219, 0.2774] [−1.7763, 0.5719] [−1.8903, 0.6998] [−2.0151, 0.8405] [−2.1527, 0.9963]
[0.0831, 0.6445] [0.0573, 0.6655] [0.0302, 0.6875] [0.0018, 0.7107] [−0.0283, 0.7358]

MA1 [0.1115, 0.9652] [0.0892, 1.0065] [0.0669, 1.0494] [0.0240, 1.1238] [−0.3027, 1.3042]
[0.6537, 1.2167] [0.6403, 1.2403] [0.6265, 1.2687] [0.5982, 1.3077] [0.4936, 1.3577]

[−1.5219, 0.2774] [−1.5982, 0.3599] [−1.6787, 0.4477] [−2.0151, 0.8405] [−2.1527, 0.9963]
[0.1106, 0.6090] [0.0898, 0.6248] [0.0684, 0.6408] [0.0381, 0.6678] [−0.0283, 0.7358]

MA2 [0.1115, 0.9652] [0.0773, 1.0281] [0.0518, 1.0749] [−0.2345, 1.2306] [−0.3027, 1.3042]
[0.6440, 1.2274] [0.6288, 1.2532] [0.5459, 1.2949] [0.5204, 1.3255] [0.4936, 1.3577]

[−1.5219, 0.2774] [−1.5982, 0.3599] [−1.6787, 0.4477] [−2.0151, 0.8405] [−2.1527, 0.9963]
[0.1106, 0.6090] [0.0838, 0.6323] [0.0302, 0.6875] [0.0018, 0.7107] [−0.0283, 0.7358]

CA [−0.2814, 1.3244] [−0.3381, 1.3862] [−0.3965, 1.4493] [−0.4561, 1.5137] [−0.5170, 1.5858]
[0.5660, 1.4164] [0.5491, 1.4590] [0.5326, 1.5032] [0.5164, 1.5491] [0.4999, 1.59688]

[−2.1050, 0.4641] [−2.2853, 0.5750] [−2.48444, 0.6921] [−2.7048, 0.8156] [−2.9496, 0.9456]
[−0.0785, 0.8710] [−0.1168, 0.90483] [−0.15653, 0.9390] [−0.1976, 0.9738] [−0.2402, 1.0092]

Table 3: Outer interval solutions (results are rounded to four decimal places) obtained using
MA, MA1, MA2 and CA methods for Example 3.

In order to assess the accuracy of the obtained enclosures, we use the sharpness measure [28],
which is defined for two intervals x, y (x ⊆ y) as

Os(x,y) =







1, y∆ = 0,
0, x = ∅,
x∆

y∆ , otherwise.
(15)

For interval vectors we take minimum and maximum values over all entries.
Table 4 presents the minimal and maximal values of the sharpness measure Os(x,y), where

x is the i-th component of computed interval enclosure and y is the i-th component of the
inner estimation of the hull (IEH) solution produced by the evolutionary optimization (EO)
method [33].

1The Combinatorial Approach has exponential time complexity, so it can be used to solve small problems
only.
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δ
MA MA1 MA2 CA

min-max min-max min-max min-max

0.01 0.77-0.87 0.77-1.00 0.77-0.99 0.52-0.66
0.02 0.63-0.86 0.76-1.00 0.76-0.96 0.51-0.66
0.03 0.62-0.85 0.75-0.99 0.75-0.94 0.50-0.65
0.04 0.60-0.84 0.60-0.95 0.60-0.84 0.49-0.65
0.05 0.59-0.83 0.59-0.83 0.59-0.83 0.47-0.65

Table 4: Comparison of accuracy of MA, MA1 and MA2 methods for Example 3: minimal and
maximal values of sharpness measure taken over all entries of solution vector.

Example 4. Consider the parametric interval linear system (16), which occurs in worst-case
tolerance analysis of linear AC (alternate current) electrical circuits [2, 6, 7, 40]. The circuit
depicted in Fig. 2 (cf. Kolev [6]) has eleven branches and five nodes. The goal here is to
find bounds for the node voltages V1, . . . , V5. The parameters of the model have the following
nominal values:

e1 = e2 = 100V, e5 = e7 = 10V,

Zj = Rj + iXj ∈ C, Rj = 100Ω, Xj = ωLj −
1

ωCj

, j = 1, . . . , 11,

ω = 50, X1,2,5,7 = ωL1,2,5,7 = 20, X3 = ωL3 = 30,

X4 = −
1

ωC4
= −300, X10 = −

1

ωC10
= −400, X6,8,9,11 = 0.

The worst-case tolerance analysis leads to a complex parametric interval linear system [7, 27]















1
Z1

+ 1
Z3

+ 1
Z6

− 1
Z3

0

− 1
Z3

1
Z2

+ 1
Z3

+ 1
Z4

+ 1
Z5

− 1
Z4

− 1
Z5

0 − 1
Z4

− 1
Z5

1
Z4

+ 1
Z5

+ 1
Z7

+ 1
Z10

0 0 − 1
Z7

− 1
Z6

0 0

(16)

0 − 1
Z6

0 0

− 1
Z7
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where

Z1 = Z2 = Z5 = Z7 = 100 + i20, Z3 = 100 + i30, Z4 = 100− i300,
Z6 = Z8 = Z9 = Z11 = 100, Z10 = 100− i400.

We put pj = 1/Zj and we solve the system with tolerances ±5%, ±10%, ±15% and ±20%. The
computational times (in seconds) are presented in Table 5. As can be seen, the MA and MA2
methods have similar computational times, whereas the MA1 method, as expected, is much
more expensive.

Table 6 presents the accuracy of the obtained interval enclosures. Similarly as in the
previous example, we compare outer interval enclosures with inner estimation of the hull
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Figure 2: (Example 4) Linear electrical circuit with five nodes and eleven branches.

