
Incorporating Hypothetical Views and Extended Recursion

into SQL Database Systems ∗

Gabriel Aranda-López1, Susana Nieva1, Fernando Sáenz-Pérez2, and
Jaime Sánchez-Hernández1

1 Dept. Sistemas Informáticos y Computación, UCM, Spain
2 Dept. Ingenieŕıa del Software e Inteligencia Artificial, UCM, Spain

garanda@fdi.ucm.es, {nieva,fernan,jaime}@sip.ucm.es

Abstract

Current database systems supporting recursive SQL impose restrictions on queries such as linearity,

and do not implement mutual recursion. In a previous work we presented the language and prototype

R-SQL to overcome those drawbacks. Now we introduce a formalization and an implementation of the

database system HR-SQL that, in addition to extended recursion, incorporates hypothetical reasoning

in a novel way which cannot be found in any other SQL system, allowing both positive and negative

assumptions. The formalization extends the fixpoint semantics of R-SQL. The implementation improves

the efficiency of the previous prototype and is integrated in a commercial DBMS.

1 Introduction

Current relational database systems provide limited support for the ANSI/ISO standard lan-
guage SQL w.r.t. recursion. In [2] we proposed a new approach, called R-SQL, aimed to
overcome some of such limits. We developed a formal framework, borrowing techniques from
the deductive database field, such as stratified negation [15], and following the original relational
data model [7], so avoiding both duplicates and nulls (as encouraged by [8]). But in addition
to recursion, several applications require predictive and historical analysis over large amounts
of data [10], typically making some sort of assumptions to deduce conclusions. Hypothetical
queries, also known as ”what-if” queries, can help managers to take decisions on scenarios that
are somewhat changed with respect to a current state. Such queries are used, for instance,
for deciding what resources must be added, changed or removed to optimize some criterion.
Current applications include OLAP environments business intelligence, and e-commerce.

So, driven by these needs, with the work proposed in this paper we face the inclusion of
hypothetical queries and views in the recursive SQL setting based on [2]. To this end, we
extend a subset of standard SQL to embody both recursive definitions and hypothetical views
in the language HR-SQL. We summarize the syntax and semantics of the definition language in
Section 2, and introduce a novel syntax and semantics of queries and view definitions in sections
3 and 4, respectively. An assumption (hypothetical reasoning) can be either overloading the
relation (with the new clause assume query in relation) or restricting it (assume query not
in relation). For supporting our approach, we propose a stratified fixpoint semantics which
is an extension of the semantics presented in [2] to give meaning to hypothetical queries and
view definitions.

Since our targets are current state-of-the-art relational database systems (DBMS’s), we
adhere to stratification in order to return a single answer set [15], which is a natural expectation

∗This work has been partially supported by the Spanish projects S2009/TIC-1465 (PROMETIDOS) and
UCM-BSCH-GR58/08-910502 (GPD-UCM).

K. Mcmillan, A. Middeldorp, G. Sutcliffe, A. Voronkov (eds.), LPAR-19 (EPiC Series, vol. 26), pp. 9–22 9

Incorporating Hypothetical Views and Extended Recursion into SQL Database Systems Susana Nieva et al.

from current database users. In Section 5, we propose an implementation of the HR-SQL
language for the concrete system IBM DB2 (although it is easily adaptable to any other system),
which improves the prototype introduced in [2] by factoring out those fragments of SQL queries
that can be computed out of the fixpoint operator loop. In addition, we propose an efficient
query solving procedure by generating SQL PL scripts and temporary tables to avoid locks
and logging, therefore providing memory scalability and performance. Moreover, we provide
a shell in which users can submit regular, hypothetical, and extended recursive SQL queries.
Whereas regular queries are directly sent to the host DBMS, hypothetical and recursive queries
are processed by such SQL PL scripts.

Related Work. To the best of our knowledge, there have been neither a formalization nor a
system for SQL combining recursion and hypothetical queries as we do. However, we list some
related works in both the relational and logic programming fields. With respect to hypothetical
relational databases, the very first work was presented in [13], where hypotheses were stated
by replacing actual data with a replace operator, and assumed data persist until the query
is finished. In that early work, recursion was not considered. Works as [9] present extensions
of RA to support hypothetical queries by means of updates and with no recursion. Also, the
educational system DES [12] includes hypothetical SQL queries, but neither hypothetical views
nor negative assumptions are supported. On the logic programming arena, Hypothetical Data-
log [3, 5] fits into intuitionistic logic programming, an extension of logic programming including
both embedded implications and negation, and integrates atomic assumptions as hypotheti-
cal queries in the inference system. It has been a proposal thoroughly studied from semantic
and complexity point-of-views, allowing to assume atoms in order to prove goals. Transaction
logic [4] allows a database to be updated by transactions with elementary updates, and the
transaction base is immutable. If bulk updates are needed, the transaction base must account
for them. In [1] we developed a more expressive setting for constraint deductive databases
based on Hereditary Harrop formulas. In particular, it provides support for assuming rules as
hypothetical queries. Our current work can be understood as porting this feature to relational
databases by adding the assume clause involving assumptions over relations which intensionally
add new tuples (i.e., with select statements) to such relations. As a surplus, in this work, we
allow to intensionally remove tuples from such relations by negative assumptions.

