
Analysis of the kernel bandwidth influence in 

the double smoothing merging algorithm to 

improve rainfall fields in poorly gauged basins 

Nicolás Duque-Gardeazábal1* , David Zamora1† and Erasmo Rodríguez1‡ 
1 Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogotá 111321, Colombia 

nduqueg@unal.edu.co 

Abstract 

Accurate estimates of precipitation are needed for many applications in hydrology 

as rainfall is one of the most influential variables of the water cycle. The common 

sources of information used to estimate rainfall fields are in situ rain gauges, remote 

sensing information and outputs from climate models. However, each of the above-

mentioned sources has its own limitations, which can be reduced by blending 

information from these sources, in a product that takes advantage of the strengths of 

each dataset. In this research we study the double smoothing merging algorithm, 

creating a rainfall distributed product that combines remote sensed and reanalysis data, 

and information from a rain gauge network. The main objective of the study is to 

investigate the implications of varying the rain gauge density and configuration, on the 

merging parameters and global performance of the blended product. The results of a 

daily 3-year period experiment show that, although the errors in cross validation (CV) 

and against an independent dataset (IV) are in general low, the performance of the 

blended product and also the sensitivity of the parameters are highly influenced by the 

rain gauge configuration and density. The bandwidth merging parameters increase as 

the network density is artificially reduced. 

1 Introduction 

From the variables of the water cycle, rainfall is one of the most influential because surface and 

subsurface water availability depend on it. Rainfall is recognized as one of the main forcings of the 

terrestrial water cycle (Chow, Maidment, & Mays, 1988). Accurate estimates of precipitation are 

needed for many applications in hydrology, meteorology, agriculture, risk assessment, etc (García, 
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Rodríguez, Wijnen, & Pakulski, 2016). A typical use of distributed rainfall estimates is as forcing for 

hydrological and land surface models (Silberstein, 2006), as well as input for water indices 

calculation. 

There are many procedures used to estimate rainfall fields. The most common approach is to 

derive them from point observed data using interpolation methods, such as the geostatistical and 

traditional methods mentioned by Grimes & Pardo-Iguzquiza (2010), yet they are highly dependent 

on the network density and spatial configuration. Besides, around the world rain gauge networks are 

being reduced (e.g. see (García et al., 2016)). In Colombia and also in its Orinoquia and Amazonian 

territories (which are characterized by a low measurement density), estimating rainfall fields based 

only on in situ data is challenging. 

Other sources of rainfall information come from either remote sensing or climate models. The 

simulation of precipitation that the latter do, exhibit biases due to the complex and coupled processes 

of water and energy fluxes. Although remote sensing products have become more relevant in water 

resources projects, they also have uncorrected biases and therefore, are in general not suitable for 

hydrological applications that require for example daily rainfall data (Serrat-Capdevila, Valdes, & 

Stakhiv, 2014). However, merging remote sensing or climate simulated products with rain gauge 

estimates has significant advantages (Li & Shao, 2010). Several methodologies to blend remote 

sensed data and point estimates have been proposed in the literature, e.g. conditional merging, bias 

correction, geostatistical estimation methods, among others (Jongjin, Jongmin, Dongryeol, & Minha, 

2016). A particular statistical approach which is not based on Gaussian and stationary assumptions, 

and that is emphasised for data sparse regions, is the so-called double-kernel smoothing (DS), 

proposed by Li & Shao (2010). This merging algorithm is flexible since it only requires the rain gauge 

and remote sensed data coordinates, and their time series, allowing to easily introduce or retrieve 

additional rain gauges or changing the remote sensed product, without having to implement other pre-

processing algorithms, such as variogram calculation and fitting. 

The focus of this study is to evaluate, in a tropical complex high relief terrain, the performance at 

daily timescale of the DS method constrained by the density of rain gauges. In order to do this, we 

focus on both, calibrating merging kernel parameters (h1 and h2) and evaluating their variation with 

gauge density. In addition, to the in situ data, we used the 0.25° gridded Multi-Source Weighted-

Ensemble Precipitation (MSWEP) (Beck et al., 2016). 

2  Materials and Methods 

The study area corresponds to the Sogamoso River basin in Colombia, a watershed densely 

instrumented, located in the Andean Mountains, with an area of 20,300 km2. Within this watershed 

there are 219 rain gauges, and from those, 156 stations with more than 50% of daily rainfall 

observations available for the period 1980-2012 were selected for analysis. Average annual 

precipitation in this watershed is approximately 1,600 mm, varying between 800 mm to 3,000 mm. 

We studied the blending of the in situ daily rainfall information with the MSWEP, retrieving the rain 

gauges that were used to create the global product.  

