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Abstract

With first-order interpolation as the application in mind, we study the problem of gen-
erating local proofs in theorem provers employing the AVATAR architecture. The theory
is complemented by experimental results based on our implementation of the techniques
in theorem prover Vampire.

1 Introduction

In the context of computational logic, interpolation is an important operation with applications
in formal verification, ranging from bounded model checking [16], invariant generation [10], and
testing [12] to concurrency [6]. One of the state-of-the-art approaches to generating first-order
interpolants is based on processing so called local proofs [7] and combining conclusions of
color-eliminating inferences [8, 5]. Such an approach to interpolation can be stated in terms of
assigning colors to the symbols of the signature and local proofs are those that do not mix colors
in inferences. Local proofs can be obtained by instructing a first-order prover to block inferences
that would violate this rule. Such a restriction in general does not preserve completeness, but
local proofs are discovered in many cases.

One of the most influential improvements of first-order theorem provers of recent years is the
AVATAR architecture for clause splitting [17]. AVATAR employs a SAT solver to pick splitting
branches, thus delegating the propositional essence of the given problem to the dedicated solver.
This leads to an architecture which has been shown to be highly successful in practice [17, 13].
This paper deals with the question of how to adapt AVATAR to producing local proofs.

After summarising the necessary preliminaries concerning interpolation (Section 2) and
AVATAR (Section 3), we observe that the most straightforward adaptation of AVATAR to pro-
duce local proofs may be quite restrictive as it does not allow the important color-eliminating
inferences to happen within the first-order part of the prover (subsection 3.1). We then explore
how severely the mentioned restriction impairs the strength of AVATAR for finding local proofs
in practice by evaluating the current approach on a set of interpolation benchmarks based on
the TPTP library (Section 4). Finally, we sketch a new approach for obtaining local proofs with
AVATAR which compromises on the side of clause splitting and the use of a SAT solver to allow
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first-order color-eliminating inferences in AVATAR (Section 5). As we summarise in the last
section (Section 6), it is not clear whether the expected gains justify the effort of completing
the theoretical investigations and implementing the new approach in Vampire [9].

2 Interpolation and Local Proofs

We assume standard syntax and semantics of first-order logic, and the proof-theoretical notions
of inference, derivation, and refutation [4]. We recall that symbols are either function symbols
(including constants, which are function symbols of arity 0) or predicate symbols (excluding the
equality predicate, which is assumed to be part of the logic). Given a formula F , the language
L(F ) is the set of all the formulas G whose symbols are among the symbols of F .

Definition 1 (Craig’s Interpolant). Given formulas A and B such that � A → B, there is a
formula I, called the iterpolant of A and B, such that

1. � A→ I and � I → B,

2. I ∈ L(A) ∩ L(B).

An interpolant of A and B is usually extracted from a proof of A → B of a certain form.
One kind of proofs particularly relevant for practical interpolation are local proofs (also called
split proofs) introduced by Jhala and McMillan [7].

Let us from now on fix the formulas A and B. We will refer to formulas in L(A) \ L(B) as
red, those in L(B) \ L(A) as blue, and those in L(A) ∩ L(B) as grey.

Definition 2. A derivation D in an inference system I is called local if for every inference

F1 . . . Fk

G

in D either {F1, . . . , Fk, G} ⊆ L(A) or {F1, . . . , Fk, G} ⊆ L(B).

Efficient methods for extracting interpolants from local refutations have been proposed in
the literature [7, 8, 5, 4]. In particular, in the line of work started by Kovács and Voronkov, the
interpolant arises as a boolean combination of color-eliminating inferences. Such an inference
has a red or blue premise, but a grey conclusion.

In practice, one can obtain local refutations by simply instructing a theorem prover to block,
i.e. not perform, inferences which would violate the locality condition. For a typical calculus
employed by a theorem prover, such as the resolution and superposition calculus [1, 11], this
leads to the loss of completeness guarantees. In Section 4, we ask how much does the locality
restriction actually influence prover’s performance.