2 The Definition Database Language of HR-SQL

This language is oriented to provide definition for databases using a SQL-like language, which
allows to define recursive definitions of relations. The formal syntax for a database definition
is described by the following grammar:

db ::= R sch := sel stm; ... R sch := sel stm;

sch ::= (A T,...,A T)

sel stm ::= select exp,...,exp [from R,...,R [where cond]]

| sel stm union sel stm | sel stm except sel stm

exp ::= C | R.A | exp m op exp | -exp

cond ::= true | false | exp b op exp | not cond | cond [and|or] cond

m op ::= + | - | / | *

b op ::= = | <> | < | > | >= | <=

10

Incorporating Hypothetical Views and Extended Recursion into SQL Database Systems Susana Nieva et al.

Uppercase identifiers denote terminal symbols and lowercase ones denote grammar produc-
tions, R stands for relation names, A for attribute names, T for standard SQL types (as inte-
ger, float, varchar(n)), cond for Boolean conditions, m op and b op for mathematical and
Boolean operators respectively, and C for constants of a valid SQL type.

A database db is a (non-empty) sequence of relation definitions. A relation definition assigns
a select statement to the relation, that is identified by its name R and its schema sch, that is a
tuple of attribute names with their corresponding types. As syntactic sugar, we admit * in the
projection list of SQL statements. The HR-SQL definition language coincides with the R-SQL
introduced in [2], but the syntax of the except operator allows now any select statement in
the right part, instead of a simple relation name (as it was the case in [2]).

Example 1. The travel database definition below (inspired on an example of [6]) represents
the information sketched in Figure 1. This database includes the relations flight, bus and
boat with schema (ori varchar(10), des varchar(10), time float) to store information
about origin (ori), destination (des) and time (time), for traveling around the Canary Islands.

Figure 1: Travel Database for the Canary Islands.

The relation link collects all the possible transports. The relation travel is the transitive
closure of link, i.e., it provides all the possible travels of the database, maybe concatenating
any of the available transports. Their respective definitions written in HR-SQL syntax are:

link(ori varchar(10), des varchar(10), time float):=
select ∗ from flight union select ∗ from boat union
select ∗ from bus;

travel(ori varchar(10), des varchar(10), time float):=
select ∗ from link union
select link.ori, travel.des, link.time + travel.time

from link, travel where link.des=travel.ori;

From now on, RNdb stands for the set of relations names {R1, . . . , Rn} defined in a database
db. We write RNsel stm for the set of relation names occurring in a select statement sel stm. For
the case of a select statement of the form sel stm = sel stm1 except sel stm2 we also define
RN¬sel stm as the set of relation names occurring in sel stm2 (notice that RN¬sel stm ⊆ RNsel stm).
We assume that for every R sch:= sel stm defined in db it holds that RNsel stm ⊆ RNdb.

2.1 Fixpoint Semantics

The meaning of every relation defined in a database db corresponds to the set of tuples that
”satisfies” the relation definition. In [2] a stratified fixpoint semantics for the language R-SQL
was introduced. Here, we recapitulate the main concepts in order to facilitate the understanding
of the following sections. In addition, we introduce the semantics of the extended except select
statement.

11

Incorporating Hypothetical Views and Extended Recursion into SQL Database Systems Susana Nieva et al.

The stratified fixpoint theory holds on the notion of dependency graph for a database.
The dependency graph associated to db, denoted by DGdb, is a directed graph whose nodes
are the elements of RNdb, and the edges (which can be negatively labeled) are determined as
follows. For any relation definition R sch := sel stm there is an edge from every relation
name R′ ∈ RNsel stm to R. Those edges produced by the relation names belonging to RN¬sel stm

are negatively labeled. Then, for every pair of relations R1, R2 ∈ RNdb, we say that R2 depends
on R1 if there is a path from R1 to R2 in DGdb. And R2 negatively depends on R1 if there is a
path from R1 to R2 in DGdb with at least one negatively labeled edge. The previous concepts
are needed to characterize the stratifiable databases.

Definition 1. A stratification of a database db defining n relations is a mapping str : RNdb →
{1, . . . , n}, such that: str(Ri) ≤ str(Rj), if Rj depends on Ri, and str(Ri) < str(Rj), if Rj
negatively depends on Ri.

The database db is stratifiable if there exists a stratification for it. In this case, for every R

∈ RNdb, we say that str(R) is the stratum of R. And for a select statement sel stm, we define
str(sel stm) = max{str(Ri) | Ri ∈ RNsel stm}.

From now on, we consider a fixed stratifiable database db and a stratification str for it. In
order to give meaning to a relation R (A1 T1, ..., Ar Tr), we assume that every type Ti, i = 1..r,
denotes a domain Di. We also assume a universal domain D, which is the union of the family
of the considered domains. Since different relations can have different arities, we use the set
T =

⋃
n≥1Dn. Interpretations are defined as functions that associate an element of P(T) to

each element of RNdb, and they are classified by strata, as we formalize next.

Definition 2. Let i ≥ 1, an interpretation I for db, over the stratum i, is a function I : RNdb →
P(T), such that for every R ∈ RNdb with schema sch:

• If sch ≡ (A1 T1, . . . , Ar Tr), and D1, . . . , Dr are, respectively, the domains denoted by
T1, . . . , Tr, then I(R) ⊆ D1 × . . .×Dr,

• I(R) = ∅, if str(R) > i.