Based on the in situ data, we explore different richness levels of point observed data and diverse 

network configurations. The 100% category comprises the total of 156 rain gauges available. From 

this data, four different network configurations were randomly produced (70 %, 50 %, 30 % and 10 

%, which we refer as merging categories) and three different realisations (configurations (Conf)) for 

each category were considered (see Table 1). We evaluated the performance of the merged product 

through CV. Also, the rain gauges not considered initially in the merging were used to do an 

independent validation (IV) of the estimates. 
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The rainmerging R package (Zulkafli, Nerini, & Manz, 2015) was used to perform the blending 

between the MSWEP and the in situ rain gauge information. First, we performed a merging with fixed 

parameters using the Silverman’s rule of thumb (Silverman, 1986) in order to analyse the spatial 

effects of merging the MSWEP with the rain gauge network. In the merging algorithm, the first 

parameter is the bandwidth associated with the “weighting of the surrounding observations by 

distance” Li & Shao (2010), while the second parameter is related to the weighting based on the 

distance of the pseudo-observations. The Silverman’s rule varies the h1 value when rain gauges are 

artificially retrieved, whereas the h2 value does not vary since the pseudo observations are estimated 

in the same coordinates where predictions are made. Averaged Silverman’s values are showed in 

Table 2. We then modified the DS.R algorithm to allow the calibration of the kernel bandwidth 

parameters (h1 and h2). 

Category 100% 70% 50% 30% 10% 

h1 (km) 4.75 5.16 5.44 6.00 8.16 

h2 (km) 3.42 3.42 3.42 3.42 3.42 
Table 2: Averaged parameters values calculated with the Silverman’s rule 

An experiment was conducted during the 1994-1996 period at daily time scale, in which the 

different richness levels of information were used to explore the merging technique features. The 

reason behind choosing these years was that one positive and one negative phase of the ENSO 

climatic phenomenon occurred in the 3-year period. This experiment gave some insights about the 

behaviour of the calibrated merging parameters both in CV and IV; the performance of the blended 

products for the different network configurations was based on the RMSE. Due to the extensive time 

that the CV mode consumes and the complex objective function surface that was expected, the 

Shuffled Complex Evolution algorithm (SCE-UA) (Duan, Sorooshian, & Gupta, 1992), was chosen to 

calibrate the merging parameters. We also used the GLUE algorithm (Beven & Binley, 1992) to 

sample the parameter space and we also performed a sensitivity analysis of the parameters, but only in 

the IV mode. The sensitivity analysis was performed using the Monte-Carlo Analysis Toolbox 

(MCAT) (Wagener, Lees, & Wheater, 2001), which ranks the uniform random sampled parameters 

with respect to their objective function into 10 groups of equal size, as proposed by (Freer, Beven, & 

Ambroise, 1996). This has the aim of avoiding the subjectively chosen threshold value that divides 

the so-called behavioural and non-behavioural simulations stated by (Beven & Binley, 1992). 

Additionally, the “raw” MSWEP data was evaluated against the rain gauges. This comparison was 

first made against the rain gauges that comprise each category and each configuration, allowing to 

obtain the RMSE for the same gauges used in the CV mode. Then, the evaluation was performed 

against the independent gauges considered in each category and configuration. As a result of this 

analysis we calculate RMSE with the same gauges used in the IV procedure but just assessing the 

MSWEP performance. 

Through line plots, the values of RMSE and the kernel bandwidths for each density category and 

each network configuration were analysed for both CV and IV modes. 

Category 100% 70% 50% 30% 10% 

Number of rain gauges in analysis and CV 156 109 78 46 15 

Rain gauge density (gauges/1000 km2) 7.69 5.38 3.85 2.27 0.74 

(km2/gauge) 130 186 260 441 1354 

Number of Realisations (Configurations) (Conf) 1 3 3 3 3 

Number of rain gauges in Ind. Validation (IV) Not apply 47 78 110 141 
Table 1: Experiment categories and rain gauge densities 
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3 Results and discussion 

Figure 1 shows, for a selected date (January 1st , 1980), the original MSWEP estimated field and 

the merging results between this product and two rain gauge networks with different densities; gauges 

are depicted as points in Figures 1a, b and c; rain amount is associated with the blue scale colour. It 

can be observed in Figure 1 that although the merging procedure is mainly driven by the rain gauge 

values, it still captures some of the patterns registered on the MSWEP product. It also can be seen in 

Figure 1 that there are isolated gauges that produce some precipitation bull’s eyes. The influence of 

the bandwidth is clear around these isolated gauges, where the rainfall amount smoothly diminishes 

close to the gauge and in this case influences the first line of cells around the rain gauges. Figure 1c 

shows that even with a low gauge density (30%), the DS method still captures the main spatial pattern 

showed in Figure 1b for the 100% category, where the rain registered at the north of the basin was 

estimated by the MSWEP (Figure 1c), and those values were adjusted by the procedure based on the 

few gauges that are located on that zone. Although there are a few specific locations in Figure 1b 

where a considerable amount of rain was registered (e.g. at the cells on the West of the basin), the 

blending using the gauges considered in the 30% category was not able to reproduce them. The latter 

remarks the influence that a rain gauge network configuration have in the final estimated rainfall field.  

