
EPiC Series in Computing

Volume 45, 2017, Pages 120–132

SCSS 2017. The 8th International Symposium on
Symbolic Computation in Software Science 2017

A Comprehensive Formal Solution for Access Control

Policies Management: Defect Detection, Analysis and Risk

Assessment

Faouzi Jaidi1, Faten Labbene Ayachi2, and Adel Bouhoula3

1 faouzi.jaidi@gmail.com
2 faten.labbene@supcom.rnu.tn
3 adel.bouhoula@supcom.rnu.tn

Abstract

Nowadays, the access control is becoming increasingly important for open, ubiquitous
and critical systems. Nonetheless, efficient Administration, Management, Safety analysis
and Risk assessment (AMSR) are recognized as fundamental and crucial challenges in to-
days access control infrastructures. In untrustworthy environment, the administration of
an access control policy, which is a main security aspect, generally raises a critical anal-
ysis problem when the administration is distributed and/or potentially un-trusted users
contribute to this process. Consequently, collusions attempts and inner threats may take
place to generate crucial and invisible breaches to circumvent the policy. To address this
issue, we introduce a rigorous and comprehensive solution for an efficient and secure man-
agement of access control policies. Our proposal gives a high visibility on the development
process of an access control policy and allows in an elegant manner to detect, analyze and
assess the risk associated to the policy defects. The strength of our proposal is that it
relies on logic-like formalisms to ensure a high surety by verifying the correctness and the
completeness of our formal reasoning. We rely on an example to illustrate the relevance of
the proposal.

1 Introduction

As Information and Communication Technologies (ICT) are becoming increasingly pervasive,
ubiquitous and embedded in everyday object, issues pertaining to the deployment and opera-
tion of systems and information security techniques are becoming increasingly important. ICT
developments have a direct and wide impact on information and systems security since there
is more data and complex assets to be protected in more connected, mobile, open and criti-
cal infrastructures. Access control as a typical solution is well adopted to ensure confidential
and authorized interactions between components of Information Systems (IS). The importance
given to access control for securing IS has been widely studied and justified in literature. It is
commonly agreed that defining and setting up an efficient and reliable access control policy is
a main requirement for securing critical infrastructures. Nevertheless, setting up a trustworthi-
ness environment of access control and monitoring its compliance and coherence have emerged

M.Mosbah and M.Rusinowitch (eds.), SCSS 2017 (EPiC Series in Computing, vol. 45), pp. 120–132

Formal Solution for Access Control Policies Management Jaidi, Labbene Ayachi and Bouhoula

Figure 1: Traditional life-cycle of access control policies.

as complicated and confusing tasks. More, in todays access control infrastructures, efficient
administration, management, safety analysis and risk assessment (AMSR) are recognized as
fundamental challenges. However, mastering the AMSR tasks is crucial as it would address the
urgent desire to ensure a higher security of enterprises IS.

The traditional life-cycle of an access control policy illustrated in figure 1 define three main
phases: the specification, the verification and the implementation of the policy. Then the policy
evolves with reference to maintenance and administrative tasks and following the evolution of
security needs. Throughout its life cycle, the policy can undergo confused alterations: (i) it
may record illegal updates and non-compliant changes with regard to its original specification.
This generally occurs following an intrusion attempt or an illegal delegation of rights. (ii) It
may contain incoherent and conflicting access control rules. This generally occurs following
inner threats, collusions attempts and particularly in case the policy is defined by using more
than a unique model of access control that lead to redundancy, inconsistency and contradiction
in the expression of the policy.

In large scale, open and untrustworthy environments, the administration and management
of an access control policy (considered as main security aspects) generally raise a critical anal-
ysis problem in case of a distributed administration of the policy and/or potentially un-trusted
users (in most cases represent malicious administrators) contribute to the administration pro-
cess. As a consequence, collusions attempts and inner threats may take place to generate crucial
and invisible breaches to circumvent the policy. In a Data Base Management System (DBMS)
context, we easily check that as business and private data is exposed to several security threats
and attacks, an access control policy is also subject to the same dangers [8]. According to
Imperva Application Defense Center reports in 2013 and 2015, Excessive and Unused Privi-
leges and Privilege Abuse are identified as most critical threats in top ten database security
threats. Moreover, in the context of healthcare and e-healthcare systems (as a typical critical
infrastructures), access control solutions should be rigorous to ensure a higher protection and
flexible to treat emergency cases. We check that the simultaneous coupling of two necessary but

121

Formal Solution for Access Control Policies Management Jaidi, Labbene Ayachi and Bouhoula

contradictory objectives (robustness and flexibility) has a direct influence and a wide impact
on the compliance of the deployed access control policy [13].

