
Polymorphic+Typeclass Superposition

Daniel Wand

Max-Planck-Institut für Informatik, Saarbruecken, DE.
dwand@mpi-inf.mpg.de

http://www.mpi-inf.mpg.de/~dwand/paar14/

Abstract

We present an extension of superposition that natively handles a polymorphic type sys-
tem extended with type classes, thus eliminating the need for type encodings when used
by an interactive theorem prover like Isabelle/HOL. We describe syntax, typing rules,
semantics, the polymorphic superposition calculus and an evaluation on a problem set
that is generated from Isabelle/HOL theories. Our evaluation shows that native polymor-
phic+typeclass performance compares favorably to monomorphisation, a highly efficient
but incomplete way of dealing with polymorphism.

1 Introduction

Polymorphism is a prevalent feature in interactive theorem proving and functional program-
ming. There is extensive research in encoding polymorphism into untyped or monomorphic
form (e.g. [5, 9, 10]), in an effort to be able to use ATPs on polymorphic problems. De-
spite of this there are few automated theorem provers (ATPs) capable of natively supporting
polymorphism. We are only aware of the SMT solver Alt-Ergo[8].

Superposition and SMT based provers, even without supporting polymorphism, are success-
ful in discharging goals arising in interactive theorem proving; [4] reports combined success rates
of 60% on a set of Isabelle/HOL theories. In this abstract we report on work to bring rank-1
polymorphism extended with type classes[15] to superposition. We used TFF1[6]’s polymorphic
semantic as a starting point for ours, and extended it with type classes. Our prototype imple-
mentation uses an extended version of SPASS’s input syntax, which allows utilizing additional
annotations described in [7].

2 Declarations

Notation We use f for function symbols, p for predicate symbols, t, s for terms, φ for formulas,
u for term variables, σ for substitutions, τ for types, κ for type constructors, α for type variables
and c for type classes, C for sets of type classes, n for type arity and m for term arity. We
write t[s]p to denote a term, which is t with the subterm at position p of t replaced by s.

Signature A polymorphic+typeclass first-order language signature is a tuple Σ = (F ,P,T ,T C)
There must be exactly one declaration per function and predicate symbol.

F The elements f : ∀α1 : C1 . . . αn : Cn.τ1 . . . τm → τ ∈ F are function declarations.
We use the syntax f< τf1 , . . . , τfn >(t1, . . . , tm), to write a function term, denoting the
appropriate instantiations of the αi by the corresponding type argument τfi and that of
τi by the term argument ti. With the declaration, the return type τ is derivable from this
representation.

P The elements p : ∀α1 : C1 . . . αn : Cn.τ1 . . . τm → oB ∈ P are predicate declarations.
Similar to functions we write p< τp1 , . . . , τpn >(t1, . . . , tm).

S.S̄chulz, L.D̄e Moura, B.K̄onev (eds.), PAAR-2014 (EPiC Series, vol. 31), pp. 105--119 105

http://www.mpi-inf.mpg.de/~dwand/paar14/

Polymorphic+Typeclass Superposition Daniel Wand

T The elements ∀α1 : C1 . . . αn : Cn . κ(αi, . . .) : c ∈ T are type declarations.
There must be at most one declaration per type constructor κ and c and at least one per κ.
κ must always have the same arity. In order to allow κs, that are not part of any (custom)
type class, there is the special type class ∅ that can be used in the required declaration
and represents no type class. All κ are part of this type class.

T C The elements c1 ⊆ c2 ∈ T C are subclass declarations.

Type terms Let Xτ be a given countably infinite set of type variables. All type terms are
recursively defined as:

• Every type variable in Xτ is a type term

• For all ∀α1 : C1 . . . αn : Cn . κ(αi, . . .) : c ∈ T let τ1,. . . ,τn be type terms then κ(τ1,. . . ,τn)
is also a type term

Terms Let Xt be a given countably infinite set of term variables. All, possibly ill-typed, terms
are recursively defined as:

• Every term variable in Xt is a term

• For all f : ∀α1 : C1 . . . αn : Cn.τ1 . . . τm → τ ∈ F let t1,. . . ,tm be terms and τ1,. . . ,τn be
type terms then f< τ1,. . . ,τn >(t1,. . . ,tm) is also a term.

Formulas All, possibly ill-typed, formulas are recursively defined as:

1. For all p : ∀α1 : C1 . . . αn : Cn.τ1 . . . τm → oB ∈ P let t1,. . . ,tm be terms and τ1,. . . ,τn be
type terms, then p< τ1,. . . ,τn >(t1,. . . ,tm) is a (atomic) formula.

2. Let t1, t2 be terms, then t1 ≈ t2 is a (atomic) formula.

3. Let φ1, φ2 be formulas, then φ1∧φ2, φ1∨φ2, φ1 ⇒ φ2, φ1 ⇔ φ2 and ¬φ1 are also formulas.

4. Let φ be a formula, u a fresh term variable and τ a type term, then ∀u:τ.φ and ∃u:τ.φ are
also formulas.

5. Let φ be a formula, α a fresh type variable and C an optional type class constraint (a set
of type classes written as c1&. . .&cn), then ∀typesα:C. φ is also a formula.