Uncertainty MA MA1 MA2

5% 0.8 2.1 0.7
10% 1.1 2.6 1.0
15% 1.5 3.5 1.4
20% 2.5 5.6 2.5

Table 5: Computational times (in seconds) for Example 4.

Uncertainty
MA MA1 MA2

min-max min-max min-max
5% 0.96-0.99 0.99-1.00 0.99-1.00
10% 0.80-0.96 0.83-0.99 0.82-0.98
15% 0.46-0.81 0.53-0.92 0.53-0.88
20% 0.28-0.54 0.28-0.54 0.28-0.54

Table 6: Comparison of accuracy MA, MA1 and MA2 methods for Example 4: minimal and
maximal values of sharpness measure taken over all entries of interval solution vector.

solution produced by the EO method. Additionally, the interval solution vector obtained for
5% uncertainty is provided in Table 7.

As can be seen from Table 6, also in this case the MA1 and MA2 methods outperformed the
standard approach. The MA2 method produced slightly worse results than the MA1 method,
however it turned out to be more efficient.

Voltage EO MA2

V1 [64.8265, 69.4151] + i[−7.4030,−5.6879] [64.8259, 69.4158] + i[−7.4083,−5.6817]
V2 [69.0870, 73.5915] + i[−8.7003,−6.4356] [69.0867, 73.5926] + i[−8.7089,−6.4305]
V3 [53.3405, 58.9868] + i[−13.0941,−9.7543] [53.3347, 58.9913] + i[−13.1005,−9.7474]
V4 [22.9180, 27.2849] + i[−7.4055,−5.7220] [22.9166, 27.2855] + i[−7.4076,−5.7193]
V5 [28.5406, 33.0201] + i[−5.0545,−3.7151] [28.5401, 33.0209] + i[−5.0554,−3.7130]

Table 7: Results (rounded to four decimal places) of EO and MA2 methods for 5% uncertainty;
Example 4.

Example 5. Consider the planar steel frame depicted in Fig. 3 with three types of support
and external load uniformly distributed along the beam (cf. [17]). Under specific assumptions
(cf. [17]), the frame is described by a set of five equilibrium equations for forces and bending
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Figure 3: (Example 5) Planar frame (left) and its fundamental system of internal parameters
(right) (cf. [17]).

moments (see Fig. 3 (right)) and three canonical equations linking bending moments with
material properties of the beams. Similarly as in [17], we assume here that all beams have
the same Young modulus E, but momentum of inertia J of beam cross-sections are related by
the formula J12 = J23 = 1.5J24. Taking this into account, the combination of the equilibrium
and canonical equations yields the following system of linear equations for reaction forces and
bending moments:

























2l12 l12 0 0 0 0 0 0
l12 2l12 + 2l23 −2l23 0 0 0 0 0
0 −2l23 3l24 + 2l23 0 0 0 0 0
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The lengths of the beams and the load are considered to be uncertain2 and vary within intervals:
l12, l24 ∈ [1− δ, 1 + δ], l23 ∈ 0.75[1− δ, 1 + δ], q ∈ 10[1− δ, 1 + δ]. The parameters of the frame
are given as dimensionless numbers; however it is assumed that the values of the parameters
are physically realistic when endowed with appropriate units (cf. [17]). We solve the problem
for δ = 0.5%, 1%, 5%, 10%. The computational times are provided in Table 8.

Table 9 presents the accuracy of the obtained interval enclosures. Similarly as in the
previous examples, we compare outer interval enclosures with inner estimation of the hull
solution produced by the EO method. Additionally, the results of the EO and MA2 methods
for δ = 1% are provided in Table 10.

δ MA MA1 MA2

0.5% 0.11 0.17 0.09
1% 0.11 0.17 0.09
5% 0.13 0.17 0.10
10% 0.14 0.19 0.12

Table 8: Computational times (in seconds) for Example 5.

2It is assumed that there is no prestressing of the structure due to inexact dimensions of the beams (cf. [17]).
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δ
MA MA1 MA2

min-max min-max min-max

0.5% 0.90-1.00 0.90-1.00 0.90-1.00
1% 0.81-0.99 0.81-0.99 0.81-0.99
5% 0.47-0.97 0.39-0.97 0.39-0.97
10% 0.19-0.91 0.19-0.93 0.19-0.93

Table 9: Comparison of outer interval solutions obtained using MA, MA1 and MA2 methods for
Example 5: minimal and maximal values of sharpness measure taken over all entries of solution
vector.

EO MA2

M1 [0.2397, 0.2607] [0.2395, 0.2607]
M21 [−0.5213,−0.4793] [−0.5213,−0.4790]
M24 [−1.0344,−0.9664] [−1.0344,−0.9657]
R

y

1
[−0.7899,−0.7119] [−0.7899,−0.7113]

R
y

3
[6.5905, 6.9126] [6.5872, 6.9150]

R
y

4
[3.9204, 4.0804] [3.9179, 4.0811]

Rx

1 [−0.7021,−0.6328] [−0.7085,−0.6227]
Rx

3 [0.6328, 0.7021] [0.6227, 0.7085]

Table 10: Results (rounded to four decimal places) of EO and MA2 methods for δ = 1%;
Example 5

4 Conclusion

We have proposed in this work two modifications of the monotonicity approach for solving
parametric interval linear systems. Based on the obtained results we can conclude that,
generally, the MA2 method (which is based on using the p-solution) is most recommended.
It produces similar results as the MA1 methods, whereas it is computationally much more
efficient. In our future work we will try to employ parallel techniques in order to decrease
the computational time. Also we will try to combine monotonicity approach with some other
methods for solving parametric interval linear systems.
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