The set of interpretations for db over the stratum i is denoted by Idbi . Let I1, I2 ∈ Idbi . I1 is less
than or equal to I2 at stratum i, denoted by I1 vi I2, if the following conditions are satisfied
for every R ∈ RNdb: I1(R) = I2(R), if str(R) < i, and I1(R) ⊆ I2(R), if str(R) = i.

It is straightforward to check that for any i, (Idbi ,vi) is a poset. The main question is that
when an interpretation over a stratum i increases, the set of tuples associated to the relations
whose stratum is i can increase, but the sets associated to relations of smaller strata remain
invariable. In addition, (Idbi ,vi) is a complete partially ordered set: If {In}n≥0 is a chain in

(Idbi ,vi), then Î, defined as Î(R) =
⋃

n≥0 In(R), R ∈ RNdb, is the least upper bound of {In}n≥0.
The following definition formalizes the meaning of a select statement sel stm in the context

of a concrete interpretation I.

Definition 3. Let i ≥ 1, I ∈ Idbi . Let sel stm be a select statement, such that str(sel stm) ≤ i.
We recursively define the interpretation of sel stm w.r.t. I for db, denoted by [[sel stm]]I , as
follows:

• [[sel stm1 union sel stm2]]I = [[sel stm1]]I ∪ [[sel stm2]]I .

• [[sel stm1 except sel stm2]]I = [[sel stm1]]I \ [[sel stm2]]I .

• [[select exp1, . . . , expk]]I = {(exp1, . . . , expk)}, where expi denotes the mathematical eval-
uation of expi.

12

Incorporating Hypothetical Views and Extended Recursion into SQL Database Systems Susana Nieva et al.

• [[select exp1, . . . , expk from R1, . . . , Rm where cond]]I =
{(exp1[a/A], . . . , expk[a/A]) | a ∈I(R1)× . . .× I(Rm), cond[a/A] is satisfied},

where A represents a sequence of attributes prefixed with their corresponding relation names,
i.e., if A

j
1, . . . , A

j
rj are the attributes of Rj, 1 ≤ j ≤ m, then A is the complete sequence

R1.A
1
1, . . . , R1.A

1
r1 , . . . , Rm.A

m
1 , . . . , Rm.A

m
rm ; the notation expj [a/A], 1 ≤ j ≤ k, stands for

the mathematical evaluation of expj, after replacing the tuple a by A; and cond[a/A] denotes
the evaluation of the Boolean expression cond, with the previous substitution.

Next, for every i, an operator T db
i over the set Idbi of interpretations of stratum i for db is

defined. T db
i is continuous, as stated in [2]. The least fixpoint of T db

i is the interpretation giving
meaning to the relations of db in the stratum i.

Definition 4. The operator T db
i : Idbi −→ Idbi transforms interpretations over i as follows. For

every I ∈ Idbi and for every R ∈ RNdb:

• T db
i (I)(R) = I(R), if str(R) < i.

• T db
i (I)(R)=[[sel stm]]I, if str(R)= i and sel stm is the definition of R in db.

• T db
i (I)(R) = ∅, if str(R) > i.

Proposition 1 (Continuity of T db
i). Let i ≥ 1 and {In}n≥0 be a chain of interpretations in Idbi

(I0vi I1 vi I2 vi . . .). Then, T db
i (

⊔
n≥0 In) =

⊔
n≥0 T

db
i (In).

Therefore, the existence of a least fixpoint stratum by stratum is a direct consequence of
the Knaster-Tarski fixpoint theorem [14].

Theorem 1. There is a fixpoint interpretation fixdb : RNdb → P(T), such that for every R

∈ RNdb, if sel stm is the definition of R in db, then fixdb(R) = [[sel stm]]fix
db

.

The interpretation fixdb defines the semantics of db. The construction of this fixpoint is
stratum by stratum as follows:

The operator T db
1 has a least fixpoint, called fixdb1 , which is

⊔
n≥0 (T db

1)
n
(∅), the least upper

bound of the sequence {(T db
1)

n
(∅)}n≥0, where (T db

1)
n
(∅) is the result of n successive applications

of T db
1 to the empty interpretation.
Consider now the sequence {(T db

2)
n
(fixdb1)}n≥0 of interpretations in (Idb2 ,v2) greater than

fixdb1 . Using the definition of T db
i and the fact that fixdb1 (R) = ∅ for every R such that

str(R) ≥ 2, it is easy to prove (as for the stratum 1) that such sequence is a chain, fixdb1 v2

T db
2 (fixdb1) v2 T

db
2 (T db

2 (fixdb1)) v2 . . . ,v2 (T db
2)

n
(fixdb1), . . . with least upper bound in (Idb2 ,v2

),
⊔

n≥0 (T db
2)

n
(fix1), that is the least fixpoint of T db

2 containing fixdb1 , called fixdb2 .
Now, if k = max{str(R) | R ∈ RNdb}, by proceeding successively, for every i, 1 < i ≤ k, a

chain, {(T db
i)

n
(fixdbi−1)}n≥0 can be defined, and a fixpoint of T db

i , fixdbi =
⊔

n≥0 (T db
i)

n
(fixdbi−1),

can be found. In addition, fixdb1 vk . . . vk fix
db
k . We call fixdb to fixdbk , since it contains the

information of the whole database.

3 The Query Language of HR-SQL

As usual in SQL, users of an HR-SQL database can formulate queries by means of select state-
ments. The novelty of the HR-SQL language w.r.t. R-SQL is the incorporation of hypothetical
queries. The syntax of queries is defined as:

query ::= sel stm | sel hyp

sel hyp ::= assume hypo,...,hypo sel stm

hypo ::= sel stm [not] in R

13

Incorporating Hypothetical Views and Extended Recursion into SQL Database Systems Susana Nieva et al.