Note that both quantifiers in 4. range over term variables. The quantifier in 5. ranges over
type variables and its existential equivalent is not well typed, since existential types are not
supported by this formalization.

3 Syntax

We extended the monomorphic SPASS syntax to support our polymorphic+typeclass calculus.
We show here one simple example file and make the complete specification available on the
abstracts webpage. Every problem file must begin with, where example can be replaced by an
other string:

begin_problem(example).

Continuing with the preamble where additional information may be entered inbetween ∗ and ∗.

list_of_descriptions.

name({**}).

author({**}).

106

Polymorphic+Typeclass Superposition Daniel Wand

status(unknown).

description({**}).

end_of_list.

Next the used symbols must be defined with their arity. Where a single number describes the
term arity and where number1+number2 describes the type arity to be number1 and the term
arity to be number2.

list_of_symbols.

functions [(nil, 1+0), (cons, 1+2), (zero, 0), (s, 1), (plus, 2)].

predicates [(p1, 1+1),(p2, 2)].

types [(list, 1), nat].

classes [ordered,superordered].

end_of_list.

Now the declarations described in the previous section follow:

list_of_declarations.

function(nil, [A], list(A)).

function(cons,[A], (A, list(A)) list(A)).

function(zero, nat).

function(s, (nat) nat).

function(plus, (nat, nat) nat).

predicate(p1,[A:ordered], A,A).

predicate(p2, nat, nat).

type(nat, ordered).

type([A:superordered], list(A), superordered).

subclass(ordered, superordered).

end_of_list.

The set of axioms:

list_of_formulae(axioms).

formula(forall([X:nat],equal(plus(zero,X),X)), plus_zero).

formula(forall([X:nat,Y:nat],equal:lr(plus(s(X),Y),s(plus(X,Y)))), plus_s).

formula(forall_types([A],forall([X:A,Y:A],p1<A>(X,Y))), p1).

end_of_list.

And the conjecture:

list_of_formulae(conjectures).

formula(forall([X:nat],equal(plus(zero,X),X)), conjecture).

end_of_list.

4 Typing Rules

Let γTC represent a typing context, with T as mapping from term variables to types or to a
special value denoting “undefined” and C as mapping from type variables to a sets of type classes
or to “undefined”. All well-typedness assertions are implicitly relative to a given signature.

107

Polymorphic+Typeclass Superposition Daniel Wand

Type Classes Type classes represent sets of types. A set of type classes corresponds to the
intersection of the sets the individual type classes represent.

C ` τ :∅
(empty)

C ` α:C(α)
(type var)

∀α1 : C1 . . . αn : Cn. κ(αi, . . .) : c ∈ T C ` κ(αi, . . .)σ:C C ` α1σ:C1 . . . C ` αmσ:Cm

C ` κ(αi, . . .)σ:C] {c}
(κ)

c1 ⊆ c2 ∈ T C C ` τ :C] {c1}
C ` τσ:C] {c2}

(subclass)

Terms A term is well-typed, for a given γTC , if and only if a type can be derived by the
following rules:

γTC ` u : T (u)
(term var)

f : ∀α1 : C1 . . . αn : Cn.τ1 . . . τm → τ ∈ F γTC ` t1 : τ1σ . . . γTC ` tn : τnσ

γTC ` f < α1σ, . . . , αmσ > (t1, . . . , tn) : τσ
(function)

and for all i : 1..n. C ` αiσ : Ci

Formulas Without loss of generality this section assumes that all variables are named
uniquely. It further assumes that oB, o are types which do not match any type in the signature.
We use two different boolean type to fix the quantifier for types (∀types) to appear only on the
very top position in formulas.

γTC ` s : τ γTC ` t : τ

γTC ` s ≈ t : oB
(≈)

γTC ` φ1 : oB γTC ` φ2 : oB

γTC ` φ1 # φ2 : oB
(#∈{∧,∨,⇒,⇔})

γTC ` φ : oB

γTC ` ¬φ : oB
(¬)

p : ∀α1 : C1 . . . αn : Cn. τ1 . . . τm → oB ∈ P γTC ` t1 : τ1σ . . . γTC ` tn : τnσ

γTC ` p < α1σ, . . . , αmσ > (t1, . . . , tn) : oB
(predicate)

and for all i : 1..m. C ` αiσ : Ci

γ
T [u7→τ]
C ` φ : oB

γTC ` #u : τ. φ : oB
(#∈{∀,∃})

γTC ` φ : oB

γTC ` φ : o
(top)

γTC[α7→C] ` φ : o

γTC ` ∀typesα : C. φ : o
(∀types)

We call a formula φ well-typed if and only if one can derive starting from

γTC ` φ : o

a proof tree by applying the above rules with an empty γTC .

