
Kalpa Publications in Computing

Volume 7, 2018, Pages 1–15

PROOFS 2018. 7th International Workshop
on Security Proofs for Embedded Systems

Side-Channel Assisted Malware Classifier with Gradient

Descent Correction for Embedded Platforms

Manaar Alam1, Debdeep Mukhopadhyay1, Sai Praveen Kadiyala2, Siew Kei
Lam2, and Thambipillai Srikanthan2

1 Indian Institite of Technology Kharagpur, Kharagpur, West Bengal, India.
alam.manaar@iitkgp.ac.in, debdeep@cse.iitkgp.ac.in

2 Nanyang Technological University, Singapore.
saipraveen@ntu.edu.sg, siewkei lam@pmail.ntu.edu.sg, ASTSRIKAN@ntu.edu.sg

Abstract

Malware detection is still one of the difficult problems in computer security because
of the occurrence of newer varieties of malware programs. There has been an enormous
effort in developing a generalised solution to this problem, but a little has been done
considering the security of resource constraint embedded devices. In this paper, we at-
tempt to develop a lightweight malware detection tool designed specifically for embedded
platforms using micro-architectural side-channel information obtained through Hardware
Performance Counters (HPCs). The methodology aims to develop a distance metric, called
λ, for a given program from a benign set of programs which are expected to execute in
the embedded environment. The distance metric is decided based on observations from
carefully chosen features, which are tuples of high-level system calls along with low-level
HPC events. An ideal λ-value for a malicious program is 1, as opposed to 0 for a benign
program. However, in reality, the efficacy of λ to classify a malware largely depends on the
proper assignment of weights to the features. We employ a gradient-descent based learning
mechanism to determine optimal choices for these weights. We justify through experimen-
tal results on an embedded Linux running on an ARM processor that such a side-channel
based learning mechanism improves the classification accuracy significantly compared to
an ad-hoc selection of the weights, and leads to significantly low false positives and false
negatives in all our test cases.

1 Introduction
Embedded systems are of growing importance because of the emerging applications, starting
from automotive to Internet-of-Things. These processing units though often expected to per-
form dedicated and limited computations, as opposed to a general purpose computing platform,
can serve as a coveted attack surface for adversaries. The reason could be varied, ranging from
the fact that often they are easily accessible to attackers giving opportunities for physical at-
tacks to the running embedded operating systems which are lightweight and usually devoid of
sophisticated checks for execution of vulnerable codes, making them easy targets for malware.
While developing suitable lightweight mechanisms for malware detection is of great importance,
most commercial anti-malware software analyze high-level system profiles. A frequency centred

L. Batina, U. Kühne and N. Mentens (eds.), PROOFS 2018 (Kalpa Publications in Computing, vol. 7),
pp. 1–15

Side-Channel Assisted Malware Classifier M. Alam et al.

model using system calls is presented in [1], which aimed at extracting specific system call pat-
terns pertaining to malware and thereby analyzing runtime programs. Owing to the increase in
malware feature database, a model, defining bounds for a database, called Bound of Frequency
Model (BOFM) is presented in [2]. Many such software protections are bypassed routinely
by smart malware writers and are hence inadequate. For instance, the method of observing
frequencies of system calls [3] fail to detect kernel-modifying rootkits. On the other hand,
modern processors are enabled with dedicated performance monitoring registers, called Hard-
ware Performance Counters (HPCs) which provide low-level and sensitive information of events
occurring beneath the software stack. These HPC events have been traditionally used as side-
channels for compromising ciphers, ranging from RSA [4] to more contemporary Elliptic Curve
Cryptography [5]. HPC events have recently been used to detect side-channel attacks [6] and
ransomwares [7] in the contemporary systems. However, in this work, we investigate whether
these rich side-channels can be utilized to classify malware from benign codes which are typ-
ically expected to execute on a target embedded platform. The HPC values are also difficult
to manipulate, and thus potentially serve a robust source of information on the system. The
usage of HPCs in literature to detect the presence of malware codes have been rather limited,
and mostly quite ad-hoc. Early work in malware detection using Hardware Performance Coun-
ters (HPCs) was discussed in [8]. Attempts to build a malware detector in hardware using
performance counters are done in [9]. Approaches to detect malware that modify the system
calls are discussed in [10, 11]. In these works, authors focused on counting the hardware events
that occur during each system call execution in a guest Virtual Machine thereby identifying
the modifications to kernel control flow. However, all of these works either require hardware
modification, or employ complex detection architecture which may not be suitable to implement
in a resource constraint embedded devices. While few approaches have been based on Machine
Learning (ML) [12, 13], others have been performing correlation analysis [14, 15] to distinguish
benign and malware codes. The accuracy of the ML-based methods largely depends on the
features chosen; however, the reported works do not stress on the selection of these feature
vectors. On the other hand, the later is based on thresholding of the correlation, where the
estimation of threshold can be vital, and an ad-hoc decision can lead to a drastic adverse result.

