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Abstract

Approximate query processing (AQP) is a computing efficient scheme to provide fast
and accurate estimations for big data queries. However, assessing the error of an AQP
estimation remains an open challenge for high-dimensional multi-relation data. Existing
research often focuses on the online AQP methods which heavily rely on expensive auxil-
iary data structures. The contribution of this research is three-fold. First, we develop a
new framework employing a non-parametric statistic method, namely bootstrap sampling,
towards error assessment for multi-join AQP query estimation. Second, we extend the cur-
rent AQP schemes from providing point estimations to range estimations by offering the
confidence intervals of a query estimation. Third, a prototype system is implemented to
benchmark the proposed framework. The experimental results demonstrate the prototype
system generates accurate confidence intervals for various join query estimations.

1 Introduction
A demanding challenge in the big data era is to answer complex queries given a time lim-

itation. Much research has been developed to promptly provide the exact answer for data
queries [12, 13]. However, getting the exactly precise answer for every data query is not always
necessary in all circumstances. For example, during the exploratory data analysis (EDA), a
user often prefers a quick query approximation without blinking of eyes rather than the exact
answer coming after a long waiting. Many complex big data queries require prolonged waiting
time and waste significant computing energy.

Approximate query processing (or AQP) is an alternative scheme that aims to quickly
provide estimated query answers with satisfying accuracy and usually is given a short time
restriction [3, 10, 11]. Without the need to execute the query on the original dataset, which
can be time-consuming, AQP only collects a statistical summary of the data, named synopsis,
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and runs the query on the synopsis to obtain a synopsis query result. A query estimation is
generated from the synopsis query result using AQP estimators. AQP can provide a query
estimation much faster than traditional query processing schemes [7].

Based on the schemes of statistics collection, AQP can be categorized into two groups,
namely the online AQP and offline AQP. The online AQP [5, 8, 9] collects statistical summaries
only after the target query for approximation is submitted. To achieve a fast responding speed,
the online AQP heavily relies on auxiliary data structures such as indices and hash tables to
scan data quickly. These data structures are usually costly to maintain and time-consuming
to construct. Another drawback is the statistics collected by online AQP are not reusable for
a different target query. These drawbacks lead to significant waste of computing energy and
storage space.

The offline AQP [2, 14], on the other hand, collects a priori statistics before a query is
submitted for estimation. It typically creates a holistic statistical synopsis based on the schema
of the database. A particular advantage of the offline AQP is it doesn’t rely on expensive
auxiliary data structures. Another advantage is the collected statistics by the offline AQP are
reusable for future queries. These significantly reduce the overall system cost compared with
the online AQP.

One current challenge is to assess the accuracy of AQP query estimations, namely error
estimation [4]. The difficulty arises from the phenomena that, when the query conditions
change, the underlying distributions of the result data are also changed and difficult to predict.
For online AQP schemes, the statistics are collected on-the-fly after the query result is obtained;
therefore, the ground truth query result distribution is obtained, which alleviates the problem
complexity for the online AQP. However, for offline AQP schemes, the ground truth query result
distribution is not collected on-the-fly and hence unknown. This produces a major obstacle of
error estimation for online AQP schemes.

Bootstrap sampling [6] is a unique statistical technique that can assess the errors of a
sample-based estimator. One advantage of bootstrap sampling is that it doesn’t require prior
knowledge of the ground truth population distribution, but can pull itself up from its bootstrap.
Therefore, it is often considered as a non-parametric statistical method. Bootstrap sampling
performs a special sampling method, namely resampling, which can generate a large number
of bootstrap replications in order to estimate the standard deviation (or standard error) of an
AQP query estimator.

In this work, we study the problem of using bootstrap sampling to assess estimation errors
for offline join-AQP systems answering multi-join query results. Our contributions include the
follows. First, we propose a framework that integrates bootstrap sampling with a sample-
based offline AQP scheme, namely CS2 [14], which can provide error assessments for the query
estimator. Second, the proposed framework will generate a confidence interval for the query
estimation and extend an AQP system from providing point-estimations to range estimations
for query results. Third, a prototype system implemented to simulate a real-world database
system. This system is equipped with a bootstrap sampler engine enabling error assessment
for AQP schemes. We test the performance of the prototype system on multiple datasets with
various combinations of hyperparameter settings. The experimental results demonstrate the
confidence intervals produced reach high accuracy for various test queries.

The rest of the work is organized as follows. Section 2 introduces the background of AQP
and bootstrap sampling. Section 3 formulates the problem of join AQP error estimation. Sec-
tion 4 describes error assessment for the sampled-based join AQP scheme. We describe the
implementation of the prototype system enabling bootstrap sampling working with join AQP
in Section 5. Experimental results are discussed in Section 6. Section 7 includes the conclusion
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and future work.