Example 2. Consider the database of Example 1, and the query: how long does it take to
arrive in Valverde from Madrid, if boat links that take more than one hour are not considered?
It can be expressed in HR-SQL as:

assume select * from boat where boat.time > 1 not in link

select travel.time from travel

where travel.ori = ’MAD’ and travel.des = ’VDE’

From the logical point of view, a hypothetical query can be interpreted as an intuitionis-
tic implication: it represents the value of the consequent assuming the antecedent. Next we
formalize this idea.

3.1 The Semantics of a Query

As usual, the answer of a query is identified with the set of tuples that satisfy such a query.
So, for a stratifiable database definition db, this answer corresponds to the interpretation of
the query w.r.t. the fixpoint of db. The following definition formalizes this concept for the
different cases of queries. In the case of a hypothetical query, to reflect the changes intro-
duced in the current database assuming the hypothesis, we will use the notation db[R sch :=

sel stm′/R sch := sel stm] to denote the database definition that results from the database
db by replacing the relation definition R sch := sel stm by R sch := sel stm′. In addition,
sel(query) denotes the select statement of query. More precisely sel(sel stm) = sel stm and
sel(assume hypo1, . . . , hypok sel stm) = sel stm.

For readability, we give the definition only for the case of one assumption; for a sequence
of assumptions it is obtained as a simple sequential extension, considering a sequence of such
replacements, as shown in Example 3 later.

Definition 5. Let query be a query for db. Its answer w.r.t. db, denoted by [[query]]db, is
defined by cases:

Simple query: [[sel stm]]db = [[sel stm]]fix
db

.
Hypothetical query: If R sch := sel stmR is the definition of R in db, then:

• [[assume sel stm′ in R sel stm]]db= [[sel stm]]fix
db′

, where
db′ = db[R sch := sel stmR union sel stm′/ R sch := sel stmR].

• [[assume sel stm′ not in R sel stm]]db=[[sel stm]]fix
db′

, where
db′ = db[R sch := sel stmR except sel stm′/ R sch := sel stmR].

Example 3. Let db be the following database definition (for simplicity, we omit the schema A

int for all the relations):

R1:= select 1 union select 2 union select 3;

R2:= sel stmR2
where sel stmR2 ≡ select 1 union select 3 union select 5

except select R1.A from R1 where R1.A=1 or R1.A=2;

R3:= select R2.A from R2 union select R3.A*2 from R3 where R3.A<5;

Consider the following hypothetical query:

query ≡ assume select R1.A from R1 where R1.A < 3 in R2,

select 3 not in R2

select R3.A from R3

Then [[query]]db = [[select R3.A from R3]]fix
db′

, where db′ = (db)θσ being:

14

Incorporating Hypothetical Views and Extended Recursion into SQL Database Systems Susana Nieva et al.

θ = [R2 := sel stm′R2/ R2 := sel stmR2],
σ = [R2 := sel stm′R2 except select 3/R2 := sel stm′R2],
sel stm′R2 ≡ sel stmR2 union select R1.A from R1 where R1.A < 3.

Therefore db′ is the following database:

R1:= select 1 union select 2 union select 3;

R2:= ((select 1 union select 3 union select 5

except select R1.A from R1 where R1.A=1 or R1.A=2)
union select R1.A from R1 where R1.A<3) except select 3;

R3:= select R2.A from R2 union select R3.A*2 from R3 where R3.A<5;

The computation of a simple query for an existing database is easy, because the value
of [[sel stm]]db is [[sel stm]]fix

db

, and fixdb is known and coincides with the instance of the
database. The case of a hypothetical query sel hyp requires additional explanation, its meaning
is the interpretation of a select statement w.r.t. a new database db′, where some relations have
changed because the assumptions are incorporated to the corresponding relations. db′ must be
a stratifiable database in order to define the interpretation fixdb

′
. By taking advantage of the

stratified semantics, the computation of fixdb
′

can be simplified:

First, the dependency graph DGdb′ is an extension of DGdb, because RNdb′ = RNdb, and
every relation definition of db′ is in db, but the new relation definition R sch := sel stmR
union|except sel stm′. The edges from the relations inside sel stmR to R are already in
DGdb. So DGdb′ can be built from DGdb as follows: For every R′ ∈ RNsel stm′ , an edge from R′

to R is added; it is negatively labeled in the except case or if R′ ∈ RN¬sel stm′ . A stratification for
db′, str′ : RNdb′ → {1, . . . , n}, if it exists, satisfies str′(R) ≥ str(R), since (as we have remarked
already) the select statement that defines R in db′, contains the select statement sel stmR,
which defines R in db.

Second, in order to obtain [[sel(sel hyp)]]fix
db′

, it is only necessary to compute fixdb
′
(R′) for

the relations R′ such that the relations in RNsel(sel hyp) depend on R′. In addition, fixdb
′

has not
to be computed from stratum 1, as we will see. Let i = str′(R) (i = min{str′(Rj)|1 ≤ j ≤ k} in

the general case, if assumptions for the relations R1, . . . , Rk are considered), then fixdb
′
(R′) =

fixdb(R′), for every R′ with str′(R′) < i. And let S = {R′′ |R′ ∈ RNsel(sel hyp) and R′ depends on

R′′}, then fixdb
′

can be obtained from fixdb in the following way:
1. Compute fixdb

′

i (R′) from fixdbi−1 for every relations R′ ∈ S and str′(R′) = i.