 
Figure 1: a) Rainfall field derived from the MSWEP, and rainfall fields estimated with the DS using 

Silverman’s rule with b) 100% and c) 30% of rain gauges. Missing values for 01/01/1980 are red points 

 
Figure 2: h1 calibrated kernel bandwidths in the 3-year experiment evaluated through a) 

cross-validation (CV) and b) Independent Validation (IV), against rain gauge density 
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The parameter and error results of the 3-year calibration experiment are depicted in Figure 2, 3 

and 4. The RMSE and the optimized values of the kernel bandwidths are highly dependent on the 

network configuration. Figure 2 shows the h1 kernel bandwidth results for the CV and IV, Figure 3 

depicts the results for h2, while Figure 4 displays the RMSE. In both validation strategies, in general, 

the calibrated h1 kernel bandwidth tends to increase as the gauge density declines, result that is 

expected, as this is the parameter that is related to the distance between the gauges and the center of 

the grids. In the IV evaluation (see Figure 2b), the increasing trend in h1 appears to be equally stable 

as in CV mode, as the 3 configurations analysed performed in a similar way. 

The h2 kernel bandwidth considerably varies across the different densities and configurations 

analysed. It reports a tendency to increase with the artificial decline in network density, and largely 

changes with configuration, meaning that this parameter is more influenced by the rain gauge 

configuration than by the rain gauge density (Figure 3). The differences between Figures 3a and 3b 

maybe also due to the number of gauges that are used to calculate the performance; IV compares the 

estimates with more gauges than each pseudo-field iteration created in the CV.  

With respect to the RMSE, in both calibration strategies (CV and IV) (Figure 4), the error changes 

from one network configuration to the other. Yet, the errors tend to increase with the artificially 

reduction of the rain gauge density. Furthermore, the RMSE appears to stabilize after the 3 

 
Figure 4: RMSE in the 3-year calibration experiment evaluated through a) cross-validation (CV) 

and b) Independent Validation (IV) against rain gauge density. Black lines correspond to the 

evaluation of the “raw” MSWEP data against each category and configuration. 

 
Figure 3: h2 calibrated kernel bandwidths in the 3-year experiment evaluated through a) cross-

validation (CV) and b) Independent Validation (IV), against rain gauge density 
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gauges/1000 km2, probably because the merging method offsets the errors that are generated by 

reducing the gauge density. The performance of the “raw” MSWEP is highly improved when several 

rain gauges are considered in the blending, behaviour that is also expected. Even with a sparse 

network configuration, i.e. 2 or 1 gauge/1000 km2, the methodology still generates a slight 

improvement over the performance of the “raw” MSWEP and probably a bigger enhancement if it 

was compared against a rain gauge interpolation from a reduced number of point observations. 

Because of the different number of gauges used to accomplish the evaluation of the two validation 

strategies, a particular behaviour can be identified for Conf 2, at the category 3.85 gauges/1000 km2. 

Figure 4a shows that in the CV mode the influence of the rain gauge configuration is strong, since the 

3.85 gauges/1000 km2 density has anomalous low error for Conf 2 whereas the other two 

configurations performed slightly similar. Although in CV mode this configuration reports a low 

error, in IV mode it has the highest error (Figure 4b). A reason that could explain this is that there is 

an important number of rain gauges, or a group of them, that is not considered in the merging 

procedure, but they are included in the IV gauges. Hence, the IV methodology reports a large error; 

while in the CV mode it creates a false good performance result. 

An analysis of the Percent Bias, using both evaluation strategies, is plotted in Figure 5. It is clear 

from Figure 5a, which shows the results in the CV mode, that the merging between the MSWEP and 

the rain gauges reduces the bias of the estimated field. The reduction varies from 5% to 20% 

depending on the gauge density that has been used, also all the configurations reports a similar 

behaviour. Even though the performance in poor densities decreases to a positive bias (feature that 

stems from the MSWEP), there is a considerable reduction of the Bias. The results using IV gauges 

are displayed in Figure 5b. The MSWEP also reports an approximate 10 % positive Bias in nearly all 

configurations while the DS merging results are mix between positive and negative Bias. Yet, two out 

of the three configurations are near 0 % for the less dense rain gauge configurations. These results 

evidence the ability of the procedure, not only to reduce the overall error, but also to reduce the Bias 

of the distributed field. 