108

Polymorphic+Typeclass Superposition Daniel Wand

5 Semantic

Structure Given a polymorphic+typeclass first-order language signature the polymor-
phic+typeclass first-order language structure is a tuple Σ = (U ,D,I)

U The (non-empty) universe.

D The (non-empty) domains representing (non-empty) types (subsets of U).

I The interpretation function

We denote the interpretation of a well typed {formula,term,type,typeclass} t as JtKIθ,ξ
1.

Where θ is a mapping from type variables to elements of D and ξ is a mapping from term
variables to elements of U . We write θ[α 7→ τ] (respectively ξ[u 7→ e]) to represent a new
mapping which is identical to θ (ξ) but maps α to τ (u to e). To interpret a (non-sub) formula,
θ and ξ are set to be empty.

Types JαKIθ ::= θ(α)
Jκ(τ1, . . . , τn)KIθ ::= κI(Jτ1KIθ , . . . , JτnK

I
θ)

Term JuKIθ,ξ ::= ξ(u)

Jf<τ1, . . . , τn>(t1, . . . , tm)KIθ,ξ ::=

fI<Jτ1KIθ , . . . , JτnK
I
θ>(Jt1KIθ,ξ, . . . , JtmKIθ,ξ)

Formulas Jp<τ1, . . . , τn>(t1, . . . , tm)KIθ,ξ ::=

pI<Jτ1KIθ , . . . , JτnK
I
θ>(Jt1KIθ,ξ, . . . , JtmKIθ,ξ)

Js ≈ tKIθ,ξ ::= JsKIθ,ξ ≈I JtKIθ,ξ
Js ∧ tKIθ,ξ ::= JsKIθ,ξ ∧I JtKIθ,ξ
Js ∨ tKIθ,ξ ::= JsKIθ,ξ ∨I JtKIθ,ξ
Js⇒ tKIθ,ξ ::= JsKIθ,ξ ⇒I JtKIθ,ξ
Js⇔ tKIθ,ξ ::= JsKIθ,ξ ⇔I JtKIθ,ξ
J¬tKIθ,ξ ::= ¬IJtKIθ,ξ
J∀u : τ.ψKIθ,ξ ::= ∀Ie ∈ JτKIθ .JψKIθ,ξ[u→e]
J∃u : τ.ψKIθ,ξ ::= ∃Ie ∈ JτKIθ .JψKIθ,ξ[u→e]
J∀typesα : C.ψKIθ,ξ ::= ∀Itypesτ ∈ JCKI .JψKIθ[α 7→τ],ξ

Type Class J∅KI ::= D
JCKI ::=

⋂
c∈CJcKI

JcKI ::= least fix point of rules 1 and 2

Type Class Fix point

1. For all declarations ∀α1:C1, . . . , αn:Cn.τ :c ∈ T require that all valid instantiations of τ ’s
type variables are also of τ ’s type class c:

(
∧

1≤i≤n τi ∈ JCiKI) ⇒ (. . . , αi 7→ τi, . . .)(τ) ∈ JcKI

2. For all declarations c1 ⊆ c2 ∈ T C require that if a type term τ is element of the subclass
c1 then τ is also element of the superclass c2.

1ξ is not needed for interpretation of types. θ, ξ are not needed for interpretation of type classes.

109

Polymorphic+Typeclass Superposition Daniel Wand

τ ∈ Jc1KI ⇒ τ ∈ Jc2KI

Following from Tarski’s fix point theorem the rules 1 and 2 have a least fix point.

6 Typed Superposition

Preprocessing Initially formulas are transformed into Clause Normal Form[2] (CNF). This is
unaffected by the type system, except for skolemization. Skolemization has to add correspond-
ing type declarations into T . The necessary declarations are obvious, the existential variables’
type becomes the Skolem function’s return type and its argument types are the types of the
universal variables, whose scope includes the existential variable.
Since we only have universally quantified variables in CNF, we omit all quantifiers and anno-
tate variables(u) with their type(τ) and write u{τ} to express that u is of type τ . Functions
and predicates2 are represented by their return type and their argument terms and ‘true’ types
arguments. In detail:

f < τα1 , . . . , ταn > (t1, . . . , tm)
is represented by

f{τr, ταi
, . . . }(t1, . . . , tm)

where ∀α1 : C1 . . . αn : Cn.τ1 . . . τm → τ ∈ F is f’s declaration. τr is defined to be τ in-
stantiated by the substitution σ such that for all j in 1..n: αjσ is τaj and for all j in 1..m: the
type of tj is τjσ. The ταi are of those i whose αi does not occur in τ and not in any j in 1..m:
τj (and are ordered increasing in i). This is useful to e.g. have polymorphic unary predicates.
Clearly both representation, together with F or P, provide the same information.

The advantage of the second form is that it requires no lookup of F and P to perform
unification between variables and functions.

