
Kalpa Publications in Computing

Volume 10, 2019, Pages 1–8

Selected Student Contributions and
Workshop Papers of LuxLogAI 2018

On Inductive Verification and Synthesis

Dennis Peuter1 and Viorica Sofronie-Stokkermans1

University Koblenz-Landau, Koblenz, Germany
dpeuter@uni-koblenz.de, sofronie@uni-koblenz.de

Abstract

We study possibilities of using symbol elimination in program verification and synthesis.
We consider programs for which a property is given, which is supposed to hold for all states
reachable from the initial states. If it can not be proven that such a formula is an inductive
invariant, the task is to find conditions to strengthen the property in order to make it an
inductive invariant. We propose a method for property-directed invariant generation and
analyze its properties.

1 Introduction

In the verification of parametric systems one has to show that for all states reachable from the
initial state a certain property holds. One way to solve such problems is to identify an inductive
invariant which entails the property to be proved. Finding suitable inductive invariants is non-
trivial – the problem is undecidable in general; solutions have been proposed for specific cases
e.g. in [4, 1, 3, 8, 9]. In this extended abstract we continue our work on automated verification
and synthesis in parametric systems [6, 11, 12]. We present an incremental method which
starts with a given property and successively strengthens it to obtain an inductive invariant.
The theories of data types and of updates in the systems we analyze are complex (typically
extensions or combinations of theories) and not required to have the finite model property –
which is required for instance in [8, 9]. While we rely on methods similar up to a certain extent
with the ones used in IC3 [2], we here exploit efficient methods for symbol elimination in theory
extensions established in [13] which allow to devise a correct algorithm for finding invariants in
a certain language. We identify situations in which the method we propose terminates.

Our main results can be summarized as follows:

• We present a method for invariant synthesis which uses the symbol elimination method
described in [13].

• We identify a class of transition systems and theories having infinite models for which our
method for invariant generation is correct.

• We analyze situations in which the invariant generation method terminates.

• We illustrate the main steps of the method on an example.

C. Benzmüller, X. Parent and A. Steen (eds.), LuxLogAI 2018 (Kalpa Publications in Computing, vol. 10),
pp. 1–8

On Inductive Verification and Synthesis Peuter and Sofronie-Stokkermans

Structure of the paper. The paper is structured as follows. In Section 1.1 we illustrate the
ideas on an example. In Section 2 we present earlier results on efficient reasoning in local
theory extensions and discuss methods for quantifier elimination and symbol elimination in
local theory extensions. In Section 3 we present an approach to invariant synthesis.

1.1 Illustration

Consider the program in Fig. 1 (a variation of an example from [1]). The task is to prove that
if a is an array with its elements increasingly sorted, then the formula Ψ := d2 ≥ a[d1 + 1] is an

d1 = 3; d2 = a[4]; d3 = 1;

while (nondet()) {
d1 = a[d1+1];

d2 = a[d2+1] + (1-d3);

d3 = d3/2; }

Figure 1: A simple program

invariant of the program. Ψ holds in the initial state since
d2 = a[4] = a[3 + 1] = a[d1 + 1]. In order to show that Ψ is
an inductive invariant of the while loop, we would need to
prove that

d2 ≥ a[d1 + 1] ∧ Sorted(a) ∧ Update(d, d
′
) ∧ d′2 < a[d′1 + 1]

is unsatisfiable, where the updates of the variables d1, d2, d3

in the while loop are described by a formula Update(d, d
′
) :=

d′1 = a[d1+1] ∧ d′2 = a[d2+1]+(1−d3) ∧ d′3 = d3/2 and the fact that a is sorted is described
by Sorted(a) := ∀i, j(i ≤ j → a[i] ≤ a[j]). The formula above is satisfiable, so Ψ is not an
inductive invariant. We will show how to synthesize the condition d3 ≤ 1 which can be used to
strengthen Ψ to an inductive invariant.

2 Preliminaries

We assume known standard definitions from first-order logic (e.g. Π-structures, satisfiability,
unsatisfiability). We consider signatures Π = (Σ,Pred), where Σ is a family of function symbols
and Pred a family of predicate symbols. In this paper, (logical) theories are simply sets of
sentences. We denote “falsum” with ⊥. If F and G are formulae we write F |= G (resp.
F |=T G – also written as T ∪ F |= G) to express the fact that every model of F (resp. every
model of F which is also a model of T) is a model of G. F |=⊥ means that F is unsatisfiable;
F |=T ⊥ means that there is no model of T in which F is true.