In this work, we stress that for proper classification of malware both low-level and high-
level information is of high importance, and properly associating one with the other can lead
to an effective methodology. In this pursuit, we attempt to choose a combination of high-
level and low-level features, comprising standard OS utilities and performance counter events,
called indicators and observers respectively. In order to quantify the relative importance of
this association between observers and indicators, we initially assign weights based on their
ability to distinguish malwares from benign codes during an offline analysis with a known set of
repository. The logic for such classification is based on a statistical hypothesis testing performed
by computing a t-test, which is recently studied widely in side-channel community for measuring
vulnerability of crypto-systems against side-channel analysis. We use the assigned weights in
offline phase to establish a metric for online phase, denoted as λ, measuring the distance of
a program from the benign set of programs which execute on target processor. An unknown
executable is termed as malware, if the metric associated with it crosses a predefined threshold,
estimated by a 3σ analysis. The paper shows that while the formalism expects a high value for
λ (ideally one) for malwares, and low (ideally zero) for benign codes, in real life an ad-hoc choice
of weights for the features can lead to false positives and false negatives, as the classification is
mostly dependent on selection of threshold. We improve the method by performing iterations
of gradient descent during training phase to adjust the weights and show that the classifier
performs more accurately to classify malwares without depending on any such threshold.

2

Side-Channel Assisted Malware Classifier M. Alam et al.

Significance to Embedded Platform

The primary objective of this work is to develop a light-weight malware detection method
which targets resource constraint embedded environments. The proposed scheme is ideal for
such platforms for the following reasons:

1. Embedded platforms are often aimed at supporting a restricted set of applications. In such a
situation, the proposed method is ideally useful, as the reference point for computing the distance
metric λ is well-defined.

2. The proposed detection scheme is capable of running in a simple embedded Linux without re-
quiring any sophisticated libraries.

The scheme is also amenable to an on-line implementation which does not require a large
memory to store while evaluation and have a small code size.

Contribution

The technical contributions of the paper are summarized as below:

1. We formalize a concrete side-channel assisted methodology for malware classification on an em-
bedded platform. As opposed to existing literature, we attempt to develop a theoretical frame-
work by combining statistical tests using side-channel information with learning techniques to
arrive at an optimal model for classification.

2. We present a gradient descent based optimization technique to improve the relative sensitivity
of the features which comprise of both high-level (common OS utilities), and low-level (HPC)
events. This provides significantly better classification accuracy and reduces the false positives
and false negatives to a great extent for our test examples.

The overall organization of the paper is as follows: Section 2 presents necessary prelimi-
nary background. Section 3 presents a comprehensive discussion on the proposed methodology
with Section 4 demonstrating an extensive set of results for an ARM-based embedded system.
Finally, Section 5 concludes our work.

2 Preliminary Background

A fundamental question in several scientific discourses is whether two sets of data are signif-
icantly different from each other. A t-test is often used to provide a quantitative value, as a
probability, that the mean µ of two sets are different. The objective of the test strategy is thus
to detect whether there is any deviation from an expected reference distribution.

2.1 Hypothesis testing using t-test

Let us consider two samples X0 and X1 having mean and standard deviations as µ0, s0 and µ1,
s1 respectively. A statistical hypothesis called null hypothesis on the equality of two means for
the two samples (denoted as H0: µ0 = µ1) is tested for acceptance or rejection based on the
sample observations. The Welch’s t-test is used for testing the null hypothesis when the two
samples have unequal sample variances and unequal sample sizes with the test statistic,

t =
µ0 − µ1√
s20
n0

+
s21
n1

(1)

where, n0 and n1 are the sample sizes of X0 and X1 respectively. The degree of freedom (ν) is
approximated using Welch-Satterthwaite equation, given by,

3

Side-Channel Assisted Malware Classifier M. Alam et al.

ν ≈

(
s20
n0

+
s21
n1

)2

s40
n2
0ν0

+
s41
n2
1ν1

where, ν0 = n0 − 1 and ν1 = n1 − 1. The null hypothesis H0 is rejected when the test statistic
|t| exceeds a threshold defined by the confidence level (α) and ν.

2.2 Online Computation of t-test

Computation of t-test for large distributions on resource-constrained devices, where expending
significant memory for storing these distributions is not possible, can be performed as follows:

Mi,k = Mi,k−1 +

(
xi,k −Mi,k−1

)
k

Si,k = Si,k−1 +
(
xi,k −Mi,k−1

) (
xi,k −Mi,k

)
where xi,k, Mi,k, Si,k and ni are kth observation, current mean, sum of squares of differences
from the current mean, and sample size respectively for the ith distribution. The sample
variance of the ith distribution following the calculation is s2i =

Si,k

ni−1 . The t-statistic between
the two distributions may now be computed as per Equation (1) as described previously.

2.3 Hardware Performance Counters

Hardware Performance Counters (HPCs) are a set of special purpose registers which are present
in most of the modern processor’s Performance Monitoring Unit. These registers can be pro-
grammed easily to collect the number of occurrences of different micro-architectural events (like
cache misses, branch mispredictions, retired instructions, etc.) during the execution of a pro-
gram in the processor. Linux perf is a widely used tool, for all Linux 2.6.35+ based systems,
which can be invoked to access these performance counters with very low granularity. Every
popular operating system has HPC-based profilers, but the number and type of performance
counter events vary across different Instruction Set Architectures. Most of the modern proces-
sors offer thousands of HPC events to monitor, but, only a selected few of them can be observed
in parallel because of the restrictions in the number of built-in HPC registers.

3 Overview of the Proposed Methodology

In this section, we first discuss the intuition behind the proposed method. Next, we introduce
a formal definition of a distance metric signifying a functional difference from the set of benign
programs. Finally, we propose an approach to improve the metric based on error feedback.