To address this crucial problem, we introduce in the current paper a reliable and compre-
hensive solution for an efficient and secure management of access control policies. Our goal is
to enhance the integrity of low-level access control policies. To reach this purpose, we aim to:
(i) identify and classify attacks and alterations that may corrupt a role based access control
(RBAC [21]) policy; (ii) define a formal framework that disposes of complete mechanisms for
detecting different alterations; and (iii) evaluate the risk associated to the detected anomalies.
Our proposal gives a high visibility on the development process of an access control policy and
allows in an elegant manner to detect, analyze and assess the risk associated to the policy
defects. Therefore, it helps to monitor the compliance between the low and the high levels of
the access control policy in a simple and efficient manner. The strength of the proposal is that
it relies on logic-like formalisms to ensure a high surety by verifying the correctness and the
completeness of our formal reasoning.

The rest of the paper is organized as follows. We introduce and discuss related works in
section 2. In section 3, we present a summary of alterations that may corrupt the compliance
of an access control policy. In section 4, we introduce our solution for an efficient deployment
and management of reliable and trusted access control policies. We highlight the relevance of
our contribution based on an illustrative example. Finally, we conclude the paper and present
ongoing works in section 5.

2 Related Works

We classify related works defined in literature to address the thematic of verification and val-
idation (V&V) of access control policies in two main categories: the V&V of the specification
and the V&V of the implementation of access control policies.

Several approaches and research works have been well defined to address the verification
of the specification of RBAC policies with a main objective is to check the exactitude of a
specified policy before proceeding to its implementation. In [1], authors chose to specify access
control policies with the security modeling language SecureUML and to verify the specified
diagrams based on OCL requests by using the SecureMOVA tool. Authors in [3] adopted a
formal approach that consists of specifying the access control policy with SecureUML, encoding
the specified diagrams in the Z language and formally analyzing the policy by animating the
specification with the animator Jaza tool. Authors in [25] opted for a formal verification of
the correctness of the specifications of RBAC policies. They chose to specify the policy with
SecureUML and to encode the specifications in the B notation by using the B4Msecure tool.
Then, they formally analyze the policy via the animator ProB tool. In [14], authors opted for
structuring the set of application roles in a graph of roles that captures different variants of
RBAC models. This approach can benefit from well-established results in graph transformation
systems [17] and from issues addressed in [18], [20].

Concerning the validation of the implementations of access control policies, the main goal
of related works is to verify the correctness of concrete policies regarding the defined security
constraints. Existing approaches proposed to represent the set of application roles in differ-
ent formalisms allowing the analysis, the validation or the optimization of the policies. The
proposed contributions deal essentially with the following features: (i) validation of a concrete
instance of an access control policy regarding the set of security constraints defined around that
policy by using a finite model checker [7]; (ii) detecting by using the formalism of graph of roles
existing anomalies of redundancy and inconsistency in the schema of the policy [4]. In [2],

122

Formal Solution for Access Control Policies Management Jaidi, Labbene Ayachi and Bouhoula

the author proposed to model the access control policy as a graph of roles and to detect illicit
transfer of privileges by using graph theory algorithms or a specific LDAP directory schema.
Authors in [22] focused primarily on how to enforce and check security constraints and pro-
posed a logical framework to enforce the integrity of access control policies in the context of
relational databases.

As for the risk assessment, integrating risk awareness in RBAC systems deals mainly with
three main concepts: trust, risk mitigation and risk quantification. Indeed, several approaches
proposed to integrate trust relationships into the RBAC model like in [23], [6]. Others focused
on constraints-based risk mitigation approach and many attempts proposed to specify SSoD
and DSoD constraints like in [5], [24] in RBAC systems. Finally, several works focused on risk
quantification approaches and proposed frameworks to quantify the risk associated to access
requests such as [19], [15], [16].

Most of discussed works treated the thematic of V&V of access control policies either to
check the exactitude of the specifications or to verify the correctness of the implementations
regarding defined security constraints. Nonetheless, no complete and rigorous solution is defined
for checking the correspondence and monitoring the conformity between high-level and low-
level policies. This issue is not addressed sufficiently in literature and needs more and more
attention. We address this problematic and we propose a rigorous and comprehensive solution
for detecting, analyzing and evaluating the risk associated the policies defects.

3 Compliance Defects in Access Control Policies

We focus in this section on the identification of the defects that may characterize the progress
and evolution of an access control policy. We introduce in Table 1 a summary of possible
alterations that may corrupt the compliance of a concrete RBAC policy. We present, for each
case, a classification of the defect, a qualification of its origin and a theoretical analysis of the
associated risk.