2.1 Verification problems for parametric systems

One of the application domains we consider is related to the verification of parametric systems,
for instance of programs (resp. parametric programs, in which some parts are not or only
partially specified). For modeling (parametric) systems we use transition constraint systems
T = (V,Σ, Init,Update) which specify: the variables (V) and function symbols (Σ) whose values
change over time; a formula Init specifying the properties of initial states; a formula Update
with variables in V ∪V ′ and function symbols in Σ∪Σ′ (where V ′ and Σ′ are copies of V resp.
Σ, denoting the variables resp. functions after the transition) which specifies the relationship
between the values of variables v and function symbols f before a transition and their values
(v′, f ′) after the transition. Such descriptions can be obtained from system specifications (for
an example cf. [5]). With every specification of a system S, a background theory TS – describing
the data types used in the specification and their properties – is associated.

We can check in two steps whether a formula Ψ is an inductive invariant of a transition constraint
system T=(V,Σ, Init,Update): first, we prove that TS , Init |= Ψ; and second, we prove that
TS ,Ψ,Update |= Ψ′, where Ψ′ results from Ψ by replacing each v ∈ V by v′ and each f ∈ Σ

2

On Inductive Verification and Synthesis Peuter and Sofronie-Stokkermans

by f ′. Failure to prove the second step means that Ψ is not an invariant or Ψ is not inductive
w.r.t. T . In this case we can consider two orthogonal problems:

(1) Determine constraints on parameters which guarantee that Ψ is an invariant.

(2) Determine a formula I such that TS |= I → Ψ and I is an inductive invariant.

Checking whether a formula Ψ is an invariant can be reduced to checking whether ¬Ψ′ is
satisfiable w.r.t. a theory T . Even if Ψ is a universally quantified formula (and thus ¬Ψ′ is
a ground formula) the theory T is quite complex: it contains the axiomatization TS of the
datatypes used in the specification of the system, the formalization of the update rules, as well
as the formula Ψ itself. In [6, 11, 12] we show that in many cases the theory T can be expressed
using a chain of extensions, typically including T0 ⊆ T1 = T0 ∪ Ψ ⊆ T = T0 ∪ Ψ ∪ Update,
with the property that checking satisfiability of ground formulae w.r.t. T can be reduced to
checking satisfiability w.r.t. T1 and ultimately to checking satisfiability w.r.t. T0. This is the
case for instance when the theory extensions in the chain above are local. We present results on
local theory extensions established so far in Section 2.2. These results yield efficient methods
for checking whether a formula is an invariant; the method for symbol elimination in local
theory extension described in Section 2.3 allow us to also address the two synthesis problems
mentioned above.

2.2 Local Theory Extensions

Let Π0=(Σ0,Pred) be a signature, and T0 be a “base” theory with signature Π0. We consider
extensions T := T0∪K of T0 with new function symbols Σ (extension functions) whose properties
are axiomatized using a set K of clauses in the extended signature Π = (Σ0 ∪ Σ,Pred), which
contain function symbols in Σ. If G is a finite set of ground ΠC-clauses1 and K a set of Π-
clauses, we will denote by st(K, G) (resp. est(K, G)) the set of all ground terms (resp. extension
ground terms, i.e. terms starting with a function in Σ) which occur in G or K.2 If T is a set of
ground terms in the signature ΠC , we denote by K[T] the set of all instances of K in which the
terms starting with a function symbol in Σ are in T . We define:

(Locf) For every finite set G of ground clauses in ΠC it holds that

T0 ∪ K ∪G |= ⊥ if and only if T0 ∪ K[(G)] ∪G is unsatisfiable.

Extensions satisfying condition (Locf) are called local theory extensions [10]. Local extensions
can be recognized by showing that certain partial models embed into total ones [7]. This allowed
us to identify many classes of local theory extensions. Especially well-behaved are the theory
extensions which have the property (Compf), stating that partial models can be made total
without changing the universe of the model.