Substitutions Let σ be a mapping X → TΣ(X) which maps term variables to terms and
type variables to type terms. We write substitutions as (u1 7→ t1, . . . , α1 7→ τ1 . . .) and instead
of σ(x) we also write xσ. We define σ[u1 7→ t1] to be t1 for u1 and for all other variables u to
be uσ (correspondingly for α). We define the application of σ on terms as follows:

f{τ}(t1, . . . , tm)σ ::= f{τσ}(t1σ, . . . , tmσ)
and on type terms as:

κ(τ1, . . . , τn)σ ::= κ(τ1σ, . . . , τnσ)
We call a substitution σ grounding for a given term t if tσ contains no variables; a unifier of
the terms t1 and t2 if t1σ ≈ t2σ; more general than σ2 if for all terms t there exists σ1 such
that tσσ1 ≈ tσ2 and a most general unifier if it is more general than all other unifiers.

Unification We now give the unification rules for terms; starting with non-variable terms:
Note that preprocessing has simplified unification for functions and predicates.

1 f{τl}(tl1 , . . . , tlm)
.
= f{τr}(tr1 , . . . , trm), E ⇒ τl

.
= τr, tl1

.
= tr1 , . . . , tlm

.
= trm ,E

2 p(tl1 , . . . , tlm)
.
= p(tr1 , . . . , trm), E ⇒ tl1

.
= tr1 , . . . , tlm

.
= trm ,E

3 κ(τ1l
, . . . , τnl

)
.
= κ(τ1r

, . . . , τnr
), E ⇒ τl

.
= τl1

.
= τr1 , . . . , tln

.
= trn ,E

for term variables:

2We use the same transformation for predicates, but omit the return type.

110

Polymorphic+Typeclass Superposition Daniel Wand

4 t
.
= u, E ⇒ u

.
= t,E t non-variable

5 u{τu}
.
= t{τt}, E ⇒ u{τu} = t{τt}, τu

.
= τt,(u{τu} 7→ t{τt})(E) u 6∈ vars(t)

6 ul{τl}
.
= ur{τr}, E ⇒ ul{τl} = ur{τr}, τl

.
= τr,(ul{τl} 7→ ur{τr})(E)

for type variables:

7 α1{C1}
.
= α2{C2}, E ⇒ C3 = C1 ∪ C2, α1{C1} = α3{C3}, α2{C1} = α3{C3},

(α1{C1} 7→ α3{C3}, α2{C1} 7→ α3{C3})(E)
α3 fresh and C3 pop.

8 α1{C}
.
= τ , E ⇒ α1{C} = τσ,(σ[α1{C} 7→ τσ])(E)

σ mgsτ,C

Where vars(t) is the set of all variables that are t or subterms of t. A variable is fresh if
it was not previously used anywhere. C pop. tests if C is populated, meaning that it has at
least one type constructor which can construct all type classes c ∈ C. A substitution σ is the
most general substitution (mgsτ,C) of τ and C if for all σ2 exists a σ3 such that if τσ2 is a
member of C (according to T) then σ2 = σσ3. This has no effect on ground type terms and
will only restrict type variables’ type classes constraint, since restricting a type variable is more
general than instantiating it3.

Two terms t and s are unifiable if and only if t
.
= s can be transformed by the above rules

into a set of equations not containing
.
=. The most general unifier4 can be derived from the

resulting equations.

Typed Knuth-Bendix Order The Knuth-Bendix Order (KBO) is a widely used order in
superposition based provers. Based on the presentation in [1, p. 124] we extend the standard
KBO to our typed setting, we claim that it is still a simplification order:
Let wf be a function that maps function symbols to positive numbers, w its extension to terms
and >f be an ordering on function symbols. We define s �KBO t to hold if and only if:

1. For all term variables u: |s|u ≥ |t|u and w(s) > w(t), or

2. For all term variables u: |s|u ≥ |t|u and w(s) = w(t), and one of the following:

(a) There exists a unary function symbol f , a variable u and a positive integer n such
that s = (f{τ})n(u) and t = u

(b) There exists functions symbols f , g such that f >f g and
s = f{τ}(s1, . . . , sn) and t = g{τ}(t1, . . . , tn)

(c) There exists a function symbol f and an index i, 1 ≤ i ≤ n, such that s =
f{τ}(s1, . . . , sn), t = f{τ}(t1, . . . , tn) and s1 =Term t1, . . . , si−1 =Term ti−1 and
si �KBO ti

(d) s �τ t
And the following definitions:

• τs �τ τt iff there exists a σ such that τsσ 6= τs and τsσ = τt

• s �τ t iff there exists a function symbol f such that s = f{τs}(s1, . . . , sn),
t = f{τt}(t1, . . . , tn), s1 =Term t1, . . . , sn =Term tn, s1 �τ t1, . . . , sn �τ tn

and
τs �τ τt or (τs = τt and there exists an index i, 1 ≤ i ≤ m, such that si �τ ti)

3Except in the corner case, where restricting the type variable and instantiating it, represents the same type
terms.

