
Kalpa Publications in Computing

Volume 8, 2018, Pages 24–37

TNC’18. Trusted Numerical Computations

Toward the Synthesis of Gauss Pivoting Code for Linear

Systems Resolution : Application Mechanical Problems

Nacera Djehaf, Matthieu Martel, and Mikael Barboteu

University of Perpignan Via Domitia
nacera.djehaf@univ-perp.fr

matthieu.martel@univ-perp.fr

barboteu@univ-perp.fr

Abstract

The purpose of this talk is primarily to introduce a new methodology to synthesize nu-
merically accurate programs for the Gaussian elimination method in order to solve linear
systems coming from mechanical problems. The synthesis is based on program transfor-
mation techniques and it is guided in its estimation of accuracy by interval arithmetic that
computes the propagation of roundoff errors. Besides a discussion on numerical accuracy
issues related to floating-points arithmetics and roundoff errors, we present our approach
used to compute the error bound during the resolution process. Finally, some experimental
results will be presented to prove the efficiency of our synthesizer tool and show that the
specialized produced code to solve the family of systems given in input is far more accurate
and faster than the standard implementation of the Gauss method.

1 Introduction

Problems of Mechanics are usually expressed in terms of partial differential equations (PDEs)
and most of the times, these PDEs cannot be solved with analytical methods due to the presence
of non trivial complex constitutive laws as viscoelasticity, hyperelasticity, contact, friction...etc.
To determinate the solution of these problems, numerical methods are needed. In our context,
the numerical method consist in approximating the systems of PDEs and then in solving the
resulting approximated systems. In the framework of Mechanics, the main discretization meth-
ods used in the literature are the finite element method, the finite difference method and the
finite volume method, which are selected according to the kind of problems considered [8]. In all
these classes of methods, the discretization of the problems leads to the resolution of a system
of linear equations. In this work, we considered linear systems coming from the finite element
method. Furthermore, the linear systems which we are interested in solving are represented by
huge ill-conditioned sparse matrices which are sensitive to roundoff errors. There exists many
well-known algorithms to solve these systems, based on direct methods such as Gauss pivot-
ing method or on iterative methods such as the conjugate gradient method [16, 3]. However
these methods are sensitive to the roundoff errors introduced by the floating-point arithmetic
[2, 7] used by computers and which may partly or totally falsen the results of the computation.

M. Martel, N. Damouche and J. Alexandre Dit Sandretto (eds.), TNC’18 (Kalpa Publications in Computing,
vol. 8), pp. 24–37

Toward Synthesis of Gaussian Elimination Algorithm Djehaf et al.

Indeed, the arithmetic of floating-point numbers strongly differs from the arithmetic of real
numbers. For example, the usual rules on elementary operations like associativity, distributiv-
ity, etc. do not hold any longer and the numerical accuracy of the computation depends on how
formulas are written. For these reasons, it is necessary to develop original and domain specific
approaches to treat these family of systems.

Recently, several tools such as Herbie [15] and Salsa [6] have been proposed to automatically
rewrite the mathematical formulas occurring in programs into mathematically equivalent for-
mulas which evaluate more accurately in the computer arithmetic (in the sense that we obtain
a result closer to the mathematical result that we would obtain if the computer used the real
arithmetic). This work is motivated by the fact that the floating-point arithmetic is particu-
larly not intuitive and that it is hard for the programmer to determine by hand how formulas
should be written. In this work, we go a step further by introducing a new tool to synthesize
automatically algorithms specialized for a family of systems. More precisely, we generate nu-
merically accurate and time efficient programs for the Gauss pivoting method, given a family of
systems described by interval matrices (matrices whose elements are intervals). The synthesis
generates the code and uses Salsa to rewrite the computations in function of the ranges of
the variables given by the intervals. As a result, we obtain automatically specialized solving
methods, optimized for a family of systems.

To demonstrate the efficiency of our code synthesizer, we use it to generate programs for the
resolution of systems coming from finite element method arising in two problems of Mechanics.
The first problem consists of an academic but relevant mechanical problem which concerns the
flexion of a one dimensional elastic beam fixed on its extremities. For the second example,
we consider a non-trivial problem which describes the sliding contact of a two dimensional
viscoelastic body against a moving foundation. For both problems we show that the code
synthesized by our tool is far more accurate and faster than a standard code for Gauss pivoting
method. More generally, this show that code synthesis is a credible and promising approach to
efficiently solve numerically difficult problems, in domains like Mechanics.