Hierarchical Reasoning in Local Theory Extensions For local theory extensions hier-
archical reasoning is possible. If T0 ∪ K is a local extension of T0 and G is a set of ground
Σ0 ∪Σ1 ∪Σc-clauses, then T0 ∪K∪G is unsatisfiable iff T0 ∪K[G]∪G is unsatisfiable. We can
reduce this satisfiability test to a satisfiability test w.r.t. T0. The idea is to purify K[G]∪G by:
introducing (bottom-up) new constants ct for subterms t = f(g1, . . . , gn) with f ∈ Σ, gi ground
Σ0 ∪Σc-terms; replacing the terms t with the constants ct; and adding the definitions ct = t to

1ΠC is the extension of Π with constants in a countable set C of fresh constants.
2We here regard every finite set G of ground clauses as the ground formula

∧
C∈G C.

3

On Inductive Verification and Synthesis Peuter and Sofronie-Stokkermans

Algorithm 1: Symbol elimination in theory extensions

Step 1 Let K0∪G0∪Con0 be the set of ΠC
0 clauses obtained from K[T]∪G after the purification step described

in Theorem 1 (with set of extension symbols Σ1).

Step 2 Let G1 = K0 ∪G0 ∪ Con0. Among the constants in G1, we identify

(i) the constants cf , f ∈ ΣP , where either cf = f ∈ ΣP is a constant parameter, or cf is introduced
by a definition cf := f(c1, . . . , ck) in the hierarchical reasoning method,

(ii) all constants cp occurring as arguments of functions in ΣP in such definitions.

Let c be the remaining constants. We replace the constants in c with existentially quantified variables x
in G1, i.e. replace G1(cp, cf , c) with G1(cp, cf , x), and consider the formula ∃xG1(cp, cf , x).

Step 3 Using the method for quantifier elimination in T0 (if Condition (C1) holds) or in T ∗0 (if Condition (C2)
holds) we can construct a formula Γ1(cp, cf) equivalent to ∃xG1(cp, cf , x) w.r.t. T0 (resp. T ∗0).

Step 4 Let Γ2(cp) be the formula obtained by replacing back in Γ1(cp, cf) the constants cf introduced by
definitions cf := f(c1, . . . , ck) with the terms f(c1, . . . , ck). We replace cp with existentially quantified
variables y.

Step 5 Let ∀yΓT (y) be ∀y¬Γ2(y).

a set D. We denote by K0∪G0∪D the set of formulae obtained this way. Then G is satisfiable
w.r.t. T0 ∪ K iff K0 ∪G0 ∪ Con0 is satisfiable w.r.t. T0, where

Con0 = {(
n∧

i=1

ci=di)→ c=d | f(c1, . . . , cn)=c, f(d1, . . . , dn)=d ∈ D}.

Theorem 1 ([10]). If T0 ⊆ T0 ∪ K is a local extension and G is a set of ground clauses, then
we can reduce the problem of checking whether G is satisfiable w.r.t. T0 ∪ K to checking the
satisfiability w.r.t. T0 of the formula K0 ∪G0 ∪ Con0 constructed as explained above.
If K0 ∪G0 ∪ Con0 belongs to a decidable fragment of T0, we can use the decision procedure for
this fragment to decide whether T0 ∪ K ∪G is unsatisfiable.

2.3 Quantifier elimination and symbol elimination

A theory T over signature Π allows quantifier elimination if for every formula φ over Π there
exists a quantifier-free formula φ∗ over Π which is equivalent to φ modulo T . Examples of
theories which allow quantifier elimination are rational and real linear arithmetic (LI(Q), LI(R)),
the theory of real closed fields, and the theory of absolutely-free data structures.

In [13] we proved that in theory extensions T0 ⊆ T = T0∪K for which T0 allows quantifier elim-
ination, for every ground formula G containing function symbols considered to be “parameters”
we can generate a (universal) constraint Γ on the parameters of G such that T ∪ Γ ∪G |=⊥.