2. Compute fixdb
′

j (R′) from fixdb
′

j−1 for the relations R′ ∈ S and str′(R′) = j, j = i +
1 .. str′(sel(sel hyp)).

Example 4. Consider the stratifiable database db and the query of Example 3. Let str be a
stratification for db, such that str(R1) = 1, str(R2) = 2, str(R3) = 3. In this case, str is also a
stratification for the modified database db′, detailed in Example 3, needed to answer to query.
It is easy to check that:
fixdb(R1) = {(1), (2), (3)}, fixdb(R2) = {(3), (5)}, fixdb(R3) = {(3), (5), (6)}.

In order to obtain fixdb
′
, notice that RNsel(query) = {R3}. So S = {R′′ |R′ ∈ {R3} and R′ depends

on R′′} = {R1, R2, R3}, but the computation can start at stratum 2 = str(R2), with fixdb
′

1

= fixdb1 . R2 is the only relation in S in stratum 2.
fixdb

′

2 (R2) = {(1), (2), (5)}.
Similarly, for stratum 3, only fixdb

′

3 (R3) must be computed to get the answer, even in the case
that db had other relations in this stratum.
fixdb

′

3 (R3)={(1), (2), (4), (5), (8)} = [[select R3.A from R3]]fix
db′

=[[query]]db.

15

Incorporating Hypothetical Views and Extended Recursion into SQL Database Systems Susana Nieva et al.

4 The View Definition Language of HR-SQL

In this section we extend the definition language by allowing the definition of views, which
essentially consists of assigning names to queries in order to use them as relation names inside
other queries, or inside itself to express recursive queries. The syntax is as follows:

vd ::= view ... view

view ::= V sch := sel stm; | HV sch := sel hyp;

We use V for names of views that are defined by a non hypothetical query, and HV for hypothetical
views. From now on, those symbols can be considered as elements of the set RNdb as relation
names.

We say that vd is a definition of views for db if the involved names in it are relation names of
db or view names defined in vd. Mutual recursive definitions are allowed among non hypothetical
views. Then their names can occur inside the definition of any view (hypothetical or not). Every
hypothetical view can be recursive but its name cannot appear inside the definition of other
views, which means that in a definition of views of the form:

V1 sch1 := sel stm1; ... Vm schm := sel stmm;

HV1 sch1 := sel hyp1; ... HVr schr := sel hypr;

for every j = 1..m, Vj can occur everywhere; for every j = 1..r, HVj can occur inside the
expression sel(sel hypj), but not in sel stm1, . . . , sel stmm, sel hypk, if k 6= j, nor in the
assumption part of sel hypj .

Example 5. Referring to Example 1, assume there is a volcanic eruption in El Hierro and the
airspace must be closed in the archipelago, as well as the bus in this island. But a boat from
El Hierro to La Palma is added. The hypothetical view below can be defined in HR-SQL to
represent the reachable cities in the Canary islands in this situation.

reachable(ori varchar(10),des varchar(10)) := assume
(select * from bus where bus.ori = ’VDE’

union select * from flight) not in link,

select ’RES’,’SPC’,1.5 in boat

select link.ori, link.des from link union
select link.ori, reachable.des from link, reachable

where link.des = reachable.ori;

4.1 The Semantics of a Definition of Views

A view name identifies a query, so the meaning of a definition of views vd sets the correspondence
between every view name in vd and the interpretation of the corresponding query. But this
interpretation must consider the original database definition extended with the views defined
in vd as new relations. As we will show, stratification must be extended to assign a stratum to
every view name. Next, these ideas are formalized. First we consider the definition of a simple
view, then we will generalize it to the definition of a sequence of views.

Definition 6. Let V sch := sel stm be the definition of a non hypothetical view for db. The
meaning of V w.r.t. db, denoted by [[V]]db, is equal to [[sel stm]]db′ , where db′ is the result of
extending db with V sch := sel stm as a new relation.

Let HV sch := sel hyp be the definition of a hypothetical view for db. The meaning of HV
w.r.t. db, denoted by [[HV]]db, is equal to [[sel hyp]]db′ , where db′ is the result of extending db

with HV sch := sel(sel hyp) as a new relation.

16

Incorporating Hypothetical Views and Extended Recursion into SQL Database Systems Susana Nieva et al.

In V sch := sel stm, the value [[V]]db = [[sel stm]]db′ = [[sel stm]]fix
db′

depends on the
fixpoint of a new database definition which should be stratifiable. db′ is equal to db extended
with V sch := sel stm, it will be non stratifiable if V appears in an except clause inside
sel stm, but in the other case, the fixpoint of the new database will be equal to the one of
db, except for the new relation V. Notice that RNdb′ = RNdb ∪ {V}, and no relation defined
in db may depend on V. So, if k is the maximum stratum of db (with n relations), then a
stratification str′ for db′ can be defined as str′ : RNdb′ → {1, . . . , n + 1}, with str′(R) = str(R)
for every R ∈ RNdb, and str′(V) = k + 1. Hence, for i = 1..k, fixdb

′

i = fixdbi . Therefore:

fixdb
′

= fixdb
′

k+1 =
⊔

m≥0(T db′

k+1)m(fixdb), so fixdb
′

is an extension of the known fixdb, and
only the last stratum k+ 1 for the relation V (the only one in this stratum) must be calculated

to find [[sel stm]]fix
db′

= fixdb
′

k+1(V).
The semantics for the case HV sch := assume sel stm′ [not] in R sel stm requires to

modify the original database in two ways:
1. [[HV]]db = [[sel hyp]]db′ , according to Definition 6, where db′ results from extending db with

HV sch := sel stm.