4The most general unifier is unique, which we will not show here.

111

Polymorphic+Typeclass Superposition Daniel Wand

• =Term to be equality but only considering non-type (sub)terms.

In its presented form, �KBO allows ordering of terms with same type and additionally if the
non-type terms are equal, more generally typed terms are smaller than stricter typed terms.
One could further relax 2a, 2b and 2c to more general types, similar to �τ , but might have to
also consider subterms’ type terms.

Inferences’ Side Conditions The following side conditions are used in the inference rules
below. Let ≺ be a fixed simplification order[1].

1. σ is the most general unifier of s and s2

2. σ is the most general unifier of s and s′

3. s2 is not a term variable

4. tσ 6� t′σ

5. sσ 6� s′σ

6. (t ≈ t′)σ strictly maximal in (D′ ∨ t ≈ t′)σ, nothing selected

7. (s ≈ s′)σ strictly maximal in (C ′ ∨ s ≈ s′)σ, nothing selected

8. ((s 6≈ s′)σ maximal in (C ′ ∨ s ≈ s′)σ, nothing selected) ∨ s 6≈ s′ selected

9. D′ ∨ t ≈ t′ 6� C ′ ∨ s[s2]p . . . s′

10. (s ≈ t)σ maximal in (C ′ ∨ s′ ≈ t′ ∨ s ≈ t)σ, nothing selected

Inferences We take the superposition calculus of [3] and sketch that it still refutationally
complete in our typed setting.

1. Positive Superposition (PSup) with side conditions 1, 3, 4, 5, 6, 7 and 9

D′ ∨ t ≈ t′ C ′ ∨ s[s2]p ≈ s′

(D′ ∨ C ′ ∨ s[t′]p ≈ s′)σ
(PSup)

2. Negative Superposition (NSup) with side conditions 1, 3, 4, 5, 6, 8 and 9

D′ ∨ t ≈ t′ C ′ ∨ s[s2]p 6≈ s′

(D′ ∨ C ′ ∨ s[t′]p 6≈ s′)σ
(NSup)

3. Equality Resolution (ER) with side conditions 2 and 8

C ′ ∨ s 6≈ s′

C ′σ
(ER)

4. Equality Factoring (EF) with side conditions 2, 10, s′σ 6� t′σ and sσ 6� tσ,

C ′ ∨ s′ ≈ t′ ∨ s ≈ t
(C ′ ∨ s′ ≈ t′ ∨ t 6≈ t′)σ

(EF)

112

Polymorphic+Typeclass Superposition Daniel Wand

Refutational Completeness Sketch In order to show refutational completeness of typed
superposition, two main theorems have to be proven. First the inference rules have to be
shown well-typedness preserving. This is already sufficient to prove the ground version refu-
tational complete. Then new versions of the lifting lemmas have to be shown. The remaining
completeness proof is essentially unchanged.
Lemma 1 Well typedness is determined only by the well typedness of the argument and the
typing rule of the construct.
Lemma 2 For all well typed terms t1, t2, t3 and substitutions σ, if σ is the most general unifier
of t2 and t3 then t1σ is well typed.
Lemma 3 If t ≈ t′ then the type of t and t′ is identical.
Lemma 4 For each inference if the premises are well typed so is the conclusion.
Proof Sketch

Equality Resolution : By Lemma 2.
Equality Factoring : By Lemma 3 sσ, tσ and t′σ all have the common type τ .

Thus the equations from the conclusion are also well-typed.
C ′σ is well typed by Lemma 2.

Superposition : By Lemma 3 tσ and t′σ have the common type τ .
Thus by Lemma 1 they can be used interchangeably.
C ′σ and D′σ are well typed by Lemma 2.

Lemma 5 If there exists a σ such that t1σ ≈ t2σ then there exists a (unique up to renaming)
most general unifier.

The completeness of typed ground superposition now follows from the completeness proof
for untyped superposition given in [3]. To show the lifting, we need to show for each inference
that if σ is a grounding substitution, then every inference from Cσ5 is an ground instance of
an inference of C. After that the model construction lemma and the remaining completeness
proof can be reused without further changes.

Redundancy Criteria Since we reused most of the original completeness proof also the
redundancy criteria holds. Thus all commonly used reductions can be also used in the typed
superposition calculus.

7 Implementation

We have implemented a prototype of the above calculus from scratch in Scala. Unification is
implemented with the help of unification contexts, with separate contexts for term variables and
type variables. Additionally we implemented several of the reductions described in [14]; namely
we have implemented Subsumption Deletion, Trivial Literal Elimination, Condensation, Unit
Rewriting and Assignment Equality Deletion, as well as simple forms of Merging Replacement
Resolution (MRR) and Tautology Elimination. We implement sharing, by keeping term and
type variable numbers separate (and normalizing them), the number of distinct type terms is
usually low. We use a worked-off/usable style main loop and fully reduce both sets. Indexing is
implemented as a combination of a naive implementation of Substitution Trees[11] and Feature
Vector Indexing[13].