2 Background

Approximate query processing (or AQP) is a technology to provide rapid estimations for
complex queries using statistical methods. It aims to provide accurate query estimations within
a short time frame.

2.1 AQP for multi-relation join queries

The multi-relation join (or multi-join) approximate query processing focuses on estimating
queries including multiple joins and selections on several joinable tables or correlated datasets.
Given a multi-join query Q on a table R, to get the ground truth query result YGT , the
traditional query processing techniques require executing the query Q on the original dataset
R = {Ri}ni=1 which can take a long time without relying on high-performance computing
hardware or costly data structures such as indices and hash tables.

Instead of running the query Q directly on the original dataset R, the multi-join AQP
usually executes the query Q on a synopsis S generated from R in order to produce an estimated
answer of the query result. A synopsis is typically a statistical summary of the original dataset
R. In a simple example, for an equi-join query counting the size of join between R1 and R2,
Q = |R1 ▷◁ R2|. If there is a simple random sample without replacement (SRSOR) on R1

denoted by S1. Ys is the sample query result after running Q on S1. The ground truth YGT

can be estimated by Ŷ = Ys

f where f = |S|
|R| is the sampling ratio.

2.2 Bootstrap Sampling

Bootstrap sampling performs a unique process named resampling or sampling with replace-
ment. Each iteration of this procedure generates a new distribution, namely a bootstrap sample,
which is a simple random sample with replacement (SRSWR) from the original sample dataset.
Applying desired statistics or functions on a resampled distribution, a scalar is computed named
the bootstrap replication. Bootstrap resampling usually generates a large number of bootstrap
replications and use them to estimate useful statistical features, such as the standard deviation
of the original dataset even when the population (or ground truth) distribution is unknown.

Figure 1 depicts a sample example of how bootstrap sampling is performed. When given a
sample dataset y⃗ = (yi), i = 1, ..., n from an unknown distribution F , a bootstrap sample y⃗∗ =
(y∗i ), i = 1, ..., n is a collection obtained by n times of SRSWR the original sample {yi}ni=1. For
instance, if n = 5, we might obtain different bootstrap samples, such as y⃗∗1 = (y5, y3, y1, y2, y1),
y⃗∗2 = (y2, y5, y4, y1, y2), y⃗∗3 = (y3, y3, y2, y3, y4), etc. These resamples are shown in Figure 1a.

After summarizing the frequency of each sampled element, we obtain the distribution of a
bootstrap sample, F̂ = (f̂1, f̂2, . . . ), where f̂k = #{y∗i = yk}/n.

2.2.1 An example application of bootstrap sampling

An example application using bootstrap sampling is to estimate the standard deviation (or
standard error) s of a sample estimator from an unknown distribution.

Suppose we are interested in a statistical parameter θ = t(F ) where t is a statistical or
analytic function. Since usually we don’t have all the information of F , but can only calculate
an estimation of θ from a given sample y⃗ denoted by θ̂ = s(y⃗). For each bootstrap sample y⃗∗
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Figure 1: Example: Bootstrap Sampling

we can generate a bootstrap replication of θ̂, denoted by θ̂∗ = s(y⃗∗). For instance, when θ̂ is
the sample mean y⃗, a bootstrap replication θ̂∗ is be the sample mean on a bootstrap sample y⃗∗.

After generating a total number, B, of bootstrap samples, we can obtain the standard
deviation of all θ̂∗, i.e. ŝeB(θ̂∗), called the bootstrap estimation of standard error. Generally
speaking, the large the number B, the better ŝeB(θ̂

∗) estimates the ground truth standard
deviation of θ̂, seF (θ̂).

Often, seF̂ (θ̂
∗) is called a plug-in estimate of seF (θ̂) that uses the empirical distribution F̂

in replacement of the population distribution F .
ŝeB(θ̂

∗) can be calculated as

ŝeB(θ̂
∗) =

[
1

B − 1

B∑
i=1

(
θ̂∗(i)− θ̄∗

)2
] 1

2

(1)

where θ̄∗ =
∑B

i=1 θ̂
∗(i)/B.

3 Problem Statement

We consider the following formulation for a multi-join query Q in this research.