The rest of the paper is structured as follows. In Section 2 we give the state of the art
of the program transformation techniques and code synthesis. In Section 3, we describe the
numerically accurate code synthesis for the Gauss pivoting method. Next, in Section 4 we
present several numerical simulations to highlight the performance and the efficiency of the
synthesized code compared to the classical Gauss pivoting method. Finally, in Section 5, we
conclude and discuss about the future work in the continuation of the present article.

2 Program Transformation and Code Synthesis

In this section, we introduce background material needed to understand the rest of this article.
Section 2.1 introduces the IEEE754 Standard for floating-point arithmetic. Section 2.2 presents
the arithmetic used to compute safe bounds on the roundoff errors and an overview of our
program transformation techniques is given in Section 2.3.

2.1 IEEE Standard 754 for Floating-Point Arithmetic

We introduce here some elements of floating-point arithmetic [2, 7]. First of all, a floating-point
number x in base β is defined by

x = s · (d0.d1 . . . dp−1) · βe = s ·m · βe−p+1 (1)

25

Toward Synthesis of Gaussian Elimination Algorithm Djehaf et al.

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the significant, 0 ≤ di < β, 0 ≤ i ≤ p− 1, p
is the precision and e is the exponent, emin ≤ e ≤ emax.

A floating-point number x is normalized whenever d0 6= 0. Normalization avoids multiple
representations of the same number. The IEEE754 Standard also defines denormalized numbers
which are floating-point numbers with d0 = d1 = . . . = dk = 0, k < p − 1 and e = emin.
Denormalized numbers make underflow gradual [7]. The IEEE754 Standard defines binary
formats (with β = 2) and decimal formats (with β = 10). In this article, without loss of
generality, we only consider normalized numbers and we always assume that β = 2 (which is
the most common case in practice). The IEEE754 Standard also specifies a few values for p,
emin and emax which are summarized in Figure 1. Finally, special values also are defined: nan
(Not a Number) resulting from an invalid operation, ±∞ corresponding to overflows, and +0
and −0 (signed zeros).

Format Name p e bits emin emax

Binary16 Half precision 11 5 −14 +15
Binary32 Single precision 24 8 −126 +127
Binary64 Double precision 53 11 −1122 +1223
Binary128 Quadruple precision 113 15 −16382 +16383

Figure 1: Basic binary IEEE754 formats.

The IEEE754 Standard also defines five rounding modes for elementary operations between
floating-point numbers. These modes are towards −∞, towards +∞, towards zero, to the
nearest ties to even and to the nearest ties to away and we write them ↑−∞, ↑+∞, ↑0, ↑∼e and
↑∼a , respectively. The elementary operations � ∈ {+, −, ×, ÷} are then defined by

f1 �↑◦ f2 = ↑◦ (f1 � f2) (2)

where ◦ ∈ {−∞,+∞, 0,∼e,∼a} denotes the rounding mode. Equation (2) states that the result
of a floating-point operation �◦ done with the rounding mode ◦ returns what we would obtain by
performing the exact operation � and next rounding the result using ◦. The IEEE754 Standard
also specifies how the square root function must be rounded in a similar way to Equation (2)
but does not specify the roundoff of other functions like sin, log, etc.

Because of the roundoff errors, the results of the computations are not exact. For example,
the value v = 2.7182818 . . . can be computed using Bernoulli’s formula:

v = lim
n→+∞

un with un =

(
1 +

1

n

)n

, n ≥ 0.

In double precision, u8 = 2.718282 but then the accuracy decreases as n grows: u14 = 2.716110,
u16 = 3.035035 and u17 = 1.0. The transformation techniques detailed in Section 2.3 aim at
generating an expression which is mathematically equal to the original one and which minimizes
the roundoff error on the result, i.e. the distance |r− ↑◦ (r)| between the exact result r and the
floating-point result ↑◦ (r). To deal with the errors introduced by the floating-point arithmetic,
we introduce the function ↓◦: R→ R which computes the exact error due to rounding operation.