Overall the implementation is reasonable, but not expected to be remotely competitive to
an efficient C implementation featuring more advanced reduction techniques, such as full MRR

5And Dσ for superposition, where C and D do not share variables

113

Polymorphic+Typeclass Superposition Daniel Wand

and Splitting. A web interface is available from the abstract’s web page.

7.1 Specifics of the Polymorphic+Typeclass implementation

In this section we describe the implementation necessary to specifically support Polymor-
phic+Typeclass superposition. We were able to keep the implementation of the inferences
and reductions completely without any type-system related code, since the generic interfaces
for indexing, unification and substitution take care of the type-system handling.

Start up We have extended the syntax, where the changes to the untyped settings are re-
stricted to the additional information to be parsed. We also save all declarations, which are
used for type-class unification and for assertions that ensure well-typedness throughout our pro-
totype. CNF generation is also mostly unchanged. Only skolemization has to create adequate
type declarations, which can be easily derived from the generated term.

Datastructures We use algebraic datastructures to encode literals, terms and type terms
in the processed form described in the beginning of section 6. Clauses are unchanged by the
type-system.

Assertions Our prototype is a relatively new piece of software which we use to experiment
with. To ensure that the implementation does what we expect from it we employ Scala’s
assertions. We employ over 300 distinct assertions, checking various properties such as: Well
typed-ness, correctness of unifiers, assumptions on term sharing. We also ensure more complex
properties such as that clauses are not lost from our Worked Off / Usable sets by tracking all
reductions and inferences and tracing them to the input clause set.

Sharing Sharing can be easily extended to also share type-terms. We use a hash map based
sharing and literals, terms and type terms are are only created by the sharing.

Indexing For indexing we treat typed terms as untyped terms, the indexing “pretends”
that type terms are just normal first-order terms. This yields all valid unifications and some
unifications which are not well-typed, in particular since the indexing ignores type-classes.
Therefore all unifications are verified before they are used. For Feature Vector indexing, the
original untyped variant can also be used, and types can be treated as an additional feature.
We have not noticed any further changes to be required. We are thus able to reuse existing
datastructures almost unchanged, by adding post indexing unification checks, which verify the
well-typedness.

Unification Unification is where most of the type-system related changes can be contained
to. It is a straight forward implementation of the previously described unification algorithm.
We have also implemented it to check/generate instantiations and renamings.

8 Evaluation

Setup We have evaluated our prototype on problems generated by Sledgehammer[4] from
Isabelle/HOL theories, of areas as diverse as the fundamental theorem of algebra, the com-

114

http://www.mpi-inf.mpg.de/~dwand/paar14/index.html#webprover

Polymorphic+Typeclass Superposition Daniel Wand

pleteness of Hoare logic and the type soundness of a subset of Java6. The 5797 problems were
tested on 4 different type encodings, at 4 different fact sizes (16, 64, 256 and 1024 axioms) with
2 hours of runtime on one HyperThread of an 2xIntel Xeon E5620 with a JVM heap size of 1
GB.

The type encodings are:

Poly Tags Encoding polymorphism into untyped first-order with the help of special
typing function symbols (see [5, p. 9]). According to [7, p. 11,12] this is
a more efficient encoding than guard predicates for polymorphism.

Monomorph An incomplete encoding of polymorphism by picking relevant monomor-
phic instances (see [9]). According to [7, p. 11,12] currently the most
efficient encoding.

Poly Native Using native polymorphism but encoding type classes as predicates.

Type Classes Using native polymorphism with its type classes.

Comparison to SPASS For reference we have compared the performance of our prototype
at 256 axioms and Mono and Poly Tags encodings with the performance of a SPASS version
specifically optimized for Isabelle/HOL[7]. SPASS is significantly faster than our prototype.
Our tool can derive 75% (208 vs. 277) of SPASS’s Monomorph proof count and 74% (162
vs. 219) of its Poly Tags proof count. Since our tool exhibits similar relative performance on
the encodings that SPASS supports, we believe that our results will also carry over to efficient
implementations.

Impact of the axioms The fewer axioms a problem has the easier it is, since fewer axioms
mean fewer clauses and thus fewer possible inferences. It is often possible to quickly find
saturations for 16 axioms, but seldom for the bigger axiom sizes. The more axioms a problem
has the more likely it is that the relevant axioms for the proof are included. These observations
are usually exploited by running a portfolio of different settings (slices). E.g. as the first slice
with 16 axioms and a short timeout, followed by a larger axiom set since with longer timeout.
Our evaluation will focus on a single slice, because here we are only interested in how well the
different type encodings perform. In particular how well a type encoding handles additional
axioms, e.g. how well it scales.