We derive four types of anomalies [12]. (i) Anomalies of inconsistency associated to new
access control rules defined in the concrete instance and not initially foreseen during the specifi-
cation of the policy. (ii) Contradiction anomalies are caused by access control rules that become
invalid and introduce conflicts to the access control process. (iii) Anomalies of redundancy are
linked to access control rules that infer with other rules (which are basically implemented or
recently added). (iv) Anomalies related to a partial implementation of the specifications that
falsifies the global behavior of the access control process. We qualify the discussed anomalies in
two manners: conceptual and optimization problems that may not influence the access control
process in a risky manner but should be treated rapidly to avoid any further exploitation and
extension; and security problems that have a wide security impact on the access control process
and recognized as risky anomalies that should be treated immediately.

4 Formal Framework for Access Control Policies Manage-
ment

Our approach to address issues related to the deployment and management of access control
policies extends the traditional life cycle of access control policies with pertinent phases that
we consider as necessary activities for ensuring the trustworthiness and the compliance of secu-
rity policies. To ensure an efficient and secure deployment and management of reliable access

123

Formal Solution for Access Control Policies Management Jaidi, Labbene Ayachi and Bouhoula

N◦ Access Control Policies Defects
Cases Classification Qualification Risk

1 A permission is not assigned to any role Redundancy /
Contradiction

2 A role without permissions Redundancy /
Contradiction

3 A user without roles and consequently
without permissions

Redundancy /
Contradiction

Conceptual/
Optimization

Not risky
(Minor to

4 Direct assignment of permissions to
users

Redundancy /
Contradiction

Problems Low risk)

5 Multiple assignment of the same per-
missions to a role

Redundancy

6 Two roles or more share the same per-
missions

Redundancy

7 Hidden Users: New users created and
assigned roles and permissions bypass-
ing what was initially specified

Inconsistency

8 Hidden Roles: New roles created and
assigned permissions bypassing what
was initially predefined

Inconsistency

9 Missed Users: removed, missed or deac-
tivated users due to a malicious use of
granted rights or a partial implementa-
tion of the policy

Partial imple-
mentation

10 Missed Roles: removed, missed or deac-
tivated roles due to a malicious use of
granted rights or a partial implementa-
tion of the policy

Partial imple-
mentation

Security
Problems

Risky
(Moderate
to High
risk)

11 Renamed Users: users renamed one
time or more in order to avoid an audit
or a system investigation

Inconsistency

12 Renamed Roles: roles renamed one
time or more in order to avoid an audit
or a system investigation

Inconsistency

13 Hidden access flow : generating a new
potential access flow invisible from the
outside of the database by means of il-
legal delegations of rights to users or il-
legitimate assignments of users to roles,
roles to roles or permissions to roles

Inconsistency

14 Missed access flow : ignoring or remov-
ing an authorized access flow via omit-
ting or revoking a set of legal assign-
ments of users to roles, roles to roles
or permissions to roles due to an un-
intentional/intentional erroneous use of
priveleges or a partial implementation
of the policy

Partial imple-
mentation

Table 1: Analysis of access control policies defects.

124

Formal Solution for Access Control Policies Management Jaidi, Labbene Ayachi and Bouhoula

control policies, we cover four key security aspects like illustrated in figure 2. (i) The specifica-
tion, verification and implementation of the policy invariants; (ii) the validation of a concrete
(implemented) instance of the policy regarding its original specification; (iii) the assessment
of the risk associated to the policy defects; and (iv) the adjustment and optimization of the
access control policy schema. In fact, the goal during the specification phase is to capture
the maximum of security needs and to distinguish the invariants that must meet any concrete
instance of the access control policy. Security architects dispose, during this phase, of security
modeling languages that extend classical application modeling languages. Verifying the exacti-
tude of the specification and adopting a Model Driven Architecture (MDA) approach is highly
interesting in systems development and allows especially reaching the implementation via suc-
cessive refinements of the verified specification. During the validation phase, the reference stage
(the specification) and the concrete instance are facing in a logical framework allowing formal
reasoning and compliance demonstration. To do so, two preliminary phases are necessary: a
reverse engineering phase that allows generating the schema of the implemented policy and a
formalization phase for representing the extracted policy in our formal framework. Evaluating
the risk associated to the detected defects is highly important that allows to qualify the impact
of different anomalies on the system and to respond in an automatic and autonomous manner
to critical situations. The optimization phase corrects the redundancy anomalies and helps to
check the properties of the graph of roles, to calculate the power of a role, etc. Obtained results
allow the adjustment and the up to date of the corresponding policy.