2. [[sel hyp]]db′ = [[sel stm]]fix
db′′

, in accordance with Definition 5, where db′′ = db′[R sch :=

sel stmR union | except sel stm′/R sch := sel stmR].
In 1, the original database is extended with a new relation, HV. Notice that, considering HV as a
relation identifier, the added definition, HV sch := sel stm, is syntactically correct (however
HV sch := sel hyp is not allowed as a relation definition). In 2, the assumption is incorporated
to the corresponding relation, as explained in Section 3.1. So, the new relation definitions in
db′′ are:

HV sch := sel(sel hyp); R sch := sel stmR union | except sel stm′;

Then, the dependency graph DGdb′′ can be built from DGdb adding new edges to the relation R,
as explained before. But there is also a new node HV an new edges: For every R′ ∈ RNsel(sel hyp),
an edge from R′ to HV, that is negatively labelled if R′ ∈ RN¬sel(sel hyp).

As for the non hypothetical case, a stratification of db′′, str′ : RNdb′′ → {1, . . . , n + 1},
if it exists, may assign the stratum k + 1 to HV. fixdb

′′

k can be computed as explained in

Section 3.1 for hypothetical queries, and the computation of fixdb
′′

k+1 will consider only HV, and

fixdb
′′

k+1(HV) = [[sel stm]]fix
db′′

.

Example 6. Consider the database db of Example 3 and the hypothetical view:

HV A int := assume
select R1.A from R1 where R1.A < 3 in R2, select 3 not in R2

select R3.A from R3 union select HV.A*3 from HV where HV.A < 3;

Following Definition 6, [[HV]]db = [[select R3.A from R3 union select HV.A*3 from HV

where HV.A<3]]fix
db′′

, where db′′ is an extension of the database db′ of Example 3 with:

HV A int := select R3.A from R3 union
select HV.A*3 from HV where HV.A < 3;

A function str′ extending str in such a way that str′(HV) = 4 is a stratification of the new data-
base. For 1 ≤ i ≤ 3, fixdb

′′

i = fixdb
′

i , which appear in Example 4. Then, since [[HV]]db coincides

with fixdb
′′
(HV), it is only necessary to calculate fixdb

′′

4 (HV) = (
⊔

m≥0 (T db′′

4)
m

(fixdb
′′

3))(HV) =
{(1), (2), (3), (4), (5), (6), (8)}.

Next we deal with the case of simultaneous view definitions for a database db. The idea is
that the semantics of vd associates to every view name in vd, the interpretation of the query

17

Incorporating Hypothetical Views and Extended Recursion into SQL Database Systems Susana Nieva et al.

that defines the view. But, if there is more than one non hypothetical view definition in vd, it
is not valid to identify [[V]]db with [[sel stm]]db′ , being db′ the result of extending db with V sch

:= sel stm. This is because other names defined in vd distinct of V can occur inside sel stm,
while they are not defined in db′. Then the semantics of vd is defined as follows:

Definition 7. Let db be a database and let
vd ::= V1 sch1 := sel stm1; . . . ; Vm schm := sel stmm;

HV1 sch1 := sel hyp1; . . . ; HVr schr := sel hypr;

be a definition of views for db. The semantics of vd is defined as the mapping that associates
Vj to [[Vj]]db′ , for j = 1..m, and HVj to [[HVj]]db′ , for j = 1..r, where db′ is the result of extending
db with:
V1 sch1 := sel stm1; . . . ; Vm schm := sel stmm;

Notice that, according to Definition 6, [[Vj]]db′ = [[sel stmj]]db′′ for every j = 1..m, where
db′′ is the result of extending db′ with Vjschj := sel stmj , but this definition is already in db′,
so db′′ = db′. Since, HV1, . . . , HVr do not appear in sel stmj , their definitions are not required
in db′. But for every 1 ≤ j ≤ r, [[HVj]]db′ = [[sel hypj]]db′′ , where db′′ is the result of extending
db′ with HVj schj := sel(sel hypj), allowing HVj to be recursive.

In order to compute the answer of every view included in a simultaneous definition, hypothet-
ical views can be relegated to process the others. As in the simple case, db′ must be stratifiable.
In the practice, if db′ is stratifiable, a stratification str′ for db′, such that str′(Vj) > n for every

1 ≤ j ≤ m can be found. Then the interpretation fixdb
′

can be obtained stratum by stratum,
starting from fixdb, as in the simple case. Now, every hypothetical view can be treated sepa-
rately, starting each time with fixdb

′
as initial interpretation, and processing each view as in

the simple case.

5 The HR-SQL System

We present a SWI-Prolog implementation for the HR-SQL language adapted for IBM DB2.
The system, with a bundle of examples, is available at https://gpd.sip.ucm.es/trac/gpd/

wiki/GpdSystems/HR-SQL. The structure of the system is depicted in Figure 5. The interface
consists of a prompt ’hr-db2 =>’ which works as an extension of the command interpreter of
DB2. The user can submit any DB2 input to manage an existing database (label A in Figure
5), and also the following ones provided by HR-SQL (label B in Figure 5):

• load db <db file> loads an HR-SQL database definition from a file and computes the cor-
responding fixpoint. The resulting tuples for the relations are stored as DB2 tables.