3.1 Intuition behind the Approach

Malware programs perform a sequence of activities like any other programs, i.e., they exhibit
phase behavior for their execution. It has already been reported in the literature that these
phases correspond to different patterns in low-level micro-architectural events. One important
property which helps us to consider these micro-architectural events for detecting the presence of
malware is that the patterns differ radically between different categories of programs. Moreover,
the correlation between the program execution and the micro-architectural events are hard to
formalize. Hence, it is challenging for malware writers to rewrite the programs, which perform
the same set of operations but have different low-level event patterns.

4

Side-Channel Assisted Malware Classifier M. Alam et al.

The number of malware programs can be unlimited; however, they are expected to perform
specific operations like potentially affect the file system, try to hide some files, affect the network,
create additional processes, etc. The intuition of our detection strategy is to generate a set of
benign operating system library executables, called indicators, which would be monitored in
run-time by observing a set of low-level hardware events, called observers. These low-level
hardware events can easily be monitored using hardware performance counters (HPCs). We
select those indicators and observers, which are most likely to be affected by the malwares.

The types of programs which can execute on a specific Embedded Platform are limited. For
example, an iPod is expected to run MP3 and video player programs. We call such programs
as benign programs. The idea is based on the hypothesis that the HPC events would vary
significantly when a malicious code runs in the system, compared to when a benign program
runs on it. So, we try to quantify the functional distance of an unknown program from the
set of benign programs defined by some suitable metric. A smaller distance can be interpreted
as closeness in functionality to the benign programs, indicating benign nature of the unknown
program. Similarly, a larger distance can be interpreted as a significant deviation between
functionalities of the unknown program and the set of benign programs, thus indicating a
possible malicious nature of the unknown program. Therefore, initial pre-processing would be
to create templates of the benign environment, by observing low-level hardware events for the
monitored set of indicators. When a potentially unknown malicious code executes, it is expected
that the statistics generated by the observers for the indicators are significantly different.

3.2 Formalization of the Distance Metric

Let the set of indicators be denoted as R = {r1, r2, · · · , rp} and the observers as H =
{h1, h2, · · · , hq}. The combination of observers and indicators are called tuples. We have a
total of p × q tuples. For any executable, e, when the indicator ri is run in its presence, we
observe the hardware performance counter hj using the popular Linux perf tool. This is per-
formed for s trials to minimize the effect of system noise. Let the value of hardware performance
counter hj for kth trial when indicator ri is run in presence of e be denoted as αk

i,j(e). Let
θi,j(e) be the distribution of hj in the presence of both ri and e, containing s observations, i.e.,
θi,j(e) = {α1

i,j(e), α
2
i,j(e), · · · , αs

i,j(e)}. When done for all p× q tuples, we obtain a distribution
matrix, for the executable e:

D(e) =

θ1,1(e) θ1,2(e) θ1,3(e) . . . θ1,q(e)
θ2,1(e) θ2,2(e) θ2,3(e) . . . θ2,q(e)

...
...

...
. . .

...
θp,1(e) θp,2(e) θp,3(e) . . . θp,q(e)

Initially we consider a collection of two sets of programs; one which contains malwares

and other which contains benign application programs. Let the malware set be denoted as
M = {m1,m2, · · · ,mk} and the benign application programs as B = {b1, b2, · · · , bl}. After the
perf stat collection for both the sets, we obtain two sets of distribution matrices. We denote
the distribution matrices for the set of malwares as {D(m1),D(m2), · · · ,D(mk)} and for the
set of benign application programs as {D(b1),D(b2), · · · ,D(bl)}.

In our detection scheme, we proposed the computation of a Univariate t-test by applying
the two sample Welch’s t-test. The t-test is applied on the distributions of each of p× q tuples
of each samples in benign set against each samples in malware set. The main objective of the
t-test is to assign high influence on the indicator-observer tuple which are capable of detecting
more malwares. We say a malware mx is detected against a benign application program by by
the tuple (ri, hj), if the Null Hypothesis (i.e., sample means are same in both distributions) is
rejected for the distributions θi,j(mx) and θi,j(by).

5

Side-Channel Assisted Malware Classifier M. Alam et al.

Algorithm 1: Calculation of Sensitivity Matrix

Data: Sets Containing Benign (B) and Malware (M) Executables, List of Indicator Programs R, List
of HPC Events H

Result: Sensitivity Matrix W
forall bl in B do

forall indicators in R do
Collect perf script results for the events in H with bl in the background;
D(bl) = parsed values for the collected data;

end

end
forall mk in M do

forall indicators in R do
Collect perf script results for the events in H with mk in the background;
D(mk) = parsed values for the collected data;

end

end
Initialize Sensitivity Matrix W to zero for all (R, H) tuple;
forall ri in R do

forall hj in H do
forall bl in B do

forall mk in M do
Calculate t-statistic for D(bl) and D(mk) corresponding to tuple ri and hj using

Equation (1);
if t-statistic > tcritical then

Increment W(ri, hj) by 1;
end

end

end

end

end
Normalize and return W;

A basic strategy to assign weights to the tuples is through the count of correct classification
of a malware by that tuple. If a tuple (ri, hj) correctly identifies a malware, mx, against a
benign program, by, then we increase its count. Since we have p× q tuples, we obtain a count
matrix with p rows and q columns. The values of each cell in the count matrix ranges between
0 and total number of benign and malware program combination, i.e., between [0, k × l]. These
counts are then normalized to obtain the sensitivity matrix created based on these tuples. An
illustration of sensitivity matrix (W) is shown below.