4.1 Formal Detection of the Policy Defects

We formally represent a role based access control policy as follows: U (users); R (roles);
O (objects / resources); A (access modes); P (permissions defined as possible actions on
objects, P ⊆ R × O); AUR (users-roles assignments, AUR ⊆ U × R); ARR (hierar-
chy of roles, ARR ⊆ R × R) and APR (permissions-roles assignments, APR ⊆ P × R
). Our validation process requires putting in duality two different notations. Hence, we
note ACP = (U,R, P,AUR,ARR,APR) the formal representation of the specified policy and
ACP ′ = (U ′, R′, P ′, AUR′, ARR′, APR′) the formal representation of the concrete instance of
that policy. We developed a set of inference systems that allow checking and validating the
compliance between the low-level (concrete instance, ACP ′) and the high-level (specified in-
stance, ACP) of the RBAC policy and calculating differences between the two versions of the
policy. We prove the correctness and the completeness of our formal reasoning.

Our formal reasoning allows detecting the following anomalies: hidden users (HU); missed
users (MU); renamed users (RU); hidden roles (HR); missed roles (MR); renamed roles (RR);
hidden access flow (HAF) that comprises hidden assignments of users to roles (HAUR), hid-
den assignments of roles to roles (HARR) and hidden assignments of permissions to roles
(HAPR); missed access flow (MAF) that comprises missed assignments of users to roles
(MAUR), missed assignments of roles to roles (MARR) and missed assignments of permis-
sions to roles (MAPR); elementary redundancy (RED) and redundancy associated to the
DAC Model (DACRED) [9].

We present in figure 3, as an example, the inference system that allows detecting the set of
hidden assignments of roles to users. We refer to the following theorems to prove the correctness
and the completeness of our system.

Theorem 1 [correctness]: the system is correct if for all sets of specified assignments
of roles to users (AUR) and implemented assignments of roles to users (AUR′) the following
assertions are always verified:

125

Formal Solution for Access Control Policies Management Jaidi, Labbene Ayachi and Bouhoula

Figure 2: Approach of deployment and management of access control policies.

(i) Compliance: if (U ′ , R′ , AUR , AUR′ , ∅) `∗ Success then AUR = AUR′.

(ii) Non-compliance: if (U ′ , R′ , AUR , AUR′ , ∅) `∗ (U ′ , R′ , AUR , ∅ , HAUR) with
HAUR 6= ∅ then AUR′ −AUR 6= ∅.

Proof:

(i) If (U ′ , R′ , AUR , AUR′ , ∅) `∗ Success then we have an iterative application of the third
rule (Non-hidden assignment) that implies that ∀(u, r) ∈ AUR′ ⇒ (u, r) ∈ AUR. Hence,
we have AUR′ = AUR.

(ii) If (U ′ , R′ , AUR, AUR′ , ∅) `∗ (U ′ , R′ , AUR, ∅ , HAUR) with HAUR 6= ∅ then we have
at least one time application of the second rule (Hidden assignment) that implies that
∃u, r|u ∈ U ′ ∧ r ∈ R′ ∧ (u, r) ∈ AUR′ ∧ (u, r) /∈ AUR. Hence, we have AUR′−AUR 6= ∅.
Therefore, the defined reasoning is correct.

Theorem 2 [completeness]: the system is complete if for all sets of specified assignments
of roles to users (AUR) and implemented assignments of roles to users (AUR′) the following
assertions are always verified:

126

Formal Solution for Access Control Policies Management Jaidi, Labbene Ayachi and Bouhoula

Init
(U ′ , R′ , AUR , AUR′ , ∅)

Hidden assignment
(U ′ , R′ , AUR , AUR′∪{(u,r)} , HAUR)
(U ′ , R′ , AUR , AUR′ , HAUR∪{(u,r)})

if(u ∈ U ′∧r ∈ R′∧(u, r) /∈ AUR)

Non-hidden assignment
(U ′ , R′ , AUR , AUR′∪{(u,r)} , HAUR)

(U ′ , R′ , AUR , AUR′ , HAUR)
if(u ∈ U ′∧r ∈ R′∧(u, r) ∈ AUR)

Conformity
(U ′ , R′ , AUR , ∅ , ∅)

Success

Non-conformity
(U ′ , R′ , AUR , ∅ , HAUR)

HAUR
if HAUR 6= ∅

Figure 3: Formal detection of hidden users-roles assignments.

(i) Compliance: if AUR′ −AUR = ∅ then (U ′ , R′ , AUR , AUR′ , ∅) ` Success.

(ii) Non-compliance: if AUR′ − AUR 6= ∅ then (U ′ , R′ , AUR , AUR′ , ∅) ` HAUR with
HAUR 6= ∅.