Regarding the sensitivity analysis, both parameters are identified as sensible. Figure 6 depicts the 

regional sensitivity plots for the h1 merging parameter for the categories 70, 50, 30 and 10 %. It can 

be seen that regardless of the rain gauge density, the sensitivity of the parameter increases with the 

artificially reduction of gauge density, since the 30% and the 10% categories have large differences 

between the lowest and the highest performance frequency distributions. Moreover, the best 

distributions move towards higher values when the rain gauge is artificially reduced, e.g. for the 70% 

of original gauges the most probable value is around 15 km, whereas at 30% the most probable is 

 
Figure 5: Percent Bias in the 3-year calibration experiment evaluated through a) cross-validation 

(CV) and b) Independent Validation (IV) against rain gauge density. Black lines correspond to the 

evaluation of the “raw” MSWEP data against each category and configuration. 
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around 25 km. The estimated value given by Silverman’s rule are far below the calibrated values (see 

Table 2), fact that highlights the importance of parameter calibration. This analysis complements the 

results related to the variation of the optimized parameter shown in Figure 3. 

Figure 7 portrays the sensitivity plots for the h2 merging parameter. Although the graphs show that 

the parameter is sensible, regardless of the configuration, it is not as sensible as the h1 parameter since 

the cumulative distributions are not so disperse, compared with those depicted in Figure 6. This result 

is very different from the values estimated by the Silverman’s rule (3.42 km for the h2 merging 

parameter) and they remark the importance of calibrating the parameter. Furthermore, it can be seen 

that the cumulative frequencies have an approximate constant rate, meaning that it is not completely 

probable to find the optimum value for this parameter in a certain interval (10 % category is an 

exception that can stem from the low rain gauge density). 

4 Conclusions 

The DS satellite-raingauge merging procedure, developed for poorly instrumented basins, has 

been implemented and tested in a basin in Colombia, using a 3-year calibration experiment conducted 

over 5 different rain gauge density categories and 3 different network configurations for each 

category. 

The results showed that there is a trend on the first merging parameter (h1) to increase its 

calibrated value with the reduction of the rain gauge network density. The second merging parameter 

(h2) does not appear to have a clear correlation with the gauge density. The RMSE seems to stabilize 

after a density of 3 gauges/1000 km2, possibly because the satellite precipitation maintains consistent 

estimates where rain gauge density is low. Also, the overall Bias is reduced. This is a good sign of the 

ability of the method to create reliable rainfall fields in data scarce regions, e.g. in watersheds with a 

network density lower than 3 gauges/1000 km2, because the error does not increase significantly 

when the rain gauge network density is reduced to less than 1 gauge/1000 km2. Moreover, the results 

highlight the possibility to increase the performance of distributed rainfall field with a flexible 

procedure, which allows to easily introduce or retrieve certain gauges or change the remote sensed 

estimates. 

However, it is clear that the results are highly affected by the network configuration. The RMSE 

and the value of the parameters varied significantly from one realisation to the other, yet the 

procedure reduces the Bias of the remote sensed product. The validation against the independent set 

of rain gauges seems to be more reliable than the cross-validation, since the rainfall field is being 

compared to more gauges than in the cross-validation and is also faster, as just one estimate must be 

 
Figure 6: Sensitivity analysis of the h1 merging 

parameter in the IV mode, for categories: a) 70%, b) 

50%, c) 30% and d) 10% 

 
Figure 7: Sensitivity analysis of the h2 merging 

parameter in the IV mode, for categories: a) 70%, b) 

50%, c) 30% and d) 10% 
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done. This statement appears to be corroborated by the stable trends in the h1 merging parameter. 

Nevertheless, the independent validation is just appropriate to implement in rich data regions where 

the influence of a few gauges, not considered in the blending, would be low. Additionally, the cross-

validation is computationally demanding and for the calibration of the parameters, metaheuristic 

calibration procedures may also be used. 

The sensitivity analysis allows to conclude that both merging parameters must be calibrated. It 

also confirms that the possible optimum values of the h1 parameter increase when there is a poor 

gauge measurement density, whereas the optimum value of the h2 parameter appears to not have a 

most probable value (10 % category is an exception that can stem from the low rain gauge density). 

The blending techniques must also be evaluated against the classical interpolation procedures, 

such as Inverse Distance Weighting (IDW), Kriging and its derivates (Residual Kriging, Universal, 

with External Drift, etc.). This would allow to evaluate how much the merging of products can 

improve rainfall estimates and therefore water resources accounting and management in data sparse 

regions. An interpolation using the procedures mentioned above is under progress and methods are 

being applied in the same categories and configurations used for the blending. 
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