SELECT Fn(attribute collection) FROM table collection WHERE conditions;

where Fn is a common and “smooth” aggregate function such as COUNT, AVG, and SUM as
it’s well known that non-smooth aggregate functions, for example median and count distinct,
do not suite for sample-based AQP frameworks; table collection is the collection of all tables
involved in the query (denoted by RQ = {RQ

i }mi=1); attribute collection includes attributes
{AQ

ij} displayed in the query result; the conditions includes the selection conditions and join
conditions.
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4 Methodology

4.1 Multi-Join Query Result Estimation

Suppose a synopsis S is constructed on the original dataset R = {Ri}Mi=1, and the top
relation in the join graph of RQ is RQ

1 and its corresponding sample table is SQ
1 . When a query

Q is executed on the synopsis S, each sample tuple ui ∈ SQ
1 , i = 1, ..., n, produces a tuple

query result yi according to the aggregate function Fn and the join result. Let SQ = {yi}ni=1

denote the collection of tuple query results. For instance, if Fn is COUNT and the primary
key is included in the attribute collection then yi is either 1 if the tuple ui satisfies the query
conditions or otherwise is 0.

The query result Ys of Q on S is calculated as Ys =
∑n

i=1 yi where n = |SQ
1 |. Suppose

N = |RQ
1 | and the sample fraction f = n

N , then the estimation of the ground truth of query
result on R, Ygt is Ŷ = Ys

f .
The accuracy of Ŷ depends on both the sampling method and the statistical nature of the

tuple query result set Y = {Yi}Ni=1 produced by each tuple Ui ∈ RQt when executing query Q

on R. The accuracy of Ŷ tends to be higher when the sampling process is uniform and the
skewness of Y is low; otherwise, the it will be lower when the sampling process is not uniform
or Y has a high skewness or even includes correlation.

4.2 Bootstrap Sampling

First, the tuple query results SQ = {yi}ni=1 are obtained by executing Q on the synopsis S.
Then { #»y j}Bj=1 is generated via bootstrap re-sampling on SQ for a total of B iterations. Each
y⃗j = {yj,i}ni=1 is a bootstrap re-sample of SQ where each tuple query result yj,i is randomly
sampled with replacement from SQ.

The bootstrap replication Ŷj is the estimation of YGT using the query result. Let Yy⃗j
be

the query result aggregated from y⃗j . It can be calculated as Ŷj =
Yy⃗j

f . For example, if the
aggregate function is COUNT, then the estimation is Ŷj =

1
f

∑n
i=1 yj,i.

The collection of all B bootstrap replication is denoted by ŶB = {Ŷj}Bj=1. The standard
deviation of ŶB is

ŝeB =

 1

B − 1

B∑
j=1

(Ŷj − ¯̂
YB)

2

 1
2

(2)

where ¯̂
YB is the sample mean of all bootstrap replications ŶB . By the theoretical framework of

bootstrap sampling, we claim the Eq 2 is the bootstrap estimation of the standard error of the
Ŷ when estimating YGT for query Q. The accuracy of ŝeB tends to be higher when B increases.
Usually we consider B of 1000 to 2000 as sufficient.

4.3 Bootstrap Confidence Interval

There are multiple methods to calculate the confidence interval (or CI) using bootstrap
sampling, such as the standard method and percentile method. These methods are usually
efficient and fairly accurate. There are also improved methods to increase the accuracy and
adjust the bias such as BCa and ABC methods; however, they are often slower in performance
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Figure 2: Prototype AQP System Architecture

for larger datasets [6]. In this work, we employ the commonly adopted standard method because
it’s a generally applied method and our aim is to investigate the overall system performance on
large datasets.

Suppose the significant level is denoted by α which is a probabilistic value. Common choices
of α include 5% for 90% level of significance and 2.5% for 95% level of confidence, respectively.
The bootstrap CI calculated by the standard method is as follows.(

Ŷ − z(1−α) · ŝeB , Ŷ + z(1−α) · ŝeB
)

(3)

where Ŷ is the query estimation and z(1−α) is the 100(1−α)th percentile of a standard normal
distribution. For example, for 90% level of significance, z(0.95) = 1.645, and for 95% level of
significance, z(.975) = 1.960.

5 Prototype AQP System Implementation
Figure 2 depicts the architecture of the prototype AQP system with bootstrap sampling

module. The major components include a simple query parser, a query processor, CS2 synopsis
generator, and the bootstrap sampler. The query parser processes SQL queries stored in a
plain textfile and generates query structures. The query processor executes an SQL query
based on the query structure and computes the ground truth query result YGT . The current
query processor is cable to process simple SQL opperators such as selection, join, and filtering
conditions (in the WHERE clause).

The CS2 synopsis generator can perform correlated sampling on the original database. The
created CS2 synopsis will be fed into the query processor which will produce sample query
results and hence generate the AQP estimation (Ŷ ) for a SQL query. The sample query results
will be given to the Bootstrap sampler to generate bootstrap resamples which will be used to
estimate the standard deviation of the AQP query estimation. The standard deviation will
later used to produce the confidence interval (CI) of the AQP query estimation. The CI will
be compared with the ground truth query result in order to evluate the accuracy of Bootstrap
sampling for AQP error estimation.