3 AVATAR

The highly successful AVATAR architecture for first-order theorem provers [17] is a modern
realisation of the clause splitting techninue [18, 14] which employs a SAT solver to make splitting
decisions and thus delegates to SAT solver the “propositional essence” of the given problem. In
this section, we recall the basic notions behind AVATAR and explain the steps needed to adapt
it for the generation of local refutations.
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⊥
SAT

C1 ∨ C2

[C1] ∨ [C2]

FO

C1 ← [C1]· · ·

C3 ∨ C4 ← [C1]
[C3] ∨ [C4] ∨ ¬[C1]

C3 ← [C3]

⊥ ← [C1] ∧ [C3]
¬[C1] ∨ ¬[C3]

· · ·

Figure 1: The general shape of an AVATAR refutation. The refutation consist of a first-order
(FO) part (upper half) and a propositional (SAT) part (lower half).

Given a first-order clause C, understood as a multi-set of its literals, one considers the
binary relation on the literals “to have a variable in common”, denoted ∼C , and defines the
components of C as the equivalence classes of the transitive closure of ∼C . We commonly write

C = C1 ∨ . . . ∨ Cn

whenever C1, . . . , Cn are the components of C and call the clause C splittable if n > 1.
During the interaction between the first-order (FO) part of the prover and the SAT solver,

an abstraction mapping [ ] is used to transform a splittable first-order clause C = C1 ∨ . . .∨Cn

into a propositional clause [C1] ∨ . . . ∨ [Cn]. The abstraction is designed to be injective up to
variable renaming, which means that in practice, it introduces a new propositional variable for
every new component Ci unless Ci is a variant of a previously seen component Cj .

When accommodating AVATAR, the FO part performs proving under assumptions. This
means each considered clause is annotated by a finite set of (propositional) assumptions and
these assumptions are propagated during inferences such that the conclusion of an inference
gets annotated by the union of the assumptions of the premises. This is exemplified on the
following resolution inference

(l ∨ C1)← A1 (¬l ∨ C2)← A2

(C1 ∨ C2)← A1 ∧A2
,

where we write C ← A for a clause C with assumptions A and (ab)use the symbol ∧ to denote
the set union operation.

The exchange between the SAT solver and the FO part consists of the following operations:

1. when the SAT solver decides that a certain component C should be active in the FO part,
the component clause with assumptions C ← [C] is inserted into the FO part,

2. when a splittable clause with assumptions C1 ∨ . . . ∨ Cn ← [D1] ∧ . . . ∧ [Dm] is derived
by the FO part, an abstracted clause [C1] ∨ . . . ∨ [Cn] ∨ ¬[D1] ∨ . . . ∨ ¬[Dm], which we
usually call the split clause, is inserted into the SAT solver,

3. finally, when an empty clause with assumptions ⊥ ← [D1] ∧ . . . ∧ [Dm] is derived by the
FO part, a propositional clause ¬[D1] ∨ . . . ∨ ¬[Dm] is inserted into the SAT solver.
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When a refutation is found by AVATAR, it has the form depicted in Figure 1. We can see
that the FO part is responsible for deriving the splittable first-order clauses and the (conditional)
empty clauses while the SAT solver collects the corresponding propositional abstractions and
derives the final (unconditional) empty clause.

To understand such a refutation as a monolithic object in a single (first-order) calculus, we
just “forget” the abstraction operation and treat the symbols ← and ∧ as logical connectives
with their standard semantics.1 Notice that this dismisses the boundary between the FO part
and SAT part of the refutation (the corresponding translation step becomes a no-op). It is also
interesting to note that in this light component clauses become tautologies Ci ∨ ¬Ci and the
originally SAT part of the refutation, which usually consists of propositional resolution steps,
now possibly performs (non-standard) resolutions with general first-order formulas as pivots.