↓◦ (x) = x− ↑◦ (x) (3)

26

Toward Synthesis of Gaussian Elimination Algorithm Djehaf et al.

2.2 Error Bound Computation

In order to compute the errors during the evaluation of arithmetic expressions, we compute
with values which are pairs (f, ε) ∈ F×R = E where f denotes the floating point number used
by the machine and ε denotes the exact error ↓◦ (f) attached to f , i.e., the exact difference
between the real and floating-point numbers as defined in Equation (3). For example, the real
number 1

3 is represented by the value w = (↑∼
(
1
3

)
, ↓∼

(
1
3

)
) = (0.333333, (1

3 − 0.333333)). The
elementary operations on E is defined in [14].

In practice, we use a set based version of this arithmetic based on intervals. A so-called
abstract value [5] is a pair of intervals such that the first interval corresponds to the range of
the floating-point values of the program and the second interval corresponds to the range of the
errors obtained by subtracting the floating-point values from the exact ones. In ([f] , [ε]) ∈ E],
we have [f] the interval for the range of the values and [ε] the interval of errors on the values
[f]. The pair ([f] , [ε]) abstracts the set of concrete values {(f, ε) : f ∈ [f] , and ε ∈ [ε]} by
intervals in a component-wise way.

We now introduce the arithmetic expressions on E]. We approximate an interval [x] with

real bounds by an interval based on floating-point bounds, denoted by ↑]◦ ([x]).

↑]◦ ([x, x]) = [↑◦ (x), ↑◦ (x)] . (4)

We denote by ↓]◦ the function that abstracts the concrete function ↓◦. It over-approximates
the set of exact values of the error ↓◦ (x) = x− ↑◦ (x). Every error associated to x ∈ [x, x] is

included in ↓]◦ ([x, x]). We also have for the rounding mode to the nearest

↓]◦ ([x, x]) = [−y, y] with y =
1

2
ulp
(
max(|x|, |x|)

)
. (5)

Formally, the unit in the last place, denoted by ulp(x), is the weight of the least significant
digit of the floating-point number x. Equations (6) and (7) give the semantics of the addition
and multiplication among E], for other operations see [14]. If we sum two numbers, we must add
errors on the operands to the error produced by the roundoff of the result. When multiplying
two numbers, the semantics is given by the development of ([f]1 + [ε]1) × ([f]2 + [ε]2).

([f]1 , [ε]1) + ([f]2 , [ε]2) =
(
↑]◦ ([f]1 + [f]2), [ε]1 + [ε]2 + ↓]◦ ([f]1 + [f]2)

)
, (6)

([f]1 , [ε]1)× ([f]2 , [ε]2) =
(
↑]◦ ([f]1 × [f]2), [f]2 × [ε]1 + [f]1 × [ε]2 + [ε]1 × [ε]2

+ ↓]◦ ([f]1 × [f]2)
)
.

(7)

2.3 Program Transformation for Numerical Accuracy

In this section, we describe intuitively how the floating-point computations occurring in pro-
grams may be transformed in order to improve their numerical accuracy. Basically, we use a
data structure called APEG for Abstract Program Expression Graph [10]. An APEG copes
with the combinatory problem by representing in polynomial size an exponential number of
mathematically equivalent expressions. An APEG is made of abstraction boxes, representing,
for a given operator and set of operands, any parsing of the expression up to associativity and
commutativity and of equivalence classes which consist of offering a choice of alternative oper-
ators to build an expression. For instance, the APEG p of Figure 2 represents all the following

27

Toward Synthesis of Gaussian Elimination Algorithm Djehaf et al.

expressions:

A(p) =

(
(a+ a) + b

)
× c,

(
(a+ b) + a

)
× c,

(
(b+ a) + a

)
× c,(

(2× a) + b
)
× c, c×

(
(a+ a) + b

)
, c×

(
(a+ b) + a

)
,

c×
(
(b+ a) + a

)
, c×

(
(2× a) + b

)
, (a+ a)× c+ b× c,

(2× a)× c+ b× c, b× c+ (a+ a)× c, b× c+ (2× a)× c

 (8)

To improve an expression, we first build its APEG A(p) and then we search in A the most
accurate expression following the error computation model of Section 2.2.