The prototype system is developed in Rust to mimic a realistic system when processing
queries on large datasets.
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6 Experiment

6.1 Experiment Setup

The experiment was performed on a server equipped with an Intel(R) Core(TM) i7-10710U
CPU which operates at a base frequency of 1.10GHz. The system is equipped with 21GB of
RAM and runs the operating system of CentOS 7 with the Linux kernel version 3.10. The ex-
periment code is developed using the Python 3 programming language which runs the prototype
system implemented in Rust.

The datasets used for experiments are generated using TPC-H benchmark [1] in different
data sizes including 100MB, 1GB, and 10GB stored on a centralized hard drive on the server.
The test queries are created from the TPC-H queries with randomly generated values in the
filtering conditions. The queries are grouped by the number of joins which ranges from one to
four joins, where each group includes 10 test queries. To obtain reliable running results, each
test query is executed for 10 times and retain the averaged running result.

When creating the CS2 synopses, the sampling fractions used include 0.1%, 0.5%, and
1.0% mimicking the scenarios with small, medium, and large sampling sizes. In the bootstrap
sampling process, the total number of bootstrap resamples used include B=200 and B=2000 to
test its impact on the accuracy of error estimation.

In general, it is observed that the average hit percentages are above 90% across all figures
mentioned. The hit percentages are observed fairly accurate even given small sample fractions
and few bootstrap resample iterations.

6.2 Accuracy Tests

The bootstrap sampling model in the experimental system will produce the standard devia-
tion and hence a confidence interval (CI) of the AQP query estimation. The optimal situation is
the ground truth query result obtained using the original database is included between the up-
per and lower bound of the CI, which we call it the hit scenario; otherwise, it’s a miss scenario.
We introduce an easy understanding measure called hit percentage (or hit ratio) to evaluate the
accuracy of the bootstrap sampling model described as follows.

hit percentage =
times(CI hits)

times(total experiments)
× 100% (4)

We compute the hit percentage for test queries in each group of join numbers. We analyze
the impact of hyperparameters, such as sampling fractions and bootstrap resample iterations,
on the hit percentage across various sizes of datasets and query groups.

6.3 Factor of Sampling Fractions

Figures 3, 4, and 5 depict the average hit percentages given various sample fractions (or
sample size, f) in each group of join query and bootstrap resample iteration (B). We generated
CS2 synopses with sampling factions set to 0.1%, 0.5%, and 1.0% on each of the dataset. We
also grouped the hit percentage results according to B is set to 200 and 2000.

We observe that the CS2 synopsis volumes progressively increase given larger sample frac-
tions. A larger synopsis includes more samples from the original raw data and will improve
the accuracy of AQP estimations. Therefore, when set the B value fixed, the hit percentage
generally increases when the sample fraction increases.
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Another perspective is the changing of join numbers. When join numbers increase, the AQP
estimation tends to be lower as the query become more complex and the sample join results
may fluctuate. Therefore, the hit percentage tends to be lower when the join number increases.

6.4 Factor of Bootstrap Resample Iterations

Figures 6, 7, and 8 depict how the average hit percentages change given different bootstrap
resample iterations in each group of join query and sample fraction.

Provided more iterations of bootstrap resampling, more bootstrap replications will be pro-
duced to better estimate the standard deviation of the AQP estimation. Therefore, setting
the sf value fixed, the hit percentage generally increases when more bootstrap resamples are
computed. Same as previously mentioned, the hit percentage tends to be lower when the join
number increases.

7 Conclusion

In this work, we introduced a non-parametric framework of error assessment for the offline
join AQP scheme using bootstrap sampling. The contributions are twofold. First, we developed
the methodology to perform the bootstrap sampling of join query results on a sample-based
synopsis. Then we provided the theoretical framework to calculate the confidence interval of the
AQP estimation. This improves the traditional AQP point estimator to a range estimate with
a significant improvement in the usability of the AQP application. The second contribution
is we implemented a prototype system that integrates the bootstrap sampler with a join-AQP
framework. Extensive experiments have been performed on the prototype system using mul-
tiple datasets and test queries. The experimental results showed that the prototype system
produced satisfying accuracy in error assessment for join AQP estimations. In the future, we
will generalize the framework for more challenging AQP scenarios, such as when correlation
exists in the statistical synopsis.
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Figure 4: Hit percentage for 1GB data set with different bootstrap samples
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Figure 5: Hit percentage for 10GB data set with different bootstrap samples
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Figure 6: Hit percentage for 0.1% sample size and different data sizes
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Figure 7: Hit percentage for 0.5% sample size and different data sizes
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