Let Π0 = (Σ0,Pred). Let T0 be a Π0-theory and ΣP be a set of parameters (function and
constant symbols). Let Σ be a signature such that Σ ∩ (Σ0 ∪ ΣP) = ∅. Let K be a set of
clauses in the signature Π = Π0 ∪ ΣP ∪ Σ in which all variables occur also below functions in
Σ1 = ΣP ∪Σ. Let G be a finite set of ground ΠC-clauses, and T a finite set of ground terms over
the signature Π0∪ΣP ∪Σ∪C, where C is a set of additional constants. We construct a universal
Π0 ∪ ΣP -formula ∀y1 . . . ynΓT (y1, . . . , yn) by following Steps 1–5 described in Algorithm 1.

Theorem 2 ([13]). Assume that T0 allows quantifier elimination. For every finite set of ground
ΠC-clauses G, and every finite set T of terms over the signature Π0∪Σ∪ΣP∪C with est(G) ⊆ T ,
steps 1–5 of Algorithm 1 yield a universally quantified Π0 ∪ ΣP -formula ∀xΓT (x) with the

4

On Inductive Verification and Synthesis Peuter and Sofronie-Stokkermans

properties that (1) for every structure A with signature Π0 ∪ Σ ∪ ΣP ∪ C which is a model of
T0 ∪ K, if A |= ∀yΓT (y) then A |= ¬G; and (2) T0 ∪ ∀yΓT (y) ∪ K ∪G is unsatisfiable.

Theorem 3 ([13]). Assume that the extension T0 ⊆ T0 ∪K satisfies condition (Compf) and K
is flat and linear 3. Let G be a set of ground ΠC-clauses, and ∀yΓG(y) be the formula obtained
with Algorithm 1 for T = est(K, G). Then ∀yΓG(y) is entailed by every universal formula Γ
with T0 ∪ Γ ∪ K ∪G |=⊥.

A similar result holds if T is the set of instances obtained from the instantiation of a chain of
theory extensions T0 ⊆ T0 ∪ K1 ⊆ · · · ⊆ T0 ∪ K1 ∪ · · · ∪ Kn, all satisfying condition (Compf),
and where K1, . . . ,Kn are all flat and linear.

3 Invariant generation

We now study the problem of inferring – in a goal-oriented way – universally quantified inductive
invariants for transition systems described by axioms which define local theory extensions. We
focus on invariant generation here, because the problem of invariant checking and constraint
synthesis for parametric systems (finding constraints on parameters to ensure that a given
formula is an inductive invariant) was already investigated in [6] and [11].

Let S be a system, TS be the theory and T=(V,Σ, Init,Update) the transition constraint system
associated with S. Let LocSafe be a class of universal formulae over V ∪ Σ. We make the
following assumptions:

(A1) There exists a chain of local theory extensions T0 ⊆ · · · ⊆ TS ∪ Init such that in each
extension all variables occur below an extension function.

(A2) For every Ψ ∈ LocSafe there exists a chain of local theory extensions T0 ⊆ · · · ⊆ TS ∪Ψ
such that in each extension all variables occur below an extension function.

(A3) The update axioms describe the change of the Σ-functions depending on a finite set {φi |
i ∈ I} of mutually exclusive conditions over non-primed symbols, i.e. Update(Σ,Σ′) =⋃

f∈Σ Updatef , where Updatef has the form Deff := {∀x(φfi (x)→ F f
i (f ′(x), x)) | i ∈ I},

using Σ0-formulae F f
i such that (i) φi(x)∧φj(x) |=T0⊥ for i6=j and (ii) T0 |= ∀x(φi(x)→

∃y(Fi(y, x))) for all i ∈ I.

(A4) Ground satisfiability in T0 is decidable; T0 allows quantifier elimination.

(A5) All candidate invariants I computed in the while loop in Fig. 2 are in LocSafe, and all
local extensions in LocSafe satisfy condition (Compf).

The algorithm we propose is shown in Fig. 2. We can prove partial correctness of the algorithm
(Theorem 4) and identify a condition under which it terminates (Theorems 5).

Theorem 4 (Partial Correctness). Under Assumptions (A1)–(A5), if the algorithm in Fig. 2
terminates, then its output is correct.

3An extension clause D is flat when all symbols below an extension function symbol in D are variables. D
is linear if whenever a variable occurs in two terms of D starting with an extension functions, the terms are
equal, and no term contains two occurrences of a variable.