Proof:

(i) If AUR′ − AUR = ∅ then AUR′ = AUR. Then, ∀u ∈ U ′, r ∈ R′|(u, r) ∈ AUR′ ⇒ (u, r) ∈
AUR. Then, by applying the third rule (Non-hidden assignment) we have ∀u ∈ U ′, r ∈
R′, (U ′ , R′ , AUR , AUR′ ∪ {(u, r)} , ∅) ` (U ′ , R′ , AUR , AUR′ , ∅). Then, via an
iterative application of the same rule until AUR′ = ∅, we obtain (U ′ , R′ , AUR , AUR′ ∪
{(u, r)} , ∅) ` (U ′ , R′ , AUR , ∅ , ∅). Hence, by applying the forth rule we have
(U ′ , R′ , AUR , AUR′ , ∅) ` Success.

(ii) If AUR′ − AUR 6= ∅ then ∃u, r|(u, r) ∈ AUR′ ∧ (u, r) /∈ AUR. Then, by applying the
second rule (Hidden assignment), we have (U ′ , R′ , AUR , AUR′ ∪ {(u, r)} , ∅) `
(U ′ , R′ , AUR , AUR′ , ∅ ∪ {(u, r)}) that implies that (U ′ , R′ , AUR , AUR′ , ∅) `
(U ′ , R′ , AUR, AUR′ , HAUR) with HAUR 6= ∅. Then, after an iterative application of
both second and third rules, we obtain (U ′, R′, AUR,AUR′, ∅) ` (U ′, R′, AUR, ∅, HAUR)
with HAUR 6= ∅. Hence, by applying the fifth rule we have (U ′ , R′ , AUR , AUR′ , ∅) `
HAUR with HAUR 6= ∅. Therefore, the defined reasoning is complete.

4.2 Risk assessment of the Policy Defects

To consider the risk associated to detected anomalies during the check of the compliance of the
access control policy, we introduce the necessary formulas that allow computing the risk values
of the policy components as well as the policy defects. More, we proceed to classify the risk
values associated to the policy defects based on a dynamic risk rating and thresholds [11]. The
risk assessment engine is in charge of estimating and re-estimating a risk threshold or a risk
rating for each component based on predefined risk factors such as history events, contextual
or situational factors, etc. We define an initial risk rating [Minor (≥ 0% and < 20%); Low
(≥ 20% and < 40%); Moderate (≥ 40% and < 60%); High (≥ 60% and < 80%); Extremely
High (≥ 80%)] that will be automatically updated based on the evolution of the risk factors.

127

Formal Solution for Access Control Policies Management Jaidi, Labbene Ayachi and Bouhoula

We evaluate in (1) the risk of a permission R(Pi) as the sum of the probabilities Pr(k)
of occurrence of malicious usages k; k = 1, ...,m; multiplied by the cost associated to each
malicious usage C(k).

R(Pi) =

m∑
(k=1)

Pr(k) ∗ C(k). (1)

We compute the risk of the role Rj like illustrated in (2) as the sum of the risk values of all
permissions R(Pi); i = 0, ..., n; assigned to it.

R(Rj) =

n∑
(i=0)

R(Pi)|Pi ∈ APR(Rj). (2)

We evaluate the risk of the user R(Ui) as shown in (3) as the sum of the risk values of all
roles Rj ; j = 0, ..., n; assigned to it.

R(Ui) =

n∑
(j=0)

R(Rj)|Rj ∈ AUR(Ui). (3)

We consider the risk of an association as the ratio between the risk values of the members of
the association. For example, the risk value of the user-role assignment relation AUR(k) that
attributes the role Rj to the user Ui is evaluated like defined in (4) as the ratio between the
risk of the role and the risk of the user.

R(AUR(k)) =
R(Rj)

R(Ui)
. (4)

As for the risk assessment of the policy defects, we seek to determine the impact of each
anomaly on the system, (ie) we probe to quantify the influence and the effect of the associated
security breaches on the system. From this perspective, we evaluate the risk of an anomaly,
like presented in (5), as the ratio between the risk values of the elements of this anomaly and
the risk values of the system elements of the same type.

R(Anomaly) =

∑
x | x ∈ Anomaly∑
y | y ∈ System

∗ 100%. (5)

For example, the risk of the set Hidden Roles is evaluated in (6) as the sum of the risk values
of all hidden roles Rj ; j = 0, ..., n; divided by the sum of the risk values of all maintained roles.
Maintained roles are defined as the intersection between specified and implemented roles.