3.1 Ensuring locality of AVATAR refutations

To ensure that AVATAR produces only local refutations, we proceed as before and in the
FO part of the prover block inferences which would mix colors. Note that this needs to take
into account the colors of symbols in the assumptions understood as first-order formulas. For
example, the last step of the following derivation will be blocked, but not because colors would
be mixed in the first-order parts of the clauses, but because of mixing of colored assumptions:2

Cr ← [Cr] D ← [C1] ∧ [C2]

D1 ← [Cr] ∧ [C1] ∧ [C2]
· · ·

D2 ← [Cb]

D3 ← [Cr] ∧ [C1] ∧ [C2] ∧ [Cb].

Since every colored formula is introduced into the FO part annotated by itself as an assump-
tion (e.g., Cr ← [Cr]) and since the FO part of any AVATAR refutation simply propagates
assumptions from premises to conclusions, one can see that under the locality restriction the
FO part can never contain a color-eliminating inference. As we know, it is only the conclusions
of such inferences which in the end form the interpolant. In this sense, only the SAT part of
such a local AVATAR refutation can be considered “interesting for interpolation”.3 In the next
section, we explore to what extent is this way of imposing locality of AVATAR refutations also
a problem for actually discovering them in practice.

Remark. In order to obtain a local AVATAR refutation, also the SAT part of the refutation
needs to be made local. Although local propositional refutations always exist, SAT solvers do
not produce them by default. One option to overcome this problem is to localise general SAT
refutation in a post processing proof transformation phase [3]. The solution currently adopted
in Vampire also relies on post processing, but instead of transforming a SAT refutation (which
is not even available in general), Vampire uses the technique of interpolation without proofs
[2] applied to the unsatisfiable core from the SAT solver. This way, denoting the red part of the
unsatisfiable core R, the blue part B, and the grey part G, the final SAT part becomes

R G
I B

⊥,

where I is the obtained (propositional) interpolant corresponding to A = R ∧G and B.4

1 We also universally close each component, i.e., treat Ci as ∀X.Ci where X are the variables of Ci.
2 In the example derivation, formula Cr is red and formula Cb is blue.
3 For instance, the optimisation techniques focusing on the “grey area” of the proof [5, 4] will be only relevant

for the SAT part.
4 The choice of assigning the grey propositional input formulas G to the A side is arbitrary.
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Table 1: The effect of using AVATAR on finding local derivations by Vampire.

plain AVATAR union

plain 7262 +754
−218 7798 8016

+338
−758

+371
−887

+315
−785

local 6842 +704
−264 7282 7546

4 An Experiment

To evaluate the impact of AVATAR on the generation of local derivations we proceeded as
follows. We took the 14 827 first-order problems from the TPTP library [15] version 6.4.0,
clausified each using Vampire and split the obtained set of clauses into halves, treating the
first half as A and the second as B (the same methodology for obtaining benchmarks for
interpolation was used by Gleiss et al. [4]). We attempted to refute each of the obtained
problems using Vampire with a single fixed strategy and time limit of 10 s.5 On top of this
base strategy, we varied whether AVATAR should be turned on or not and whether Vampire
should pay heed to symbol colors and thus attempt to produce only local refutations.

The results of the experiment are summarized in Table 1. The whole numbers correspond
to the number of problems solved by each strategy variation while the fractions represent the
sizes of set difference between the respective results for the neighbours (explained in more detail
below). The columns of the table capture the effect of turning AVATAR on (and “union” shows
how much Vampire solves when the results of both strategies are combined). The rows capture
the transition from a proof search without restriction (“plain”) to a color-aware one (“local”).
In the first row, we can thus see the strength of AVATAR in the standard unrestricted setting:
here AVATAR allows Vampire to solve 754 new problems (while 218 are not solved anymore).
Analogously, the first column demonstrates that focusing only on local refutations leads to a
drop in performance, namely from 7262 to 6842 solved problems. Interestingly, there are 338
problems that Vampire only solves using the (incomplete) strategy which blocks inferences
mixing colors.6 Our main focus in this experiment, however, is on comparing the first row to
the second. We observe that also when restricted to local derivations AVATAR helps Vampire
solving many problems, but there are slightly fewer newly solved problems (704 compared to
754) and slightly more problems which cannot be solved with AVATAR anymore (264 compared
to 218). This suggests that AVATAR is not as powerful when restricted to local derivations (in
the way described in the previous section) as it is in an unrestricted form.