W =

w1,1 w1,2 w1,3 . . . w1,q

w2,1 w2,2 w2,3 . . . w2,q

...
...

...
. . .

...
wp,1 wp,2 wp,3 . . . wp,q

Here, wi,j signifies a relative importance of indicator ri and observer hj to detect a malware

program. Calculation of sensitivity matrix is described in details with the help of Algorithm 1.

The quantification of the distance metric for an unknown program T from the set of benign
samples are shown as follows. We collect the perf stat data for T and obtain the distribution
matrix D(T), as described previously. Now this distribution is compared against all the l benign
programs using Welch’s t-test for all the p × q tuples. This univariate analysis constructs a
Count Matrix (C) having p rows and q columns. Each cell of C, i.e., value of cij , equals the
total number of times T is classified as Malware by the tuple ri and hj . Thus the value of cij
ranges between [0, l]. The count matrix is normalized for each tuple before further processing.
An illustration of normalized C is given as below:

6

Side-Channel Assisted Malware Classifier M. Alam et al.

C =

c1,1 c1,2 c1,3 . . . c1,q
c2,1 c2,2 c2,3 . . . c2,q

...
...

...
. . .

...
cp,1 cp,2 cp,3 . . . cp,q

Multiplying C with the sensitivity matrixW, obtained previously, we get a Score Matrix, S.

The score matrix is obtained by element-wise multiplication of C and W. Thus, S = C �W.
Hence, sij = cijwij for i ∈ {1, · · · , p} and j ∈ {1, · · · , q}. We define λ as the sum of all

the elements in the matrix S. Thus,

λ =

p∑
i=1

q∑
j=1

si,j =

p∑
i=1

q∑
j=1

ci,jwi,j (2)

This λ, ranging between 0 and 1, can be interpreted as the quantification of functional
distance of the program T from the benign set B because:

• If T is a benign program, distributions of most of its tuples will be similar to that of the programs
in set B. As a result, elements of the count matrix C, i.e., ci,j , will take lower values. Since, the
calculation of λ in Equation (2) depends on ci,j and constant wi,j , λ will take lower value.

• Similarly, if T is a malware program, the distributions of most of its tuples will be different from
the programs in set B. Hence, elements of the count matrix C will take higher values than benign
programs and the corresponding λ will be higher than the previous case.

We can quantify lower and higher values by defining a threshold. An unknown program
having λ value less than a predefined threshold λt, is termed as a benign program, or else a
malware program. Threshold λt is determined by applying 3σ rule on the distribution of λ
values obtained for benign programs in set B. Suppose mean and standard deviation obtained
from the distribution containing values λ1, λ2, . . . , λl are µB and σB respectively, where λi
represents the λ value for ith benign program in set B. Then the threshold λt is defined as:

λt = µB + 3σB (3)

Hence, for an unknown program T , having distance metric λunknown, we can conclude:

T is

{
Benign, if λunknown < λt

Malware, otherwise

The decision for an unknown program of being a benign or a malware depends on the
threshold of λt. Since the threshold is computed using the 3σ analysis, there are chances for
some malware programs having λ value less than the threshold and some benign programs
having λ value greater than the threshold. In other words, because of the threshold, we could
incur false positives as well as false negatives. Moreover, the calculation of λ depends on the
sensitivity matrix W, which is computed beforehand based on a set of benign program B and
a set of malware programM. Since W is a constant matrix, we may not get the optimal value
of λ as we intended ideally (0 for benign and 1 for malware) and could incur some errors in
determining the λ values. Next, we propose a method to update the matrix W based on the
errors calculated on the initial set of benign and malware programs by giving feedback in terms
of errors incurred. Our objective is to optimize the matrix such that the λ values for benign
and malware programs are close to the ideal values of 0 and 1 respectively. In such a way, the
decision making will be free from the dependency on any threshold.

3.3 Improving the Metric based on Error Feedback

As of now, we formalized the distance metric λ for an executable which is lower for a benign
program and higher for a malware program. We consider our problem as a Binary Classification
in which the output of the classifier will take only two values between {0, 1} (0 for benign and 1

7

Side-Channel Assisted Malware Classifier M. Alam et al.

for malware). The classification of a sample depends on its Count Matrix C, Sensitivity Matrix
W and the threshold λt. The count matrix is constant for a particular sample, as it is obtained
by deterministic univariate t-test. Instead of playing around with the threshold λt, we propose
an approach following the principles of Least Mean Square Error, to optimize the sensitivity
matrix W, which helps to provide λ values close to 0 for benign and close to 1 for malwares.
This updated sensitivity matrix will be more robust to false-positives and false-negatives which
may occur because of the selection of threshold.

In the initial phase we considered l benign programs {b1, b2, · · · , bl} and k malware programs
{m1,m2, · · · ,mk} to create the sensitivity matrix. We assign each sample, r (r = 1 to l+ k), a
label y(r), such that, y(r) = 0 for benign and y(r) = 1 for malware. We calculate distance metric
λ(r) for each sample using Equation (2). A standard mathematical way to compute error is by
summing the squared deviation of the obtained output from the actual label. Thus we define,

E =
∑
r

(
y(r) − λ(r)

)2
(4)

Since, λ(r) depends on the wi,j ’s in sensitivity matrix W, intuitively we say that changes
in wi,j increases or decreases the error. The main objective is to iteratively adjust the wi,j ’s
such that the error E is minimized. If a change in weight increases (decreases) the error, then
we want to decrease (increase) that weight. Mathematically, this means that we look at the
derivative of the error with respect to the weight, i.e., we look at ∂E

∂wi,j
, which represents the

change in the error given a unit change in the weight. The weight wi,j is then updated by the
term δwi,j = −η ∂E

∂wi,j
. Changes for each weight should be proportional to the gradient. Hence,

η is the proportionality constant known as learning rate and the minus sign indicates to adjust
the weight in the negative direction of the gradient to minimize error.