R(HiddenRoles) =

∑n
(j=0) R(Rj)|Rj ∈ HiddenRoles∑m

(l=0) R(Rl)|Rl ∈ (ROLES IMP ∩ROLES)
∗ 100%. (6)

4.3 Illustrative Example

To highlight the relevance of our proposal, we consider the meeting scheduler as an illustrative
example. This system defines four principal actors. A system user is able to create/modify/-
cancel meetings, add participants to a meeting, and notify the participants about the meeting.
The system administrator is responsible of managing (creating, modifying related information
and deleting) persons. The supervisor is a special system user, who has the privilege to modify

128

Formal Solution for Access Control Policies Management Jaidi, Labbene Ayachi and Bouhoula

or cancel meetings he doesnt own. The director is both a user and an administrator. A pre-
defined security property requires that a meeting may only be modified/canceled by its owner
and supervisors can notify or cancel meetings they don’t own.

The specification of this IS considers the defined actors as application roles that users can
perform. It defines also the assignments of the users (Alice, Bob, Charles and David) to
their corresponding roles, the hierarchy between roles (Director SystemAdministrator; Director
SystemUser; and Supervisor SystemUser) as well as the assignment of permissions to roles.
The formalization in the B notation of the specified policy is defined as follows:

...
SETS
USERS = {Bob, David, Alice, Charles};
ROLES={Director, Supervisor, SystemAdministrator, SystemUser};
OBJECTS={Meeting, Person, MeetingNotify, MeetingCancel, MeetingModifyStart, MeetingModifyDuration,

PersonModifyName};
ACTIONS={read, create, modify, delete, fullAccess, execute};
VARIABLES
UsersRolesAssig, RolesHierarchy, PermissionsRolesAssig,
INVARIANT
UsersRolesAssg : USERS --> POW(ROLES) &
RolesHierarchy : ROLES <-> ROLES &
PermissionsRolesAssig : ROLES --> (OBJECTS * POW(ACTIONS))&
INITIALISATION
UsersRolesAssg := {(Bob|-> {Director, SystemUser}), (Charles|-> {SystemUser}), (David|->

{SystemAdministrator}), (Alice|-> {Supervisor, SystmUser})} ||
RolesHierarchy := {(Director|-> SystemAdministrator), (Director|-> SystemUser), (Supervisor|-> SystemUser)}

||
PermissionsRolesAssig := {(SystemUser|-> (Meeting|-> {create, read})), (SystemUser|-> (Meeting|-> {delete,

modify})), (SystemAdministrator|-> (Meeting|-> {read})), (SystemAdministrator|-> (Person|->
{fullAccess})), (Supervisor |-> (Meeting|-> {create, read})), (Supervisor|-> (Meeting|-> {delete,
modify})), (Supervisor|-> (MeetingCancel |-> {execute})), (Supervisor|-> (MeetingNotify|->
{execute})),(Director|-> (Meeting |-> {create, read})), (Director|-> (Meeting|-> {delete,
modify})),(Director|-> (Meeting |-> {read})), (Director|-> (Person|-> {fullAccess})) } ||

...

For the next, let suppose that after a period of time from the implementation of the system,
the policy has evolved to a new state where significant changes are introduced. The encoding of
the concrete instance of the policy in the target B notation is defined based on an appropriate
SQL-B mapping [10]. The formal representation (in the B notation) of the concrete policy is
as follows.

...
SETS
USERS_IMP = {Alice,Bob, Charles, Marie, Paul};
ROLES_IMP = {Director, Supervisor, SystemAdministrator, SystemUser, Cosupervisor};
OBJECTS_IMP = {Meeting, Person, MeetingNotify, MeetingCancel, MeetingModifyStart, MeetingModifyDuration,

PersonModifyName};
ACTIONS_IMP = {read, create, modify, delete, fullAccess, execute};
VARIABLES
UsersRolesAssig_IMP,RolesHierarchy_IMP,PermissionsRolesAssig_IMP, PermissionsUsersAssig_IMP,
INVARIANT
UsersRolesAssg_IMP: USERS_IMP --> POW(ROLES_IMP) &
RolesHierarchy_IMP : ROLES_IMP <-> ROLES_IMP &
PermissionsRolesAssig_IMP : ROLES_IMP --> (OBJECTS_IMP * POW(ACTIONS_IMP)) &
PermissionsUsersAssig_IMP : USERS_IMP --> (OBJECTS_IMP * POW(ACTIONS_IMP)) &
INITIALISATION
UsersRolesAssg_IMP:= {(Bob|-> {Director,SystemUser}), Marie|-> {SystemAdministrator}),(Alice|->

{Supervisor,SystemUser}), (Charles|-> {SystemUser}), (Paul|-> {Cosupervisor})} ||
RolesHierarchy_IMP := {Director|-> SystemAdministrator), (Director|-> SystemUser), (Supervisor|->

SystemUser), (Cosupervisor|-> Supervisor)} ||
PermissionsRolesAssig_IMP:={(SystemUser|->(Meeting|-> {create, read, delete, modify})),