2 a

×

+

b

□

+(a,a,b)

×

c ×

+

c b c

×

a a

+×

× +

Figure 2: APEG for the expression expr =
(
(a+ a) + b

)
× c.

For commands, i.e. assignments, conditionals, loops, functions, etc., we use a set of transfor-
mation rules allowing to mix the computations occurring in different instructions [6]. Basically,
these rules build large expressions in order to offer more opportunities to rewrite them by asso-
ciativity, commutativity, etc. For assignments, a first rule discards an assignment after saving
it in the memory of the transformation tool and a second rule rewrites an assignment by inlin-
ing the memorized expressions in the current expression, in order to build a larger expression.
When the obtained expressions become too large, we slice them at a defined level of the syntac-
tic tree and we assign the sub-expressions to intermediary variables. For example, let us take
the code of Figure 3 with three variables x, y and z and constants a = 0.1, b = 0.01, c = 0.001
and d = 0.0001. We aim at optimizing z.

Code

x = a+c;

y = b+d;

z = x+y;

y = b+d;

z = x+y;
z = x+y;

z =

(a+c)+(b+d);

z =

a+(b+(c+d));

Memory x7→a+c x7→a+c y7→b+d x7→a+c y7→b+d x7→a+c y7→b+d

Figure 3: Example of code transformation.

We remove the variable x and memorize it. So, the first assignment is discarded and memo-
rized. We then repeat the same process for y. We may not remove z because it is the variable to
be optimized. Then, we substitute x and y by their expressions and we transform the expression
thanks to its APEG.

The second kind of rules deals with conditionals. If the condition is statically known, we
execute the right branch, otherwise we rewrite both branches of the conditional. Other rules
concerning the conditional consist of re-inserting variables that we have not to discard. For the
while loop, one rule shows how to rewrite the body of the loop, and the other one is similar to

28

Toward Synthesis of Gaussian Elimination Algorithm Djehaf et al.

the last one seen in conditionals. At last, we use some rules dealing with sequences of commands
and functions.

2.4 Code synthesis

Code synthesis is the mechanized construction of a program. Synthesizing tools takes a specifi-
cation of what the program should do, then it automatically generates an implementation that
provably satisfies this specification. Obviously, the synthesized code has to be as efficient as
possible. In our context efficiently means numerically accurate and fast.

Synthesis Tool
Linear Systems

+ Resolution

method

Automatically

Generated

Implementation

Figure 4: Code Synthesis Process.

In our case, as a specifications, we consider a particular family of linear systems coming
from the finite element discretization of a Mechanical system of PDE

′
s. The synthesizer tool

should generate automatically a program for the numerical solvers applied on the specified
linear system. Figure 4 illustrates the process of program synthesis.

3 The Rock-N-Roll tool

When we execute a numerical algorithm to solve a linear system of equations on a computer,
each single operation introduces some roundoff errors, which are accumulated during the reso-
lution process. Then, instead of the exact solution x of a linear system we get an approximate
result. In order to solve this accuracy problem, we have developed a code synthesis tool that
generates automatically a fast and accurate C program for a given family of linear systems.
In this section, we present this tool, Rock-N-Roll. We detail its architecture, its inputs and
outputs.

3.1 Architecture

In this section, we describe the main architecture of our tool as shown in Figure 5. Rock-N-Roll
is written in C and made of several modules, described hereafter:

SynthesizerParser C-program

Salsa

Figure 5: Software architecture of the Rock-N-Roll tool.

• Parser: Its parses the given family of linear systems in our case correspond to problems
coming from a system of partial differential equations modeling a mechanical problem,
generates abstract syntax trees and builds [S] as follows: RNR takes as input a linear
system S: Ax=b where A = (aij)16i,j6n ∈ R and b = (bi)16i6ninR, then the interval

29

Toward Synthesis of Gaussian Elimination Algorithm Djehaf et al.

matrix [A] = (aij
])16i,j6n and the interval vector [b] = (bi

])16i6n are build for each i
and j as follows:{

aij
] = ([aij − aij × k1, aij + aij × k1], [−aij × k2, aij × k2]) ,

bi
] = ([bi − bi × k1, bi + bi × k1], [−bi × k2, bi × k2]) .