The new weight wt+1
i,j is updated from the old weight wt

i,j using the following equation:

wt+1
i,j = wti,j + δwi,j = wti,j − η

∂E
∂
wi,j (5)

The weight updation process is described as below. We add a factor of 1
2 to E for making

the calculation convenient. Hence,

E =
1

2

∑
r

(
y(r) − λ(r)

)2
∂E
∂wi,j

= −
∑
r

(
y(r) − λ(r)

) ∂λ(r)
∂wi,j

= −
∑
r

(
y(r) − λ(r)

) ∂

∂wi,j

∑
i

∑
j

c
(r)
i,j wi,j

= −

∑
r

(
y(r) − λ(r)

)
c
(r)
i,j

Hence,
δwi,j = −η

∂E
∂wi,j

= η
∑
r

(
y(r) − λ(r)

)
c
(r)
i,j

The new updated weight for wt
i,j will be:

wt+1
i,j = wti,j + η

∑
r

(
y(r) − λ(r)

)
c
(r)
i,j (6)

Here, we notice that, before updating the weights we calculate the errors for each samples,
i.e., we feedback the error associated with all the training examples and update the weights
accordingly. The weight updation is performed for a desirable number of iterations, such that
the total error (E) does not improve much, or in other words the error gets saturated to a

8

Side-Channel Assisted Malware Classifier M. Alam et al.

Algorithm 2: Training Step

Data: Sensitivity Matrix W, Set of Labels y(r), Count Matrix C for all l + k samples, Learning Rate
η, Tolerance Level ξ, Maximum Number of Iteration max iter

Result: Updated Sensitivity Matrix W0

repeat
for r=1 to l + k do

Calculate λ(r) using the Equation (2);
end
for i=1 to p do

for j=1 to q do
Update wi,j using the Equation (6);

end

end
Calculate E using Equation (4);

until E does not change by ξ in 10 successive iterations or max iter is reached ;

constant value. We quantify the term desirable number of iterations by introducing a parameter
named tolerance level (ξ). We perform the weight updation steps for a maximum of max iter
times by monitoring E obtained in each iteration and inspect whether it has been reduced by
an amount ξ. If the error does not improve by ξ in, say, successive 10 iterations, we conclude
that, the updated weights have reached to the saturated value and will not improve much. We
consider the final updated sensitivity matrix for testing unknown programs.

We define the weight updating steps as training step for the binary classifier, which we
describe with the help of Algorithm 2.

3.4 Analysis of an Unknown Program

We collect the data for an unknown program T and obtain the distribution matrix D(T), as
described previously. Now this distribution is compared against all the l benign programs using
Welch’s t-test for all the p × q tuples. This univariate analysis constructs a Count Matrix
(C) having p rows and q columns. Multiplying C with the updated sensitivity matrix W0,
obtained in the training phase, we get a Score Matrix, S, and accordingly obtain λunknown

using Equation (2). We say that:

T is

{
Benign, if λunknown ≈ 0

Malware, if λunknown ≈ 1

The procedure to analyze an unknown program of being malware or benign is described
with the help of Algorithm 3. In the next section, we evaluate our proposed approach with
detailed experimental results and comparison with state-of-the-art.

4 Experimental Results
In this section, we first present a detailed overview of the experimental setup and then analyze
the efficiency of the proposed methodology using a comprehensive set of results.

4.1 Experimental Setup

The primary objective of this work is to detect Malwares in a Real-Time Operating Systems
(RTOS) running on embedded platforms. Almost all of the RTOS on embedded platforms use
Linux based OS; hence, we restricted ourselves to detect Linux based malwares. In order to
analyze the efficiency, we implemented the proposed approach on an ALTERA SoCKit VEEK-
MT model, which consists of a dual-core ARM Cortex-A9 processor with an Altera 28-nm
Cyclone V FPGA. The Linux based embedded RTOS implemented on this SoCKit has kernel
version 3.10.31-ltsi-05172-g28bac3e.

9

Side-Channel Assisted Malware Classifier M. Alam et al.

Algorithm 3: Testing Phase

Data: Distributions of all Benign Executables used for training D(B), Updated Sensitivity Matrix W0,
List of Indicator Programs R, List of HPC Events H, Executable of the unknown program T

Result: Decision whether T is Malware or Benign
forall indicators in R do

Collect perf script results for the events in H with T in the background;
D(T) = parsed values for the collected data;

end
Initialize Count Matrix C to zero for all (R, H) tuple
forall ri in R do

forall hj in H do
forall bl in B do

Calculate t-statistic for D(bl) and D(T) corresponding to features ri and hj using
Equation (1);

if t-statistic > tcritical then
Increment C(ri, hj) by 1;

end

end

end

end
Normalize C;
Calculate λunknown using Equation (2);
if λunknown ≈ 0 then

Return T as Benign;
end
if λunknown ≈ 1 then

Return T as Malware;
end

Table 1: List of Malware and Benign Programs chosen for the Experimentation
Family Train Test Total

Malware ARM-Malwares 152 10 162

Benign1
CHStone 10 2 12

UnixBench 12 4 16
LMBench 18 4 22

Total 192 20 212

We collected 162 latest ARM-based malwares from Offensive Computing and VirusShare
database and used 50 standard Linux benchmark programs, such as CHStone, UnixBench, and
LMBench for our analysis. We used these different benchmark programs as a source for the
benign reference point. Table 1 shows the separation of all programs into Train and Test
data for offline and online analysis respectively. In this experiment, we consider 5 indica-
tors ls, netstat, ps, who, pwd and 6 observers cycles, instructions, cache-references,
cache-misses, branches, branch-misses to validate the proposed technique. We collected
data for each executable 50 times to minimize the effect of noise.