(SystemAdministrator|->(Meeting|-> {read})), (SystemAdministrator|-> (Person|-> {fullAccess})),
(Supervisor|-> (Meeting|-> {create, read, delete, modify})), (Supervisor |-> (MeetingCancel|->
{execute}),(Supervisor|-> (MeetingNotify|-> {execute}), (Cosupervisor|->(Meeting|-> {create, read,
delete, modify})), (cosupervisor|-> (MeetingCancel|-> {execute}), (cosupervisor|-> (MeetingNotify|->

129

Formal Solution for Access Control Policies Management Jaidi, Labbene Ayachi and Bouhoula

{execute})),(Director|-> (Meeting|-> {create, read, delete, modify})), (Director|-> (Meeting|->
{read})), (Director|-> (Person|-> {fullAccess})) } ||

PermissionsUsersAssig_IMP:= {(Bob|->(Person|->{read}))}
...

The formal validation of the compliance between the two instances of the access control
policy detects the following anomalies: Hidden Users = { Marie, Paul }; Missed Users =
{ David }; Renamed Users = ∅; Hidden Roles = { Cosupervisor }; Missed Roles = ∅;
Renamed Roles = ∅; HiddenACFlow = [Hidden ARR = { (Cosupervisor |− > Supervisor
)}; Hidden AUR = { (Marie |− > {SystemAdministrator }), (Paul |− > { Cosupervisor })};
Hidden APR = { (Cosupervisor |− > (Meeting |− > { create, read, delete, modify })),
(Cosupervisor |− > (MeetingCancel |− > { execute })), (Cosupervisor |− > (MeetingNotify
|− > { execute }))}]; MissedACFlow = [Missed ARR = ∅; Missed AUR = { (David
|− > { SystemAdministrator }) }; Missed APR = ∅]; DacRedundancy = { (Bob |− >
Director) * ((Person |− > { fullaccess }) |− > Director) * (Bob |− > (Person |− > { read }))
}; Redundancy = { (Bob |− > Director) * (Bob |− > SystemUser), (Alice |− > Supervisor)
* (Alice |− > SystemUser) }.

In order to simplify the evaluation of the risk values associated to the detected anomalies, we
consider (as an hypothesis) that the risk of the permissions execute the operation MeetingCancel
and execute the operation MeetingNotify are evaluated to 5 et 4 in a scale that varies from 0 to
5, while the risk values of the rest of the permissions are evaluated to 1 in the same scale.

According to our risk assessment process, we evaluate and classify the risk values associated
to the identified anomalies as follows: R(Hidden Users) = 54.54% (Medium risk); R(Missed
Users) = 15.15% (Minor risk); R(Renamed Users) = 0% (Minor risk); R(Hidden Roles)
= 43.33% (Medium risk); R(Missed Roles) = 0% (Minor risk); R(Renamed Roles) = 0%
(Minor risk); R(Hidden ARR) = 71.42% (High risk); R(Missed ARR) = 0% (Minor risk);
R(Hidden AUR) = 66.66% (High risk); R(Missed AUR) = 33.33% (Low risk); R(Hidden
APR) = 25% (Low risk); R(Missed APR) = 0% (Minor risk).

5 Conclusion

We address in this paper deficiencies and challenges related to access control policies manage-
ment. We propose a comprehensive solution for deploying reliable and trusted access control
infrastructures and for an efficient and secure management of security policies. We define for-
mal mechanisms for detecting, analyzing and assessing the risk associated to concrete RBAC
policies defects. The strength of our proposal regarding other approaches is its robustness
and completeness. Robustness is justified by formally proving the efficiency of our solution in
detecting compliance defects in RBAC policies. Completeness is illustrated by the complete
treatment of this problematic that covers the hole life-cycle of access control policies.

Ongoing works address mainly the extension of our risk assessment process towards the def-
inition of a reliable formal framework for enhancing risk management in access control systems.

References

[1] Basin D. A., Clavel M., Doser J., and Egea M. Automated analysis of security-design models. Inf.
and Softw. Technology, 51(5): 815-831, 2009.

[2] Ghadi A. Modèle hiérarchique de contrôle d’accès d’unix basé sur un graphe de rôles (in french).
PhD, 2010.

130

Formal Solution for Access Control Policies Management Jaidi, Labbene Ayachi and Bouhoula

[3] Idani A., Ledru Y., Richier J., Labiadh M. A., Qamar N., Gervais F., Laleau R., Milhau J., and
Frappier M. Principles of the coupling between uml and formal notations. ANR-08-SEGI-018,
2011.