Where k1 and k2 are two random (in our experiments Section 4, we gave k1 = 0.11 and
k2 = 0.00001). Equation 10 describes an input family of linear :

[S] :

a11
] · · · a1n

]

...
. . .

an1
] · · · ann

]

x =

b1
]

...

bn
]

 . (9)

Since aij
] = ([f]ij , [ε]ij) and bi

] = ([f]i , [ε]i) for all 1 6 i 6 n and 1 6 j 6 n, we may
rewrite Equation 9 as:

([f]11 , [ε]11) · · · · · · ([f]1n , [ε]1n)
...

. . .

([f]n1 , [ε]n1) · · · · · · ([f]nn , [ε]nn)

x =

([f]1 , [ε]1)

...

...
([f]n , [ε]n)

 (10)

Recall from Section 2.2 that in the pairs ([f] , [ε]), the first interval [f] consists of the range
of floating-point value and the second interval [ε] consists of the error range associated to
the floating-point interval [f].

• Salsa: It is a tool that improves the numerical accuracy of programs by automatic
transformation, it takes a program as input and returns more accurate one [6]. The
optimization done by Salsa depends on the ranges (intervals) given as inputs for the
variables of the code to be optimized,

• Synthesizer: This module eliminates the zero elements of the given system. It produces
a numerically optimized code for the Gaussian elimination rule for each abstract syntactic
structure of aij

] and bi
]. In order to have more accurate results, the GaussSynthesis

routine builds a specific code for the Salsa tool [6]. When the Salsa transformation is
done, the synthesizer replaces the old piece of code by the transformed one, which is more
accurate. In our case we have the choice between using the backward substitution, matrix
inversion, LU-decomposition... etc.

• C-program: Rock-N-Roll outputs a file containing a C-program corresponding to the
efficient implementation to compute an accurate solution x of S ∈ [S] with the resolution
method specialized for a given family of linear systems with much better accuracy.

4 Numerical experimentations

The aim of this section is to present several numerical simulations which illustrate the per-
formance and the efficiency of our tool, Rock-N-Roll, introduced in Section 3. Obviously,
we aim at evaluating how much the numerical accuracy is improved but also the impact on
the execution time. To do this, we have taken two examples based on two physical problems

30

Toward Synthesis of Gaussian Elimination Algorithm Djehaf et al.

arising in Mechanics: The flexion of a beam fixed on its extremities and the compression of
a viscoelastic body against a moving foundation. In both cases, the discretization is based
on the finite element method (FEM) that was usually used to solve complicated problems in
engineering, notably in elasticity and structural Mechanics modeling involving elliptic PDEs
and complicated geometries. Note that the linear systems come from a Fortran computer code
based on a MODULar Finite Element library (MODULEF)1. We compared between the solu-
tion named xSGPM computed by synthesized Gauss pivoting method (SGPM) and the solution
named xCGPM calculated with a non-synthesized or what we named a classical Gauss pivoting
method (CGPM).

4.1 Flexion of a beam

The first example consists of an academic but relevant mechanical problem which concerns the
flexion of an 1D elastic beam with Dirichlet boundary conditions on its extremities where the
physical setting is depicted in Figure 6 (for homogeneous Dirichlet boundary conditions).

α=0 β=0

f

u(x)

Figure 6: Physical setting of the flexion of a 1D beam.

To do that let us consider the following very simple 1D model problem which consist to find
a displacement u ∈ C2([0, 1],R) such that,{

−u′′(x) = f ∀x ∈]0, 1[

u(0) = α and u(1) = β,
(11)

where f is a constant vertical force acting on the domain interval Ω = [0, 1]. In order to
discretize the 1D elastic beam problem (11) and thus to obtain the related linear system, we
use the finite element method. To do that, we have to introduce the mesh of the domain
Ω = [0, 1] by considering N + 1 nodes {xi, i = 1, .., N + 1} of the interval [0, 1] with x1 = 0,
xN+1 = 1 and xi+1 = xi + hi, for i = 1, .., N where h = max1≤i≤N{hi} is the mesh size.
Therefore, the domain [0, 1] is discretized into N nonuniform intervals (xi, xi+1) that are the
finite elements of size hi. Then, we consider the simplest finite dimensional space that is to say
the piecewise continuous linear function space defined over the mesh of the domain Ω = [0, 1].
Thus, after elementary calculus (see [11] and [12]) we finally obtain the following tridiagonal
systems,

1
h1

+ C −1
h1−1

h1

1
h1

+ 1
h2

−1
h2

. . .
. . .