5

On Inductive Verification and Synthesis Peuter and Sofronie-Stokkermans

Input: T transition system; signature ΣP ; Ψ ∈ LocSafe, formula over ΣP

Output: Inductive invariant I of T that entails Ψ and contains only function
symbols in ΣP (if such an invariant exists).

1: I := Ψ
2: while I is not an inductive invariant for T do:
if Init 6|= I then return “no universal inductive invariant entails Ψ”
if I is not preserved under Update(Σ,Σ′) then Let Γ be obtained by eliminating
all primed variables and symbols not in ΣP from I ∧ Update(Σ,Σ′) ∧ ¬I ′;
I := I ∧ Γ

3: return I is an inductive invariant

Figure 2: Successively strengthening a formula to obtain an inductive invariant

Theorem 5 (A termination condition). Assume that the candidate invariants I generated at
each iteration are conjunctions of clauses which contain, up to renaming of the variables, terms
in a given, finite, family Ter of terms. Then the algorithm must terminate with an invariant I
or after detecting that Init 6|= I.

Example 1. Consider Example A in Section 1.1. In order to prove that Ψ := d2 ≥ a[d1 + 1] is
an inductive invariant of the program, we need to prove that the formula Sorted(a) ∧G, where
G = d2 ≥ a[d1 + 1]∧ d′1 ≈ a[d1 + 1]∧ d′3 ≈ d3/2∧ d′2 ≈ a[d2 + 1] + (1− d3)∧ d′2 < a[d′1 + 1] and
Sorted(a) := ∀i, j(i ≤ j → a[i] ≤ a[j]), is unsatisfiable.

The updates change only constants and Ψ is a ground formula. If T = Z∪Sorted(a), then T ∧G
is satisfiable iff the formula ∃d1∃d2∃d3∃d′1∃d′2∃d′3G is valid w.r.t. T . The quantified variables
d′1, d

′
2 and d′3 can be eliminated, the problem is thus reduced to checking the satisfiability of

Sorted(a) ∧ d2 ≥ a[d1 + 1] ∧ a[d2 + 1] + (1 − d3) < a[a[d1 + 1] + 1. The axiom Sorted(a)
defines a local theory extension Z ⊆ Z ∪ Sorted(a) = T ; after flattening of the ground part and
instantiation of Sorted(a) we obtain:

G : c1 ≈ a[d1 + 1] ∧ d2 ≥ a[d1 + 1] ∧ a[d2 + 1] + (1− d3) < a[c1 + 1]
Sorted(a)[G] : d1 + 1 � d2 + 1→ a[d1 + 1] � a[d2 + 1]

d1 + 1 � c1 + 1→ a[d1 + 1] � a[c1 + 1]
d2 + 1 � c1 + 1→ a[d2 + 1] � a[c1 + 1],� ∈ {≤,≥}

After purification in which the definitions Def := {c1 ≈ a[d1 + 1], c2 ≈ a[d2 + 1], c3 ≈ a[c1 + 1]}
are introduced and further simplification we obtain:

G0 : d2 ≥ c1 ∧ c2 + (1− d3) < c3
Sorted(a)[G]0 : d1 � d2 → c1 � c2 ∧ d1 � c1 → c1 � c3 ∧ d2 � c1 → c2 � c3, � ∈ {≤,≥}

G0∧Sorted(a)[G]0 is satisfiable; the formula obtained by negating it and universally quantifying
the constants can be used to strengthen Ψ. If we are looking for a universal invariant in a more
restricted language (e.g. containing only d1, d2 and d3), we can eliminate c1, c2 and negate the
result to obtain d3 ≤ 1. The formula d2 ≥ a[d1 +1]∧d3 ≤ 1 can be proved to be a loop invariant.

4 Conclusion

In this extended abstract we proposed a method for property-directed invariant generation and
analyzed its properties. Our results can be seen as extensions of the results in [4] and [2],
since we consider more complex theories. Although there are similarities to the method in
[9], our approach is different: The theories we analyze do not typically have the finite model

6

On Inductive Verification and Synthesis Peuter and Sofronie-Stokkermans

property – which is required in [8, 9], and we do not use diagrams associated to finite models
for strengthening the invariants. While our method is not guaranteed to terminate in general,
we identified situations in which termination is guaranteed.