[4] Huang C., Sun J., Wang X., and Si Y. Security policy management for systems employing role
based access control model. Information Technology Journal, 8, 726-734, 2009.

[5] Gligor V. D., Serban I. G., and Ferraiolo D. On the formal definition of separation-of-duty policies
and their composition. In Security and Privacy, 1998, 1998.

[6] Feng F., Lin C., Peng D., and Li J. A trust and context based access control model for dis-
tributed systems. In Proceedings of the 10th IEEE International Conference on High Performance
Computing and Communications, HPCC ’08, pp. 629-634, USA, 2008.

[7] Hansen F. and Oleshchuk V. Conformance checking of rbac policy and its implementation. In 1st
Information Security Practice and Experience Conference, 144155., 2005.

[8] Jaidi F. and Labbene Ayachi F. An approach to formally validate and verify the compliance of
low level access control policies. In Proceedings of 2014 IEEE 17th International Conference on
Computational Science and Engineering (CSE), 1550-1557, 2014.

[9] Jaidi F. and Labbene Ayachi F. A formal approach based on verification and validation techniques
for enhancing the integrity of concrete role based access control policies. In International Joint
Conference, Advances in Intelligent Systems and Computing, 369: 53-64, 2015.

[10] Jaidi F. and Labbene Ayachi F. A reverse engineering and model transformation approach for
rbac-administered databases. In 13th International Conference on High Performance Computing
and Simulation, HPCS 2015, 2015.

[11] Jaidi F. and Labbene Ayachi F. A risk awareness approach for monitoring the compliance of rbac-
based policies. In Proceedings of the 12th International Conference on Security and Cryptography,
SECRYPT 2015, pp. 454-459, 2015.

[12] Jaidi F. and Labbene Ayachi F. To summarize the problem of non-conformity in concrete rbac-
based policies: Synthesis, system proposal and future directives. In NNGT International Journal
of Information Security, 2: 1-12, 2015.

[13] Jaidi F., Labbene Ayachi F., and Bouhoula A. Advanced techniques for deploying reliable and
efficient access control: Application to e-healthcare. Journal of Medical Systems, 40: 262, 2016.

[14] Rozenberg G. Handbook of graph grammars and computing by graph transformations. Founda-
tions, 1997;World Scientific, ED, 1997.

[15] Molloy I., Dickens L., Morisset C., Cheng P.-C., Lobo J., and Russo A. Risk-based security
decisions under uncertainty. CODASPY’12, 2012.

[16] Ma J., Adi K., Mejri M., and Logrippo L. Risk analysis in access control systems. In Eighth
Annual International Conference on Privacy Security and Trust (PST), pp. 160-166, 2010.

[17] Koch M., Mancini L. V., and Parisi-Presicce F. A graph-based formalism for rbac. ACM Trans-
actions on Information and System Security, vol. (5):3, pp. 332-335, 2002.

[18] Nyanchama M. and Osborn S. The role graph model and conflict of interest. ACM Transactions
on Information and System Security (TISSEC), 1(2): 333, 1999.

[19] Ni Q., Bertino E., and Lobo J. Risk-based access control systems built on fuzzy inferences.
ASIACCS’10, pp. 250-260, USA, 2010.

[20] Baldwin R. Naming and grouping privileges to simplify security management in large databases.
In Proceedings of the 1990 IEEE Symposium on Research in Security and Privacy, 116132. Los
Alamitos, California, USA, 1990.

[21] Sandhu R., Coynek E. J., Feinsteink H. L., and Youmank C. E. Role-based access control models.
IEEE Computer, 29(2): 38-47, 1996.

[22] Thion R. and Coulondre S. A relational database integrity framework for access control policies.
Journal of Intelligent Information Systems, 38(1): 131-159, 2012.

[23] Chakraborty S. and Ray I. Trustbac: integrating trust relationships into the rbac model for access

131

Formal Solution for Access Control Policies Management Jaidi, Labbene Ayachi and Bouhoula

control in open systems. In Proceedings of the 11th ACM symposium on Access control models
and technologies, SACMAT ’06, pp. 49-58, USA, 2006.

[24] Jaeger T. On the increasing importance of constraints. In fourth ACM workshop on Role-based
access control, pp. 3342., 1999.

[25] Ledru Y., Idani A., Milhau J., Qamar N., Laleau R., Richier J., and Labiadh M. A. Taking into
account functional models in the validation of is security policies. Advanced Information Systems
Engineering (CAiSE) Workshops, 83: 592-606., 2011.

132

	Introduction
	Related Works
	Compliance Defects in Access Control Policies
	Formal Framework for Access Control Policies Management
	Formal Detection of the Policy Defects
	Risk assessment of the Policy Defects
	Illustrative Example

	Conclusion

