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Abstract

The ability to detect and localise surgical tools using RGB cameras during robotic
assisted surgery can allow for the development of various implementations, such as vision-
based active constraints and refinements in robot path planning, which can ultimately
lead in improved patient safety during operation. For this purpose, the proposed network,
SimPS-Net capable of both detection and 3D pose estimation of standard surgical tools
using a single RGB camera, is introduced. In addition to the network, a novel dataset
generated for training and testing is presented. The proposed network achieved a mean
DICE coefficient of 85.0%, while also exhibiting a low average error of 5.5mm and 3.3◦ for
3D position and orientation respectively, thus outperforming the competing networks.

1 Introduction

Image-based detection and localisation of surgical tools has received significant attention due
to the development of relevant deep learning techniques, along with recent upgrades in compu-
tational capabilities [1]. Although not as accurate as optical trackers [2], image-based methods
are easy to deploy, and require no surgical tool redesign to accommodate trackable markers,
which could be beneficial when it comes to cheaper, “off-the-shelf” tools, such as scalpels and
scissors.

In the operating room however, these techniques suffer from drawbacks due to the presence
of highly reflective or featureless materials, but also occlusions, such as smoke and blood [3].
Additionally, most localisation networks focus on 2D pose estimation, which in itself cannot offer
any useful feedback when it comes to robotic surgery [4]. For 3D localisation, networks often
utilise tool 3D models (e.g. CAD data), not only for the purpose of point correspondence, but
also for pose regression [5]. The aforementioned “off-the-shelf” tools are scarcely accompanied
by such prior 3D structure data. Ultimately, in addition to the above hindrances, estimating
3D pose using a monocular camera setup, poses a challenge in itself due to the lack of depth
information. Considering these limitations, SimPS-Net, a network capable of both detection
and 3D pose estimation of standard surgical tools using a single RGB camera, is presented.

J.W. Giles (ed.), CAOS 2023 (EPiC Series in Health Sciences, vol. 6), pp. 90–93



SimPS-Net: Simultaneous Pose & Segmentation Network Souipas, Nguyen, Laws, Davies, Rodriguez

2 Methods and Materials

The majority of surgical tool datasets examine laparoscopic conditions, thus not involving any
of the aforementioned standard tools. Furthermore, there exists a lack of 3D pose labels across
these data. Hence, a novel dataset was generated, consisting of monocular RGB images, along
with the 3D pose values of the tools present within each frame, in order to train the network.
A total of 4 standard surgical tools were chosen, specifically a scalpel, an electric burr, a pair
of forceps and a pair of scissors. 5370 images were semantically annotated, with 4027 images
employed for training. The images were recorded whilst the tools were being used to operate
on a cadaveric knee, thus mimicking the conditions met in the operation room.

Images were collected using a RealSense D415 (Intel, USA). The camera was rigidly mounted
on the ftk500 optical tracker (Atracsys, Switzerland), which was utilised to obtain the 3D
position and orientation each detected tool. Upon extrinsic calibration, the pose of each tool
was converted to camera 3D coordinates, as demonstrated in Equations 1 and 2:
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∴ pcam = [R|t] pA (2)

In Equation 2, the extrinsic calibration matrix is denoted by [R|t], with pA and pcam being
tooltip coordinates in optical tracker and camera frame respectively. Similarly, 3D orientation
was obtained in camera coordinates. Furthermore, the employment of camera intrinsic infor-
mation allowed for the projection 3D poses on 2D images, thus enabling SimPS-Net to generate
inferences with pose visualisation, as shown in Figure 1.

The presented network is an expansion of Mask-RCNN [6], which incorporates two branches
capable of classification and semantic segmentation respectively. The expanded architecture
introduces a novel branch, capable of object 3D pose regression using the same RGB image as
the other branches, as demonstrated in Figure 1.

3D pose, p, has been characterised as the amalgamation of the position vector, x, and the
orientation vector θ. The latter is expressed in the form of quaternions. Equation 3 shows
how the true pose, ptrue, and predicted pose, ppred, are split into position and orientation and
hence used to construct the pose loss.

Figure 1: SimPS-Net Architecture
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L = α ∥xtrue, xpred∥2 + β ∥θtrue, θpred∥2 (3)

Relevant work has demonstrated that an orientation constant, β, can improve inference results.
[7]. Additionally, α has been incorporated to address the scale discrepancy between orientation
and position values.

3 Results

For testing purposes, 806 previously unseen images were utilised for detection and pose estima-
tion. Upon testing various permutations, the optimal constant values were determined to be
α = 700 and β = 300.

Detection success was quantified using the mean average precision (mPA) and mean DICE
coefficient (mDICE). Pose errors were quantified as the average error along each axis in mm for
position and degrees for orientation. Inference results are presented in Table 1 for SimPS-Net.
For comparison, three networks, namely PoseNet [7], ROPE [8], and GDR-Net [9], were trained
using the generated dataset, with testing results being also listed.

As noted in Table 1, the examined architecture achieves auspicious results, with each position
and orientation metric being lower or at least comparable to the state of the art. Conclusively,
the average positional and orientation errors were calculated as 5.5mm and 3.3◦ respectively.

Table 1: SimPS-Net Results Comparison against Literature

Source PoseNet [7] ROPE [8] GDR-Net [9] SimPSNet

mAP (%) NA 56.8 58.5 62.9

mDICE (%) NA 80.2 83.7 85

X (mm) 18.4 (11.6) 8.4 (3.5) 6.1 (5.2) 5.2 (4.5)

Y (mm) 18.6 (13.1) 11.4 (6.2) 5.0 (2.4) 4.0 (4.3)

Z (mm) 13.4 (9.2) 9.2 (5.2) 7.3 (3.4) 6.3 (6.0)

Pitch (deg) 2.3 (1.8) 3.2 (2.5) 2.6 (3.1) 2.4 (2.8)

Yaw (deg) 1.3 (1.0) 1.8 (2.1) 2.3 (2.6) 1.5 (1.5)

Roll (deg) 28.2 (28.2) 8.3 (16.2) 6.7 (10.7) 6.1 (37.3)

4 Discussion

Monocular methods for 3D pose estimation are scarce in the context of surgical tools. In the
proposed solution, 3D pose estimation is achieved without incorporating prior knowledge, such
as 3D structure or shape assumptions. Despite pose metrics not outperforming the capabilities
of optical trackers, the presented camera-based solution exhibits minimal footprint and high
ease of deployment, thus making it a suitable option for applications such as robot path planning
outside the body, where sub-milimiter accuracy is not a prerequisite. Additionally, the robust
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results of the network along the depth axis (Z) and the roll orientation suggest that SimPS-Net
is indeed suitable for 3D pose application.

Nevertheless, some areas require further investigation. With image occlusions being a sig-
nificant hindrance in the operating room, an occlusion handling method should be implemented
across the detection branch in order to improve relevant metrics. In addition, the novel dataset
should be expanded to include images with multiple tools within the same frame. Finally, by
employing improved hardware, the network could be deployed in real-time, thus allowing for the
development of a vision-based active constraint, which would allow for improved path planning
and obstacle avoidance during manipulation of a robotic platform.
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