1The list of some of the benign programs which are quite relevant to the modern day embedded environments
from these benchmark suites are:

1. CHStone: Double-precision floating-point operations (DFADD, DFMUL, DFDIV, etc.), Graphics oper-
ations (ADPCM, JPEG, MOTION, etc.), Encryption operations (AES, BLOWFISH, SHA, etc.).

2. UnixBench: File operations (FSDISK, FSTIME, etc.), Arithmetic operations (SHORT, INT, LONG,
etc.), Memory operations (HANOI, DHRY2REG, etc.)

3. LMBench: Network operations (LAT HTTP, LAT UDP, BW PIPE, BW TCP, etc.)

10

Side-Channel Assisted Malware Classifier M. Alam et al.

(a) (b)

Figure 1: Distribution of (a) cache-misses and (b) branch-misses for the indicator program
ps in presence of AES and Malware.

Table 2: Initial Sensitivity Matrix W for Various Indicator-Observer tuples
cycles instructions cache-references cache-misses branches branch-misses

ls 0.0274 0.0299 0.0285 0.0208 0.0298 0.0371
ps 0.0513 0.0515 0.0512 0.0375 0.0513 0.0514

who 0.0243 0.0382 0.0366 0.0145 0.0405 0.0184
netstat 0.0264 0.0352 0.0352 0.0171 0.0351 0.0194

pwd 0.0259 0.0414 0.0389 0.0171 0.0392 0.0293

4.2 Validation of Assigning Weights to the Tuples

We present an experiment in this subsection to show the effect of (indicator, observer) tuple
in detecting an unknown program as a benign or a malware. We consider a benign programs,
namely AES from CHStone Benchmark Suite, and one malware as mentioned in Table 1, for
this experiment. We choose to monitor one indicator program ps and two observers namely
cache-misses and branch-misses. The resulting distributions for both the executables are
provided in Figure 1. The univariate t-statistic for the distributions in Figure 1a and Figure 1b
are −0.4798 and 32.3781 respectively. The tcritical value for these datasets is 1.6605 with 95%
confidence level. Figure 1 shows clearly that, while the later is able to present a distinguishable
distribution, the former is not. It may be noted that the tuple (ps, cache-misses) is not
effective for this example but can be effective for other pairs of benign and malware programs.
Hence, we do not discard this tuple but rather assign a suitable sensitivity value. This sensitivity
list provides a quantification of the goodness of the associations of the indicators with the
observers in distinguishing a malware from a set of benign programs.

We followed Algorithm 1 considering the data in Offline phase, as mentioned in Table 1,
and obtained an initial sensitivity matrix as shown in Table 2.

4.3 Analysis of Unknown Programs using Initial Sensitivity Matrix

The generalization of the proposed technique is assessed by testing 20 programs in the Online
phase, as mentioned in Table 1, which were not used to create the sensitivity matrix. We
followed the procedure mentioned in Algorithm 3 and obtained the λunknown for all the 20
programs, which is shown in Figure 2. The threshold λt, calculated using Equation (3), is in
this case 0.7261. The λ values for benign and malware examples are indicated using Blue and
Red lines respectively. The threshold λt is shown using Green line. We can easily observe
from Figure 2 that, the 9th malware sample is treated as benign since it has λ value less than
λt. One important observation from the figure is that we could have adjusted the threshold

11

Side-Channel Assisted Malware Classifier M. Alam et al.

Figure 2: λ values for 20 Test Programs Figure 3: Errors in each Iteration

Table 3: Updated Sensitivity Matrix W0 for Various Indicator-Observer tuples
cycles instructions cache-references cache-misses branches branch-misses

ls 0.6411 0.8974 1.1656 -0.9028 -0.9583 0.2866
ps 0.6371 -0.0825 -0.5154 0.0533 -0.2367 0.5548

who 0.2735 0.0005 0.1963 -0.4748 -0.0066 -0.1982
netstat -0.3863 -0.2506 -0.0963 0.2996 0.8166 -0.2988

pwd 0.2647 -0.0882 -0.3782 0.3098 0.3533 -1.2136

by assigning some empirical value between [0.62, 0.65] instead of 3σ analysis to deal with false
negative occurred in this experiment. But, to find the optimal threshold value which generalizes
for all the examples, we need to analyze ample of malware programs with this technique. Still,
there will be a chance for some malwares to raise false negatives as well as some benign programs
which raise false positives. Hence, we update the sensitivity matrix instead of dealing with the
threshold and show the results in the next subsection.