. . .
−1

hN−1

1
hN−1

+ 1
hN

−1
hN

1
hN

−1
hN

+ C

u1

u2

...
uN

uN+1

 = f
2

h1 + Cα
h1 + h2

...
hN−1 + hN

hN + Cβ

1https://www.rocq.inria.fr/modulef/english.html

31

https://www.rocq.inria.fr/modulef/english.html

Toward Synthesis of Gaussian Elimination Algorithm Djehaf et al.

where C is a large penalization value in order to take into account the boundary conditions at
x = 0 and x = 1.

In such type of problem, it is well known that the previous linear system is ill-conditioned
and the condition number of the matrix is related to the max1≤i≤N{ 1

hi
}. For this reason, it is

an interesting example to test the Gauss Pivoting algorithm developed in Section 3. For our
experiment, we considered that f = −20N/m2, max1≤i≤N{ 1

hi
} = 106, the penalization value

C = 106 and that the beam is fixed on its extremities (α = β = 0). First we created different
linear systems of size 4 6 N 6 40. Then, we calculated the solution of each system by the
synthesized Gauss pivoting (SGPM) program given by our tool Rock-N-Roll: xSGPM and by
a classical Gauss pivoting method (CGPM) program: xCGPM .

0.0000001

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

1.0000000

10.0000000

100.0000000

	5 	10 	15 	20 	25 	30 	35 	40

||A
*x
	-	
b|
|/|
|b
||

Matrix	Size

SGPM
CGPM

Figure 7: Comportment of the relative errors of the solutions for different sizes.

Finally, in order to highlight the differences between solutions, we compute and display in

Figures 7 and 8 the relative error RelErr(x) =
‖A ∗ x− b‖2
‖b‖2

of each solution ones with increas-

ing the condition number and keeping the size constant and conversely. We can observe a sig-
nificant difference between the curves corresponding to RelErr(xSGPM) and RelErr(xCGPM),
which are calculated with xSGPM and xCGPM respectively. We see that the difference in
accuracy between the results of the two methods is of the order of 5× 10−6 on average.

We can also see that the increase of the error is more regular and smoother with the solution
calculated by the program generated by Rock-N-Roll in both of the condition number and the
matrix size figures.

For execution time measurements, all the programs have been written in the C language
and compiled with GCC 4.9.2-03, and executed on Intel Core i7 in IEEE754 single precision
in order to emphasize the effect of the finite precision. The results displayed in Figure 9 show
that by synthesizing Gauss pivoting code, we improve not only its accuracy but we reduce
its execution time too. This is mainly due to the fact that the systems comingfrom from
our mechanical problem are sparse and that is the case, Rock-N-Roll is able to simplify the
computation and to remove all the zero terms. For instance, in the examples of Section ?? some
zero terms have been removed in the expression of x2 and B4 otherwise we would have a far more
larger expression. The program synthesized by Rock-N-Roll contains far less computations
than the original one.

32

Toward Synthesis of Gaussian Elimination Algorithm Djehaf et al.

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

100.000000

	10 	100 	1000 	10000 	100000 	1x106 	1x107 	1x108

||A
*x
	-	
b|
|/|
|b
||

Condition	Number

SGPM
CGPM

Figure 8: Comportment of the relative errors of the solutions for different condition numbers.

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0.8

	0.9

	5 	10 	15 	20 	25 	30 	35 	40

Ti
m
e/
s

Matrix	Size

SGPM
CGPM

Figure 9: Execution time measurements of SGPM-program generated by RNR and
CGPM-program

4.2 A frictional contact problem with a moving foundation

In this second example, we consider a non-trivial problem which describes the sliding contact
of a 2D viscoelastic body against a moving foundation. Without going into details, we can say
that the problem is discretized by combining the finite difference method and the finite element
method for the time interval and the space domain, for more details about the discretization, we
can refer to [13, 19]. Since frictional contact conditions are considered, the problem is non-linear
and a Newton type method can be used to linearize it. Then, the resulting linearized problems
are ill-conditioned and have to be solved by a robust and accurate numerical algorithm. For this
reason, the linearized subproblems obtained at each Newton iterations are solved by the Gauss
Pivoting algorithm developed in Section 3 and compared to the classical one. As for the first