• load vd <vd file> loads an HR-SQL definition of views from a file, computes the values for
each view, and materializes them as DB2 tables.

• A hypothetical query written in HR-SQL syntax (sel hyp), which is submitted to the sys-
tem and recognized as such because it starts with assume.

These new statements are preprocessed by the SWI-Prolog module as shown in Figure 5.
After parsing, the dependency graph is built, a stratification is generated (if it exists; an error
is thrown otherwise). The current algorithm to compute the stratification tries to minimize
the number of relations in each strata. This allows to improve the efficiency of the fixpoint
computation w.r.t. [2], because now each stratum i contains only those mutually recursive
relations, avoiding to process the rest of them in each iteration of the fixpoint operator at
stratum i. After the stratification, an SQL PL script is produced as will be explained in

18

https://gpd.sip.ucm.es/trac/gpd/wiki/GpdSystems/HR-SQL
https://gpd.sip.ucm.es/trac/gpd/wiki/GpdSystems/HR-SQL

Incorporating Hypothetical Views and Extended Recursion into SQL Database Systems Susana Nieva et al.

Figure 2: The HR-SQL System.

Section 5.1. This output is executed by DB2 (label C in Figure 5). The code generation for
hypothetical views needs an additional process which is shown in Section 5.2.

5.1 Computing the Fixpoint

Figure 3 shows the algorithm for generating the DB2 database corresponding to the fixpoint of
an HR-SQL database definition. It produces the SQL statements (create and insert) needed
to build such a database. This version enhances the one in [2] with the functions in and out
which will be explained later.

1 for all R ∈ RNdb do create table R sch;

2 i := 1
3 while i ≤ numStr do
4 for all R ∈ RNi do insert into R out(sel stmR);
5 repeat
6 size := rel size(RNi)
7 for all R ∈ RNi do
8 insert into R in(sel stmR) except select * from R;

9 until size = rel size(RNi)
10 i := i+ 1

Figure 3: Algorithm to Compute the Fixpoint

The algorithm considers a concrete stratification for the database where numStr denotes the
number of strata and NRi the set of relations of stratum i. First of all, a table is created for
each relation R sch := sel stmR of the database (line 1). Then, the external while (lines 3-10)
computes successively the fixpoints fixdb1 , fix

db
2 , . . . , fix

db
numStr . According to the theory, each

fixdbi is calculated for every relation of NRi, by iterating the operators T db
i of Definition 3, i.e.,

the repeat (lines 5-9) at iteration n computes (T db
i)

n
(fixi−1). The loop is iterated while some

tuple is added to the tables of the current stratum; the variable size is used to check if some
tuple is added to some relation of the current stratum.

This algorithm improves the efficiency of the introduced in [2] by reducing the work in the
iterations of the repeat with the functions in and out. The idea is that the iteration of the
operator T db

i is only needed for recursive relations; in fact, only for the recursive fragment of
the select statements defining those relations. The functions in and out split each sel stm

into the (recursive) fragment that must be used in the insert statements inside the loop (line
8), and the fragment that can be processed before the loop, as the base case of the recursive
definition (line 4). The in and out fragments of a sel stm can be easily determined using the

19

Incorporating Hypothetical Views and Extended Recursion into SQL Database Systems Susana Nieva et al.

stratum of its components because, as mentioned before, the stratification is such that if a
relation R in stratum i depends on another relation R′, then the stratum of R′ is lower than i,
so it must be previously computed, or it is exactly i (if they are mutually recursive) and both
relations must be computed simultaneously. Therefore, if for instance R := sel stm1 union
sel stm2, str(R) = i, and str(sel stm1) < i, then sel stm1 will be part of the out fragment,
and the corresponding tuples can be inserted before the loop, because the involved relations are
already computed in the computation of a previous stratum. Functions in and out are defined
by recursion on the structure of sel stm. For example, if sel stm ≡ ss1 except ss2, and
str(sel stm) = i, then str(ss2) < i, so:

in(sel stm) = in(ss1) except ss2; out(sel stm) = out(ss1) except ss2.

5.2 Computing Hypothetical Views

The SQL PL script generated to process views follows the ideas of Section 4.1. We use the view
reachable of Example 5 to illustrate the system steps to solve a hypothetical view definition.
It is interesting as it is a recursive definition containing positive and negative assumptions.

First of all, the system extends the original dependency graph with the new edges due to
hypothetical assumptions: two negatively labeled edges to link, one from bus, and another
from flight. Due to the expanded form of stratification we have defined, the stratification
for the original database is also a stratification for the new one. Following the explanations of
Section 3.1, the system looks for those relations that must be recomputed to obtain the tuples
of the view reachable, in this case only boat and link. The algorithm that generates the SQL
statements, for computing these relations and the new view, is quite similar to that presented
in Figure 3 to compute the fixpoint of a database. Next we explain the differences following
the example.

