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Abstract 

Pedicle screw fixation is a common yet technically demanding procedure. Due to 

the proximity of the inserted implant to the spinal column, a malplaced screw can cause 

neurological injury and subsequent postoperative complications. A common surgical 

routine starts with preoperative volumetric image acquisition (e.g. computed 

tomography) based on which the surgeons can highlight the planned trajectory. This 

process is generally done manually , which is error prone and time consuming.  

The primary purpose of this paper is to develop an automatic pedicle region 

localization based on preoperative CTs. This system can automatically annotate the CT 

scans to identify the regions corresponding to the pedicles and thus provide important 

information about the anatomical placement of the CT scan that can be useful for 

intraoperative implant position assessment (e.g. to initialize the 2D-3D registration). On 

the other hand, the pedicle localization can be exploited for preoperative planning.  

We designed and evaluated a fully convolutional neural network for the task of 

pedicle localization. A large training, validation and testing datasets (5000, 1000, 1000 

images separately) were created using a custom data augmentation process that could 

generate unique vertebral morphologies for each image. After evaluation on the 

validation and test data, the Dice similarity coefficients between the pedicle regions 

detected by the trained network and the ground truth was 0.85 and 0.83 respectively.  

The proposed deep-learning-based algorithm was capable of automatically 

localizing the regions corresponding to the pedicles based on the preoperative CT scans. 

Therefore, a reliable initial guess for the 2D-3D registration process needed for 

intraoperative implant position assessment can be achieved. This system also has 

potential use in automating the preoperative planning.  
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1 Introduction 

First introduced in 1944, pedicle screw insertion is still the most popular surgical practice for 

spinal fusion. Although there are substantial benefits, pedicle screw insertion remains a technically 

demanding procedure in close proximity to the spinal cord and blood vessels. A malplaced pedicle 

screw can lead to serious postoperative complications, reported in about 6% of patients (Nevzati, 

2014). 

A number of different surgical procedures exist for pedicle screw fixation, ranging from freehand 

methods (Allam 2013) to more advanced computer-assisted navigation and robotic approaches (Patil 

2012). Spinal fusion surgery normally begins by acquiring a volumetric image of the vertebrae of 

interest. This preoperative image is then used to highlight the insertion trajectory as part of 

preoperative planning. If a computer-assisted procedure is used, the preoperative image is also used 

for intraoperative surgical navigation. 

The predominant features of interest in the preoperative images are the pedicle regions in each 

vertebrae, because of the acute proximity to the spinal column and because most implant perforations 

occur medially or laterally to the pedicles; even experienced surgeons can malplace up to 5% of the 

screws medially and up to 15% inferolaterally (Mirza 2003). 

Current preoperative surgical practice usually involves the surgeon visually and manually 

interpreting the preoperative images to determine the desired insertion trajectory. This process is 

mainly qualitative in nature and error-prone, and there is thus a need for an automated pedicle region 

localization system.  

On the other hand, when intraoperative implant position assessment is concerned (Esfandiari, 

2016), the location of the pedicle regions in the acquired volumetric images can provide crucial 

information to initialize the 2D-3D registration of the preoperative and intraoperative images.  

Therefore, an automatic pedicle localization method can benefit the intraoperative implant 

position assessment (by providing reliable initialization for the 2D-3D registration process) as well as 

the preoperative planning. 

Early work on pedicle segmentation dates back at least as far as 2004, when researchers presented 

an analytical model for pedicle segmentation and patient-specific implant size planning (Wicker 

2004). However, this paper lacked any experimental results and was not tested on clinical data. In 

2011, a more sophisticated approach was introduced that was based on morphological representation 

of each vertebrae (Lee, 2011). While achieving satisfactory results for the lumbar spine (2.11±0.17 

mm), this method required precise segmentation of the preoperative CT scans in order to reconstruct 

3D models of each vertebrae. In addition to this, it required comparatively long computation times (on 

the order of 6 minutes), which would be an obstacle to clinical adoption of such a system. 