33

Toward Synthesis of Gaussian Elimination Algorithm Djehaf et al.

example, it is obvious that other methods of resolution (as preconditioned gradient conjugate
for instance) can be used to solve such kind of systems. In this problem, the ill-conditioning
comes from the frictional contact conditions that leads to large terms in the linearized systems
related to the numerical treatment (augmented Lagrangian method and penalization method)
of these non-smooth and non linear boundary conditions.

Ω deformable body

Γ1

f
2

Γ
3

contact interface

x
2

x1

��

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

Γ2

g

v*

crust

moving foundation

asperities

rigid
material

Figure 10: Physical setting of the sliding frictional contact problem.

moving foundation

v*v*

moving foundation

Figure 11: Deformed meshes with respect to two opposite velocity of the moving foundation.

The physical setting used for this problem is depicted in Figure 10. Here, we consider the
frictional contact between a deformable body and a moving foundation. This specific foundation
is composed by a rigid material covered by a thin crust and a deformable layer of asperities of
depth g. Here g represents the maximum value of the allowed penetration in the foundation.
When this value of penetration is reached, the contact follows a unilateral condition without
any additional penetration. Since the foundation is moving, the friction condition is in a slip
status within the Coulomb’s form. The deformable body is a rectangle, Ω = (0, 2)×(0, 1) ⊂ R2,
and its boundary Γ is split as follows: Γ1 = ({0} × [0, 1]), Γ2 = ((0, 2)× {1}) ∪ ({2} × [0, 1)),
Γ3 = (0, 2] × {0}. The domain Ω represents the cross section of a three-dimensional linearly
viscoelastic body subjected to the action of tractions in such a way that a plane stress hypothesis
is assumed. On the part Γ1 the body is clamped and, therefore, the displacement field vanishes
there. Vertical compressions act on the part (0, 2) × {1} of the boundary Γ2 and the part
({2}×[0, 1)) is traction free. Constant vertical body forces are assumed to act on the viscoelastic

34

Toward Synthesis of Gaussian Elimination Algorithm Djehaf et al.

body. The body is in frictional contact with an obstacle on the part Γ3 of the boundary. For
the numerical simulations, all the data concerning the problem can be found in [4].

In Figure 11, we present the two deformed configurations of the body with respect to two
opposite velocity of the moving foundation.

For this second example, in order to illustrate the efficiency of the Rock-N-Roll tool we
consider the first linearized system generated during the last iteration of the Newton solver.
This linear system has the particularity to be non-symmetric due to the presence of friction
terms, and ill-conditioned because of the augmented Lagrangian approach for the treatment of
frictional contact conditions. (see [1, 4, 9, 13]).

0.0000001

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

1.0000000

10.0000000

	10 	100 	1000

||A
*x
	-	
b|
|/|
|b
||

Matrix	Size

SGPM
CGPM

Figure 12: Comportment of the relative errors of the solutions for different sizes.

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0.8

	10 	100 	1000

Ti
m
e	
in
	S
ec
on

ds

Matrix	Size

SGPM
CGPM

Figure 13: Execution time measurements of SGPM-program generated by RNR and
CGPM-program

In Figure 12 and Figure 13, the relative errors and execution times have been computed and

35

Toward Synthesis of Gaussian Elimination Algorithm Djehaf et al.

displayed, both for the CGPM-program and SGPM-program generated by our Rock-N-Roll

tool with respect to 9 different sizes. As for the first example, a significant difference between
the two methods is observed in favor of Rock-N-Roll. In Figure 12, we see that the difference
in accuracy is of order 10−2. The results displayed in Figure 13 show that the SGPM-program
generated by Rock-N-Roll is faster. We can see a 30% increase (for the resolution time) for
the CGPM whereas this increase is only 2% for the SGPM-program time implemented by our
synthesizer Rock-N-Roll.