4.4 Updating the Sensitivity Matrix

We update the sensitivity matrix following Algorithm 2 and using learning rate (η) and tolerance
level (ξ) to be 10−3 and 10−6 respectively. One major issue with gradient descent algorithm
is that it may overfit2 for the training sample. In order to verify that the proposed gradient
descent model does not overfit for our example, we divided the initial data in online phase
into train data and validation data. We update weight based on the new training data and
monitor both training and validation error in each iteration. The errors in each iteration is
shown in Figure 3. Blue line presents errors for training data and Orange line presents errors
for validation data. It can be seen that the weight updation does not overfit for our example (as
both the errors decrease with increase in iterations) and gradually saturates to optimum3 value.
The final sensitivity matrix W0 obtained after weight updation process is shown in Table 3.

4.5 Analyzing Unknown Programs on Updated Sensitivity Matrix

The test programs mentioned in Table 1 are again selected here, like Section 4.3, to analyze the
efficiency of the proposed method. We followed the approach mentioned in Algorithm 3 and
obtained the λunknown values for all the 20 programs, but this time considering the updated
sensitivity matrix. The resulting λunknown values using both the initial and updated sensitivity

2It provides optimum results for data used in trained, but results in poor performance for unseen data.
3The sensitivity matrix for which the total error in calculating λ is minimum.

12

Side-Channel Assisted Malware Classifier M. Alam et al.

Table 4: Comparison of λ values for the Benign Test Programs using Initial and Updated
Sensitivity Matrix

Benign Programs (λunknown)
Initial Sensitivity Matrix 0.5213 0.4979 0.5284 0.5796 0.5718 0.5558 0.5249 0.5636 0.6136 0.4781

Updated Sensitivity Matrix 0 0 0 0 0 0 0 0 0.0589 0

Table 5: Comparison of λ values for the Malware Test Programs using Initial and Updated
Sensitivity Matrix

Malware Programs (λunknown)
Initial Sensitivity Matrix 0.9281 0.9326 0.9844 0.9353 0.9173 0.9736 0.9281 0.7514 0.6691 0.7465

Updated Sensitivity Matrix 1 1 1 1 1 1 1 1 1 1

Table 6: Comparative Study with State-of-the-Art
False

Positive
False

Negative
Demme et al. [9] 3% 7%

Das et al. [1] 2.7% 3%
Ozsoy et al. [16] 6%-8% 6%
Wang et al. [17] 5% 8%

Elnaggar et al. [18] 9% 2%
λ with ad-hoc choices of weights 3.76% 5.03%

Proposed Approach 0.19% 0.01%

matrices are shown in Table 4 and Table 5. It is clear from both the tables that the separability
between benign and malware programs has been increased significantly.

The average separability between benign and malware test programs provided in Table 4
and Table 5, based on the initial sensitivity matrix W is 0.3331 and for updated sensitivity
matrix W0 is 0.9941. Hence, for the above dataset we obtain 199.97% increase in separability
between benign and malware programs, which further helps to reduce the confusion in decision
making and thereby increases the classification accuracy of the proposed method.

4.6 Comparison of Accuracy with other State-of-the-Art

We evaluated our proposed approach several times by selecting 20 programs randomly during
testing as mentioned in Table 1 and compared the result with five other notable approaches
mentioned in [9, 1, 16, 17, 18], which also aim to detect and prevent malware executables. We
have also presented results of the λ-based classifier based on initial ad-hoc selection of sensitivity
matrix to show the effectiveness of weight updation in terms of reducing false positives and false
negatives. The comparison is presented in Table 6, which clearly shows that the accuracy of
the proposed model is best among the recent literature with the given dataset. The table also
presents the reduction in false positives and false negatives because of the weight correction. We
didn’t consider other notable works in this field to compare with, as they either require hardware
modifications or require significant computing resources which do not meet our objective to
design a lightweight detection framework.

4.7 Implementation Overhead

The detection method continually runs on the processor core and waits for a new process
to arrive, thus consuming some amount of the CPU and Memory usage. We analyzed these

13

Side-Channel Assisted Malware Classifier M. Alam et al.

resource requirement using the Linux top command for the ARM Cortex-A9 processors and
observed that %CPU Usage and %MEM Usage4 are 16.788% and 0.798% respectively. We
observe that the memory usage of the proposed method is almost negligible, though the CPU
usage is slightly high, but can be permitted given the performance of the model.

Working of the proposed model depends on the distribution of benign programs, which are
collected offline and stored in memory to be used in the online phase. Hence, size of the code
and offline dataset are also important considering resource constraint embedded platform. Total
virtual memory size used by the model to detect a single program under test is around 9 MB.
The value includes the size of all code, data and shared libraries. This low value also establishes
the fact that the proposed model is indeed very light-weight in terms of storage requirement.

5 Conclusion

In this paper, we attempt to analyze the side-channel information generated via Hardware
Performance Counters (HPCs) and OS calls, to classify malware programs from benign programs
which are expected to execute on an embedded processor. We base the classification mechanism
on statistical hypothesis, which is a light-weight mechanism and can be easily implemented in
low computation devices. The work develops a distance metric, called λ for distinguishing
malware programs from benign executions. The work stresses the importance of optimally
choosing the weights of the features and proposes a gradient descent based methodology to
improve the separability of the malware class from the benign applications. We show through
experimentations performed on an embedded Linux on an ARM processor that the combination
of the learning technique with side-channel analysis outperforms existing works in reducing false
positives and false negatives. We also show that the methodology has very less computational
overhead and can be developed in any resource constraint devices running an embedded Linux.

Acknowledgement

We would like to acknowledge Haldia Petrochemicals Ltd. and TCG Foundation for partially
supporting the research through the grant entitled “Cyber Security Research in CPS”. We are
also grateful to the anonymous reviewers for their insightful comments and suggestions.