5 An Alternative Approach

In this section, we discuss the possibility of altering the AVATAR architecture such that it
produces local refutations while allowing for color-eliminating inferences in the FO part. The

5 The strategy employs the non-default discount saturation loop and age-weight ration 10 and is identified
by the option string -t 10s -sa discount -awr 10.

6 This suggests that (regardless of the interest in interpolation) a viable strategy for solving previously
unsolved problems in Vampire is to arbitrarily split a problem in two halves, accordingly assign colors to
symbols, and instruct the prover to search only for local refutations. Such a strategy could then, along with
many others, be a useful part of a strategy portfolio.
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core of the idea is 1) to allow at most one colored component in a splittable clause and 2) instead
of annotating it with its own abstraction as usual to use (the negations of) the abstractions of
the remaining components for the annotation. This way, colored symbols only appear in the
first-order parts of the clauses and thus first-order color-eliminating inferences are possible.

Formally, we change the definition of a component and define it as an equivalence class of
the transitive closure of the relation on clause’s literals “to share a variable or be of the same
non-grey color”. For instance, instead of splitting the following clause as shown on the left, the
two colored components get merged into one:

C1
r ∨ C2

r︸ ︷︷ ︸
same non-grey color

∨C3
g ∨ C4

g  C12
r ∨ C3

g ∨ C4
g .

Under this definition, we perform less splitting in general, but ensure that there is at most one
colored component in each clause.7

Now, when the SAT solver decides that a colored component such as C12
r should be active

in the FO part, instead of inserting the usual component clause C12
r ← [C12

r ], we insert the
following greyified clause

C12
r ← ¬[C3

g ] ∧ ¬[C4
g ]. (1)

To see that this is sound, notice that (1), can be derived from the component clause C12
r ← [C12

r ]
and the corresponding split clause [C12

r ]∨ [C3
g ]∨ [C4

g ] by resolution over the pivot [C12
r ]. The net

effect of this modification is that we only deal in the FO part of the prover with clauses with
grey assumptions and thus allow color-eliminating inferences in the FO part of the refutation.

5.1 Complications

The general picture is more complicated for at least two reasons. To explain the first reason,
let us elaborate what it means for the SAT solver to decide that a component C should be
active in the FO part. Under normal conditions, the SAT solver repeatedly looks for a model
M of the propositional clauses inserted so far and a component C should be active in the
FO part if and only if M � [C]. As a consequence, AVATAR maintains an invariant that all
assumptions of clauses active in the FO part are true in the current model M so that when
a conditional empty clause ⊥ ← [D1] ∧ . . . ∧ [Dm] is derived, the corresponding propositional
clause ¬[D1] ∨ . . . ∨ ¬[Dm] will be false in the current model M and force the SAT solver to
look for a different model, thus ensuring progress. One way of maintaining this important
invariant under the modification with colored components described above could be to refrain
from inserting the usual split clause (i.e. the clause [C12

r ] ∨ [C3
g ] ∨ [C4

g ] in our example) to the
SAT solver and instead to have an extra rule saying that the corresponding greyified clause
(i.e. clause 1) should be active in the FO part whenever the current model M makes all the
remaining grey components’ abstractions false (i.e. M � ¬[C3

g ] ∧ ¬[C4
g ] here). Notice that we

would never need to register the colored component (i.e. the variable [C12
r ]) in the SAT solver.