5 Conclusion

In this article, we have introduced a synthesized Gauss pivoting method implemented in
Rock-N-Roll, an automatic synthesizer tool to improve the numerical accuracy of linear systems
resolution, specifically systems coming from mechanical problems. We have detailed its architec-
ture, and the different inputs and the outputs that it supports. We have tested Rock-N-Roll

across experimental results obtained on two examples coming from two different mechanical
problems with and without contact. The results obtained show the efficiency of our synthesized
Gauss pivoting method which improves the numerical accuracy of computations compared to
the classical Gauss pivoting method, so as the execution time. An interesting perspective con-
sists of extending our work to synthesize Gauss pivoting method on partitioned matrices and
also parallel. Furthermore, as prospect it would be interesting to add the Conjugated Gradient
and the double Conjugated Gradient methods to our Rock-N-Roll. Taking into account non
linear solvers as Newton type methods would be very challenging in the framework of numerical
accuracy.

References

[1] P. Alart and A. Curnier, A mixed formulation for frictional contact problems prone to Newton
like solution methods, Comput. Meth. Appl. Mech., Engrg. 92, 353-375, 1991.

[2] ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic. ANSI/IEEE, std 754-2008
edition, 2008.

[3] Atkinson, Kendell A. An introduction to numerical analysis (2nd ed.). John Wiley and Sons. ISBN
0-471-50023-2, 1998.

[4] M. Barboteu & Y. Souleiman, Numerical Analysis of a Sliding frictional contact problem with
Normal Compliance and Unilateral Contact, submitted to Mathematical Methods in the Applied
Sciences, Wiley.

[5] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Principles of Programming Languages,
pages 238–252. ACM Press, 1977.

[6] N. Damouche, M. Martel, and A. Chapoutot. Intra-procedural optimization of the numerical
accuracy of programs. In FMICS’15, volume 9128 of LNCS, pages 31–46. Springer, 2015.

[7] D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM
Computing Surveys, 23(1), Mar, 1991.

[8] Grossmann, Christian, Roos, Hans-G., Stynes, Martin. Numerical Treatment of Partial Differential
Equations. Springer. ISBN 978-3-540-71584-9, 2007.

[9] J. Haslinger and I. Hlavácek, Numerical Methods for Unilateral Problems in Solid Mechanics,
in Handbook of Numerical Analysis, J.-L. Lions and P. Ciarlet, eds., Vol IV, North-Holland,
Amsterdam, 313–485, 1996.

36

Toward Synthesis of Gaussian Elimination Algorithm Djehaf et al.

[10] A. Ioualalen and M. Martel. A new abstract domain for the representation of mathematically
equivalent expressions. In SAS’12, volume 7460 of LNCS, pages 75–93. Springer, 2012.

[11] T. JR. Hughes, The finite element method, Prentice Hall, 1987.

[12] N. Kikuchi, Finite element methods in Mechanics, Cambridge, 1986.

[13] T. Laursen, Computational Contact and Impact Mechanics, Springer, Berlin, 2002.

[14] M. Martel. Semantics of roundoff error propagation in finite precision calculations. Higher-Order
and Symbolic Computation, 19(1):7–30, 2006.

[15] Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improving accuracy
for floating point expressions. In: PLDI. pp. 1–11. ACM, 2015.

[16] Saad, Yousef. Iterative methods for sparse linear systems (2nd ed.). Philadelphia, Pa.: Society for
Industrial and Applied Mathematics. p. 195. ISBN 978-0-89871-534-7, 2003.

[17] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical
Society Lecture Note Series 398, Cambridge University Press, Cambridge, 2012.

[18] M. Sofonea & Y. Souleiman, A Viscoelastic Sliding Contact Problem with Normal Compliance,
Unilateral Constraint and Memory Term, Mediterranean Journal of Mathematics. 13, 2863–2886,
2016.

[19] P. Wriggers, Computational Contact Mechanics, Wiley, Chichester, 2002.

37

	Introduction
	Program Transformation and Code Synthesis
	IEEE Standard 754 for Floating-Point Arithmetic
	Error Bound Computation
	Program Transformation for Numerical Accuracy
	Code synthesis

	The Rock-N-Roll tool
	Architecture

	Numerical experimentations
	Flexion of a beam
	A frictional contact problem with a moving foundation

	Conclusion