The relations needed to compute the view are locally created and recomputed using tempo-
rary tables, and the computation will start at stratum i = min{str(boat), str(link)}:

DECLARE GLOBAL TEMPORARY TABLE link AS link;

DECLARE GLOBAL TEMPORARY TABLE boat LIKE boat;

INSERT INTO SESSION.boat

((SELECT ’TFS’,’GMZ’,1) UNION (SELECT ’GMZ’,’VDE’,1.5) UNION

(SELECT ’SPC’,’TFN’,2 l) UNION (SELECT ’RES’,’SPC’,1.5));

INSERT INTO SESSION.link

(SELECT * FROM flight UNION SELECT * FROM SESSION.boat UNION

SELECT * FROM bus EXCEPT (SELECT * FROM bus WHERE bus.ori = ’VDE’)

UNION SELECT * FROM flight);

Temporary tables are prefixed with SESSION. For processing a hypothetical view of the form
HV := sel hypHV, the script to compute the tuples of HV will consider the definition HV :=

sel stm, where sel stm results from replacing R by SESSION.R in sel(sel hypHV). The tuples
for reachable are materialized and stored, then the temporary tables are discarded. Temporary
tables are adequate as they are in-memory data structures.

The computation of hypothetical queries follows the same steps, but instead of creating
tables, a cursor is used to obtain the answer without materializing it.

6 Conclusions and Future Work

We have designed a practical, formally-supported SQL system, porting some techniques from
the deductive database field to the relational one. Thus, we provide an original way to give se-
mantics to SQL languages supporting recursion. In addition our system allows both less-limited

20

Incorporating Hypothetical Views and Extended Recursion into SQL Database Systems Susana Nieva et al.

recursion (w.r.t. current SQL systems) and hypothetical reasoning (as a novel addition to such
systems), acting as a front-end to DB2. Although targeted to this system, our work can be
straightforwardly applied to any other SQL system. However, it can be improved in a number
of ways: With respect to recursion, in-memory indexing can be applied for small search keys.
These keys can be identified as the candidate keys derived from explicit functional dependencies
(as already allowed in DB2) and primary keys. Also, both general and particular optimization
methods can be applied to our work. For the first, the differential semi-näıve algorithm [15]
allows to save tuples in recursive joins along fixpoint iterations. For the second sort of method,
already-known linear recursion optimizations [11] can also be applied by analyzing the depen-
dency graph and easily detecting such cases. With respect to hypothetical queries and views,
we plan to extend the definition language, allowing mutual recursion in hypothetical views. Fi-
nally, we can extend this work by allowing not only materialized views, but also regular views.
For this, table functions (cf. IBM DB2 concepts) can be used as a natural construction to build
HR-SQL query results on-the-fly.

References

[1] G. Aranda-López, S. Nieva, F. Sáenz-Pérez, and J. Sánchez-Hernández. An extended constraint
deductive database: Theory and implementation. The Journal of Logic and Algebraic Program-
ming, 2013.

[2] G. Aranda-López, S. Nieva, F. Sáenz-Pérez, and J. Sánchez-Hernández. Formalizing a Broader
Recursion Coverage in SQL. In Symposium on Practical Aspects of Declarative Languages
(PADL’13), volume 7752 of LNCS, 2013. In Press.

[3] A. J. Bonner. Hypothetical datalog: Negation and linear recursion. In The ACM Symposium on
the Principles of Database Systems (PODS), pages 286–300, 1989.

[4] A. J. Bonner and M. Kifer. Transaction logic programming. In ICLP, pages 257–279, 1993.

[5] A. J. Bonner and L. T. McCarty. Adding negation-as-failure to intuitionistic logic programming.
In E. L. Lusk and R. A. Overbeek, editors, Logic Programming, Proc. of the North American
Conference, pages 681–703. The MIT Press, 1989.

[6] H. Christiansen and T. Andreasen. A Practical Approach to Hypothetical Database Queries. In
Transactions and Change in Logic Databases, volume 1472 of LNCS, pages 340–355. Springer,
1998.

[7] E. Codd. A Relational Model for Large Shared Databanks. Communications of the ACM,
13(6):377–390, June 1970.

[8] C. J. Date. SQL and relational theory: how to write accurate SQL code. O’Reilly, Sebastopol, CA,
2009.

[9] T. Griffin and R. Hull. A framework for implementing hypothetical queries. In SIGMOD Confer-
ence, pages 231–242, 1997.

[10] W. H. Inmon. Building the data warehouse. QED Information Sciences, Inc., Wellesley, MA, USA,
2005.

[11] C. Ordonez. Optimization of Linear Recursive Queries in SQL. IEEE Transactions on Knowledge
and Data Engineering, 22(2):264–277, 2010.

[12] F. Sáenz-Pérez. Datalog Educational System, October 2011. http://des.sourceforge.net/.

[13] M. Stonebraker and K. Keller. Embedding expert knowledge and hypothetical data bases into a
data base system. In The 1980 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’80, pages 58–66. ACM, 1980.

[14] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathe-
matics, 5:285–309, 1955.

21

http://des.sourceforge.net/

Incorporating Hypothetical Views and Extended Recursion into SQL Database Systems Susana Nieva et al.

[15] J. Ullman. Principles of Database and Knowledge-Base Systems Vols. I (Classical Database Sys-
tems) and II (The New Technologies). Computer Science Press, 1989.

22

	Introduction
	The Definition Database Language of HR-SQL
	Fixpoint Semantics

	The Query Language of HR-SQL
	The Semantics of a Query

	The View Definition Language of HR-SQL
	The Semantics of a Definition of Views

	The HR-SQL System
	Computing the Fixpoint
	Computing Hypothetical Views

	Conclusions and Future Work