Scalability of type encodings Figure 1 shows the success rate and scalability of the tested
encodings. Where the X axis denotes the number of axioms, and the Y axis the percentage of
problems proved, in a single run of up to 2 hours. For all encodings, the most successful axiom
set size tested is 256 axioms. The Poly Tags encoding performs worst. For all axiom sizes it
solves fewer problems then the native encodings. Its performance also deteriorates the most
when increasing the axiom set from 256 axioms to 1024, resulting in a drop of the success rate
of 8 percentage points. The Monomorph and the Type Classes encoding both only suffer a drop
of 3 percentage points.

6We evaluated on Arr, FFT, FTA, Hoa, Jin, Lam and NS see [4] for details
7Our original set had 694 problems, but 115 had to be excluded because they were missing typing information.

115

Polymorphic+Typeclass Superposition Daniel Wand

0 200 400 600 800 1000
0

10

20

30

Number of axioms

S
u
cc

es
s

ra
te

(%
)

Poly Tags

Poly Native

Monomorphic

Type Classes

Figure 1: Success rate and scalability of each type encoding

Overall the Monomorph encoding performs best. It is closely followed by the Type Classes
encoding which at worst (64 axioms) solves 96.8% of the problems that Monomorph solves.
Type Classes and Monomorph are almost identical on the other axiom set sizes.

Speed For small problems the Type Classes encoding is slower than the Monomorph encoding.
This can also be seen in figure 4; two scatter plots in which the logarithmic Monomorph runtime
is on the Y-axis and the logarithmic Type Classes runtime is on the X-axis. For 16 axioms (left)
almost all results are in the lower right half, signifying that Monomorph is faster: a runtime of
∅3.7s versus ∅2.0s (on 137 problems both solve).

8.1 Detailed Evaluation

As can be seen in Fig. 1 the most successful axiom set size, for all encodings, is 256 axioms.
Thus we will now focus on this to provide a more detailed evaluation of the encoding.
The following table provides the number of proofs an the average time it took to find them:

Encoding Proofs Average Time
Monomorph 208 384s
Type Classes 207 137s
Poly Native 192 133s
Poly Tags 162 115s

Poly Tags has the fewest proofs and even though it has the lowest average runtime it is
actually the slowest if we compare it to the other encodings only on the problems both solve.
Its solutions overlap with Type classes on 154 proofs. On those Poly Tags’ average runtime
is ∅119s, whereas Type Classes’ average runtime is only ∅20s. The other encodings are also
faster, the overlap with Monomorph is also 154 proofs, where Poly Tags’ average runtime is
∅118s and Monomorph’s average runtime is ∅80s. The overlap with Monomorph is also 154
proofs, where Poly Tags’ average runtime is ∅108s and Poly Native’s average runtime is ∅29s.

Below we show a scatter plot comparing the runtime of Poly Tags and Type Classes. The X
axis is the logarithmic runtime of Type Classes and the Y axis the logarithmic runtime of Poly
Tags. The results cluster in the upper-left half, again showing that Type Classes is faster.

Poly Native has similarly to Poly Tags fewer proofs and a lower average runtime than Type
Classes and Monomorph. Poly Native is actually faster, but less successful. Its solutions overlap

116

Polymorphic+Typeclass Superposition Daniel Wand

100 101 102 103 104

100

101

102

103

104

Type Class’ runtime (s)
256 axioms

P
o
ly

T
a
gs

’
ru

n
ti

m
e

(s
)

Figure 2: Runtime of Poly Tags encoding versus native Type Classes.

with Type classes on 184 proofs. On those Poly Native’s average runtime is ∅78s, whereas Type
Classes’ average runtime is ∅122s. The overlap with Monomorph is on 179 proofs, where Poly
Native’s average runtime is ∅102s and Monomorph’s average runtime is ∅239s. Below we show
again a scatter plot, comparing the runtime of Poly Native and Type Classes. Note that the
average runtime is dominated by the long running proofs in the upper right corner. For the
faster proofs (up to 100s runtime) Type Classes is actually slightly faster. We believe that this
shows that on some problems the possible advantages of native type classes do not compensate
their overhead during unification. The advantages start to show on the larger (e.g. 1024) axiom
sizes. Here Type Classes’ average runtime is ∅195s and Poly Native’s average runtime is ∅248s
on 193 proofs they both find.

100 101 102 103 104

100

101

102

103

104

Type Class’ runtime (s)
256 axioms

P
o
ly

N
a
ti

ve
’s

ru
n
ti

m
e

(s
)

100 101 102 103 104

100

101

102

103

104

Type Class’ runtime (s)
1024 axioms

P
o
ly

N
a
ti

ve
’s

ru
n
ti

m
e

(s
)

Figure 3: Runtime of Poly Native encoding versus native Type Classes with two different axiom
set sizes, on the left with 256 axioms and on the right with 1024 axioms.