References

[1] Sanjeev Das, Yang Liu, Wei Zhang, and Mahintham Chandramohan. Semantics-based online
malware detection: towards efficient real-time protection against malware. IEEE transactions on
information forensics and security, 11(2):289–302, 2016.

[2] Mahinthan Chandramohan, Hee Beng Kuan Tan, Lionel C Briand, Lwin Khin Shar, and
Bindu Madhavi Padmanabhuni. A scalable approach for malware detection through bounded
feature space behavior modeling. In Automated Software Engineering (ASE), 2013 IEEE/ACM
28th International Conference on, pages 312–322. IEEE, 2013.

[3] Federico Maggi, Matteo Matteucci, and Stefano Zanero. Detecting intrusions through system
call sequence and argument analysis. IEEE Transactions on Dependable and Secure Computing,
7(4):381–395, 2010.

4The %CPU Usage and %MEM Usage signifies the share of elapsed CPU time and available physical memory
respectively calculated per second.

14

Side-Channel Assisted Malware Classifier M. Alam et al.

[4] Sarani Bhattacharya and Debdeep Mukhopadhyay. Who watches the watchmen?: Utilizing per-
formance monitors for compromising keys of rsa on intel platforms. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 248–266. Springer, 2015.

[5] Sarani Bhattacharya and Debdeep Mukhopadhyay. Utilizing performance counters for compro-
mising public key ciphers. ACM Transactions on Privacy and Security (TOPS), 21(1):5, 2018.

[6] Manaar Alam, Sarani Bhattacharya, Debdeep Mukhopadhyay, and Sourangshu Bhattacharya.
Performance counters to rescue: A machine learning based safeguard against micro-architectural
side-channel-attacks. 2017.

[7] Manaar Alam, Sarani Bhattacharya, Debdeep Mukhopadhyay, and Anupam Chattopadhyay. Rap-
per: Ransomware prevention via performance counters. arXiv preprint arXiv:1802.03909, 2018.

[8] Corey Malone, Mohamed Zahran, and Ramesh Karri. Are hardware performance counters a cost
effective way for integrity checking of programs. In Proceedings of the sixth ACM workshop on
Scalable trusted computing, pages 71–76. ACM, 2011.

[9] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman, Simha Sethu-
madhavan, and Salvatore Stolfo. On the feasibility of online malware detection with performance
counters. In ACM SIGARCH Computer Architec. News, volume 41, pages 559–570. ACM, 2013.

[10] Xueyang Wang and Ramesh Karri. Numchecker: Detecting kernel control-flow modifying rootkits
by using hardware performance counters. In Proceedings of the 50th Annual Design Automation
Conference, page 79. ACM, 2013.

[11] Xueyang Wang and Ramesh Karri. Reusing hardware performance counters to detect and identify
kernel control-flow modifying rootkits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(3):485–498, 2016.

[12] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Structural detection of android
malware using embedded call graphs. In Proceedings of the 2013 ACM workshop on Artificial
intelligence and security, pages 45–54. ACM, 2013.

[13] Adrian Tang, Simha Sethumadhavan, and Salvatore J Stolfo. Unsupervised anomaly-based mal-
ware detection using hardware features. In International Workshop on Recent Advances in Intru-
sion Detection, pages 109–129. Springer, 2014.

[14] Xueyang Wang, Sek Chai, Michael Isnardi, Sehoon Lim, and Ramesh Karri. Hardware performance
counter-based malware identification and detection with adaptive compressive sensing. ACM
Transactions on Architecture and Code Optimization (TACO), 13(1):3, 2016.

[15] Yanzhi Dou, Kexiong Curtis Zeng, Yaling Yang, and Danfeng Daphne Yao. Madecr: Correlation-
based malware detection for cognitive radio. In Computer Communications (INFOCOM), 2015
IEEE Conference on, pages 639–647. IEEE, 2015.

[16] Meltem Ozsoy, Khaled N Khasawneh, Caleb Donovick, Iakov Gorelik, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. Hardware-based malware detection using low-level architectural features.
IEEE Transactions on Computers, 65(11):3332–3344, 2016.

[17] Xueyang Wang, Charalambos Konstantinou, Michail Maniatakos, and Ramesh Karri. Confirm:
Detecting firmware modifications in embedded systems using hardware performance counters. In
Computer-Aided Design (ICCAD), 2015 IEEE/ACM International Conference on, pages 544–551.
IEEE, 2015.

[18] Rana Elnaggar, Krishnendu Chakrabarty, and Mehdi B Tahoori. Run-time hardware trojan de-
tection using performance counters. In Test Conference (ITC), 2017 IEEE International, pages
1–10. IEEE, 2017.

15

	Introduction
	Preliminary Background
	Hypothesis testing using t-test
	Online Computation of t-test
	Hardware Performance Counters

	Overview of the Proposed Methodology
	Intuition behind the Approach
	Formalization of the Distance Metric
	Improving the Metric based on Error Feedback
	Analysis of an Unknown Program

	Experimental Results
	Experimental Setup
	Validation of Assigning Weights to the Tuples
	Analysis of Unknown Programs using Initial Sensitivity Matrix
	Updating the Sensitivity Matrix
	Analyzing Unknown Programs on Updated Sensitivity Matrix
	Comparison of Accuracy with other State-of-the-Art
	Implementation Overhead

	Conclusion