Accordingly, the purpose of this study is to develop and evaluate a fast, accurate and automated 

pedicle localization algorithm for processing CT volumes that can be easily adopted in a real surgery. 

2 Materials and Methods  

We hypothesized that a convolutional neural network trained for semantic segmentation purposes 

could potentially be exploited to localize the pedicle regions in preoperative volumetric images in a 

fully automatic manner. In particular, we used a proprietary implementation of Fully Convolutional 

Neural-networks (FCNs; Long 2015) that could be trained in an end-to-end fashion. The network 

takes volumetric images of vertebrae as input and, after running the data through a number of 

convolutional and deconvolutional blocks, produces a binary mask highlighting the pixels belonging 

to the pedicle regions (Figure 1). 
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Figure 1: The schematic diagram of the network’s architecture. 

It is often difficult or expensive to acquire a large number of clinical volumesets.  Therefore, we 

designed a data augmentation process that could generate a large number of unique training instances 

based on a small number of manually segmented volumetric images (Figure 2). Six synthetic lumbar 

bone models with realistic radiographic properties (Ammolite Biomodels, Calgary, Canada) were 

scanned with a CT machine (HR-PQCT, Scanco-XTREME CT) to generate the required volumetric 

images. The images were then manually annotated using the MITK-GEM software (Pauchard 2016) 

to identify the voxels belonging to the pedicle regions (i.e. to generate the ground truth masks). The 

CT scans, together with their corresponding pedicle masks, were then plugged into a BSpline 

deformable transformation module that used a number of varying parameters (grid size, deformation 

field distribution and deformation magnitude) as well as an affine transformation in a controlled 

random fashion to generate a large number of augmented image/mask sets, each having a unique 

morphology (5000 sets for training and 1000 sets for validation).  

 

 
 

Figure 2: Overall pipeline of the pedicle localization system. 

The data augmentation code was written using the SimpleITK library in Python environment. The 

implementation of the code required for designing and training the machine learner was done using 

the Keras library with Tensorflow backend in a Python environment. The computing platform used 

A deep learning-based approach for localization of pedicle regions in ... H. Esfandiari et al.

48



for the data augmentation and FCN training was an Intel Core i7 CPU (2.60 GHz) processor with 16 

GB of RAM and an NVIDIA Geforce GTX 960M GPU.   

After completing the training process and in order to verify the performance of the model, two 

Dice similarity coefficients were calculated to estimate the overlap between the reference and 

estimated pedicle regions - one based on the validation dataset and one based on an unseen testing 

dataset (between the predicted pedicle regions and the ground truth masks). The unseen testing dataset 

was generated using a similar data augmentation routine based on a separate CT scan that was not 

involved in the training process (1000 test sets).  

3 Results 

Generation of the training, validation and testing datasets took 40 minutes and training the deep 

learner took 6 hours on the aforementioned computing platform. The Dice similarity coefficients for 

the validation and testing datasets were calculated as 0.85 and 0.83, respectively (with no post 

processing). The maximum inference (i.e. prediction) time of the trained network was less than one 

second.  

4 Discussion 

The large Dice coefficients found in this study suggest that the deep-learning-based automatic 

algorithm was always successful in identifying the pedicle regions in the validation and testing CT 

volumesets.  The discrepancies in the overlapped region estimates were comparatively minor, with 

edge errors typically on the order of 1 mm.  No preprocessing of the CT volumes (e.g. segmentation 

of bone surfaces and surface reconstruction) was needed. The current system, however was only 

trained and tested on CT imagery and can only handle one vertebra at a time (as opposed to a fully 

connected spinal column that would be present in live surgeries), so future work would aim to address 

this issue.  

By being able to automatically identify the pedicle areas in a spinal CT image, this algorithm can 

provide a reliable initial guess for the 2D-3D registration process we are using in our intraoperative 

position assessment system.  This algorithm also has potential uses in simplifying and speeding the 

identification and localization of key anatomical structures in surgery planning processes. 
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