The second reason is related to component sharing. Recall that the abstraction mapping [ ]
is injective up to variable renaming. This means that when we split a clause (a variant of) one
of its components could already have been derived before, but under a different context. If this
component is colored, we have more than one way of constructing a greyified clause for it. For
example, after splitting the clauses

Cr ∨ C1
g ∨ C2

g and Cr ∨ C3
g ∨ C4

g ∨ C5
g ,

7 Since we never deal with clauses that would mix colors.
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Table 2: Approximating the performance of the alternative approach.

plain AVATAR SingleColComp IgnAssumpCol
plain 7262 7798

local 6842 7282 7089 (+252 / +40) 7406 (+158 / +34)

there will be two greyified clauses

Cr ← ¬[C1
g ] ∧ ¬[C2

g ] and Cr ← ¬[C3
g ] ∧ ¬[C4

g ] ∧ ¬[C5
g ]

corresponding to the component Cr and we might be forced to insert both to the FO part (in
particular, if the current model makes both ¬[C1

g ] ∧ ¬[C2
g ] and ¬[C3

g ] ∧ ¬[C4
g ] ∧ ¬[C5

g ] true).
But this seems to defeat the purpose of component sharing anyway, because originally, we were
always only inserting one component clause per component.

5.2 Preliminary Experiment – Would it Pay Off?

Since overcoming the just described complications seems to require a non-trivial effort on the
programming side and most likely a non-negligible overhead during execution, a question arises
whether allowing color-eliminating inferences in the FO part of AVATAR refutations is worth
the effort. To establish an upper bound on the potential gains of the proposed idea, we mod-
ified Vampire to always merge colored components as described above but to ignore colors in
assumptions for blocking inferences (as if the assumption were guaranteed to be always grey).
This modification should perform similarly with respect to the number of refutations found to
the proposed idea as if implemented with zero overhead.8

The results of an experiment with the modified Vampire are presented in Table 2. The
setup of the experiment was the same as for the one from Section 4 and the values in the left
part of the table are copied for comparison from Table 1. The middle column (SingleColComp)
presents the number of problems solved by the just described modified Vampire in AVATAR
mode. We can see that the modified Vampire solves fewer problems than the original localising
AVATAR, namely 7089 problems versus 7282. This could be explained by the fact that the
modified Vampire performs fewer splits. At the same time, modified Vampire solves 252
problems not solved by the original localising AVATAR out of which 40 problems are not even
solved by the original Vampire with AVATAR turned off. These problems could be accounted
to the ability of the modified Vampire to perform color-eliminating inferences in the FO part.

For comparison, the last column (IgnAssumpCol) shows the performance of even less restric-
tive modification which keeps the original definition of a component (does not merge colored
components), but still ignores colors in assumptions. This combines the advantages of more
splitting with the ability to perform color-eliminating inferences in the FO part. However,
we currently do not have any theory on how to obtain local refutations (perhaps in a post-
processing phase) from the ones produced. In any case, although IgnAssumpCol performs
better than SingleColComp in the total number of solved problems, its gains in terms of newly
solved problems are (surprisingly) not so dramatic. (See the numbers in the brackets.)

8 Of course, the produced refutations would not be local in general.
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6 Summary and Discussion

In this paper we studied how to adapt the AVATAR architecture for theorem proving to pro-
duce local proofs for interpolation. We first presented the obvious solution and evaluated it
experimentally. Since this solutions appears to be relatively restrictive, we proposed a direction
in which to look for an alternative solution and identified obstacles which would need to be
overcome to implement it. We then performed an experiment with a mock implementation in
order to establish, whether investing into working out the alternative fully could pay off.

To zoom in on the details, there seem to be two ways of overcoming the complications iden-
tified in Section 5.1. We can either give up on the sharing of colored components, introducing
a fresh propositional abstraction whenever a new clause containing a particular colored com-
ponent is derived. This, however, may lead to unnecessary duplication of the FO prover work.
Alternatively, we could simply ignore colors in assumptions and try to localise the potentially
non-local refutation in a post-processing phase. This seems to be straightforward under the
assumption that only one colored component per clause is present (i.e., for SingleColComp), but
could also work in general (i.e., for IgnAssumpCol). The corresponding proof transformation
[3], however, also conceals a blowup. We conjecture that a certain blowup is inherent.

Concerning the results of the experiments, we do not have a clear support that working
out the alternative solution would dramatically increase the performance of the prover. This,
however, only reflects the behaviour on our benchmark set which is arguably quite artificial
from the perspective of interpolation. A final verdict should therefore be postponed and only
made in relation to concrete applications of interpolation in practice.
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