In future work we would like, on the one hand to identify additional situations in which our
invariant generation method is correct and terminates, and on the other hand to use similar
ideas for the goal-oriented generation of inductive properties for recursively defined functions.

References

[1] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Rybalchenko. Invariant syn-
thesis for combined theories. In Byron Cook and Andreas Podelski, editors, Verification, Model
Checking, and Abstract Interpretation, 8th International Conference, VMCAI 2007, Nice, France,
January 14-16, 2007, Proceedings, volume 4349 of Lecture Notes in Computer Science, pages 378–
394. Springer, 2007.

[2] Aaron R. Bradley. IC3 and beyond: Incremental, inductive verification. In P. Madhusudan
and Sanjit A. Seshia, editors, Computer Aided Verification - 24th International Conference, CAV
2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume 7358 of Lecture Notes in Computer
Science, page 4. Springer, 2012.

[3] Aaron R. Bradley and Zohar Manna. Property-directed incremental invariant generation. Formal
Asp. Comput., 20(4-5):379–405, 2008.

[4] Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. Inductive invariant generation via
abductive inference. In Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes, editors,
Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN,
USA, October 26-31, 2013, pages 443–456. ACM, 2013.

[5] Johannes Faber, Swen Jacobs, and Viorica Sofronie-Stokkermans. Verifying CSP-OZ-DC speci-
fications with complex data types and timing parameters. In Jim Davies and Jeremy Gibbons,
editors, Integrated Formal Methods, 6th International Conference, IFM 2007, Oxford, UK, July
2-5, 2007, Proceedings, volume 4591, pages 233–252. Springer, 2007.

[6] Carsten Ihlemann, Swen Jacobs, and Viorica Sofronie-Stokkermans. On local reasoning in verifica-
tion. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages
265–281. Springer, 2008.

[7] Carsten Ihlemann and Viorica Sofronie-Stokkermans. On hierarchical reasoning in combinations
of theories. In Jürgen Giesl and Reiner Hähnle, editors, Automated Reasoning, 5th International
Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Proceedings, volume 6173 of
Lecture Notes in Computer Science, pages 30–45. Springer, 2010.

[8] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky, Noam Rinetzky, and Sharon Shoham.
Property-directed inference of universal invariants or proving their absence. J. ACM, 64(1):7:1–
7:33, 2017.

[9] Oded Padon, Neil Immerman, Sharon Shoham, Aleksandr Karbyshev, and Mooly Sagiv. De-
cidability of inferring inductive invariants. In Rastislav Bod́ık and Rupak Majumdar, editors,
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 217–231.
ACM, 2016.

[10] Viorica Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In Robert Nieuwen-
huis, editor, Automated Deduction - CADE-20, 20th International Conference on Automated De-

7

On Inductive Verification and Synthesis Peuter and Sofronie-Stokkermans

duction, Tallinn, Estonia, July 22-27, 2005, Proceedings, volume 3632 of Lecture Notes in Com-
puter Science, pages 219–234. Springer, 2005.

[11] Viorica Sofronie-Stokkermans. Hierarchical reasoning for the verification of parametric systems.
In Jürgen Giesl and Reiner Hähnle, editors, Automated Reasoning, 5th International Joint Confer-
ence, IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Proceedings, volume 6173 of Lecture Notes
in Computer Science, pages 171–187. Springer, 2010.

[12] Viorica Sofronie-Stokkermans. Hierarchical reasoning and model generation for the verification of
parametric hybrid systems. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 -
24th International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013.
Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 360–376. Springer, 2013.

[13] Viorica Sofronie-Stokkermans. On interpolation and symbol elimination in theory extensions.
In Nicola Olivetti and Ashish Tiwari, editors, Automated Reasoning - 8th International Joint
Conference, IJCAR 2016, Coimbra, Portugal, June 27 - July 2, 2016, Proceedings, volume 9706
of Lecture Notes in Computer Science, pages 273–289. Springer, 2016.

8

	Introduction
	Illustration

	Preliminaries
	Verification problems for parametric systems
	Local Theory Extensions
	Quantifier elimination and symbol elimination

	Invariant generation
	Conclusion