117

Polymorphic+Typeclass Superposition Daniel Wand

Monomorph and Type Classes find a similar amount of proofs with Type Classes having
a lower average total runtime. They overlap on 193 proofs. On those Type Classes has an
average runtime of ∅85s and Monomorph an average runtime of ∅198s. It is also faster on
axiom set sizes of 1024, but initially it is not. For an axiom set size of 16, Monomorph is almost
uniformly faster. The overlap for 16 axioms is 140 proofs, where Monomorph has an average
runtime of ∅2s and Type Classes of ∅4s. We believe that in an efficient implementation both
most of the runtimes would be well below 1s (for a size of 16 axioms).

100 101 102

100

101

102

Type Class’ runtime (s)
16 axioms

M
o
n

o
m

o
rp

h
ic

’s
ru

n
ti

m
e

(s
)

100 101 102 103 104

100

101

102

103

104

Type Class’ runtime (s)
256 axioms

M
o
n

o
m

o
rp

h
ic

’s
ru

n
ti

m
e

(s
)

Figure 4: Runtime of Monomoprh encoding versus native Type Classes with two different axiom
set sizes, on the left with 16 axioms and on the right with 256 axioms.

9 Conclusion

We have presented a typed form of superposition with rank-1 polymorphism and type classes.
We have given its semantic; adapted substitution, unification and the commonly used KBO
ordering to our new setting. We have also presented an initial preprocessing step for functions
and predicates, that simplifies unification and lets us easily reuse existing indexing techniques.
We have implemented the calculus in a prototype and first results are encouraging. Even
though polymorphic encodings solve a harder problem, our evaluation shows that it they are
competitive with the monomorphic encoding; itself a highly efficient encoding. With increasing
number of axioms, the native polymorphic+typeclass runtime behavior performs best. We plan
to use the typed calculus as a basis to bring further features of interactive theorem proving to
the superposition calculus.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, New York,
NY, USA, 1998.

[2] M. Baaz, U. Egly, and A. Leitsch. Normal form transformations. In Robinson and Voronkov [12],
pages 273–333.

118

Polymorphic+Typeclass Superposition Daniel Wand

[3] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection and
simplification. J. Log. Comput., 4(3):217–247, 1994.

[4] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending sledgehammer with smt solvers. J.
Autom. Reasoning, 51(1):109–128, 2013.

[5] J. C. Blanchette, S. Böhme, A. Popescu, and N. Smallbone. Encoding monomorphic and poly-
morphic types. In N. Piterman and S. A. Smolka, editors, TACAS, volume 7795 of LNCS, pages
493–507. Springer, 2013.

[6] J. C. Blanchette and A. Paskevich. Tff1: The tptp typed first-order form with rank-1 polymor-
phism. In M. P. Bonacina, editor, CADE, volume 7898 of LNCS, pages 414–420. Springer, 2013.

[7] J. C. Blanchette, A. Popescu, D. Wand, and C. Weidenbach. More spass with isabelle. In
L. Beringer and A. Felty, editors, Interactive Theorem Proving, volume 7406 of LNCS, pages
345–360. Springer Berlin Heidelberg, 2012.

[8] F. Bobot, S. Conchon, E. Contejean, and S. Lescuyer. Implementing Polymorphism in SMT
solvers. In C. Barrett and L. de Moura, editors, SMT 2008: 6th International Workshop on
Satisfiability Modulo, volume 367 of ACM International Conference Proceedings Series, pages 1–5,
2008.

[9] F. Bobot and A. Paskevich. Expressing polymorphic types in a many-sorted language. In C. Tinelli
and V. Sofronie-Stokkermans, editors, FroCoS, volume 6989 of LNCS, pages 87–102. Springer,
2011.

[10] J.-F. Couchot and S. Lescuyer. Handling polymorphism in automated deduction. In F. Pfenning,
editor, CADE, volume 4603 of LNCS, pages 263–278. Springer, 2007.

[11] P. Graf. Substitution tree indexing. In J. Hsiang, editor, Rewriting Techniques and Applications,
volume 914 of LNCS, pages 117–131. Springer Berlin Heidelberg, 1995.

[12] J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press, 2001.

[13] S. Schulz. Simple and efficient clause subsumption with feature vector indexing. In M. Bonacina
and M. Stickel, editors, Automated Reasoning and Mathematics, volume 7788 of LNCS, pages
45–67. Springer Berlin Heidelberg, 2013.

[14] C. Weidenbach. Combining superposition, sorts and splitting. In Robinson and Voronkov [12],
pages 1965–2013.

[15] M. Wenzel. Type classes and overloading in higher-order logic. In E. L. Gunter and A. P. Felty,
editors, TPHOLs, volume 1275 of LNCS, pages 307–322. Springer, 1997.

119

	Introduction
	Declarations
	Syntax
	Typing Rules
	Semantic
	Typed Superposition
	Implementation
	Specifics of the Polymorphic+Typeclass implementation

	Evaluation
	Detailed Evaluation

	Conclusion

