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Abstract
This paper reports on the Hybrid Systems Theorem Proving (HSTP) category in the

ARCH-COMP Friendly Competition 2022. The characteristic features of the HSTP cate-
gory remain as in the previous editions [MST+18, MST+19, MMJ+20], it focuses on flexi-
bility of programming languages as structuring principles for hybrid systems, unambiguity
and precision of program semantics, and mathematical rigor of logical reasoning principles.
The benchmark set includes nonlinear and parametric continuous and hybrid systems and
hybrid games, each in three modes: fully automatic verification, semi-automatic verifica-
tion from proof hints, proof checking from scripted tactics. This instance of the competition
focuses on presenting the differences between the provers on a subset of the benchmark
examples.

1 Introduction
This report summarizes the experimental results of the Hybrid Systems Theorem Proving
(HSTP) category in the ARCH-COMP22 friendly competition, focusing on a feature comparison
between the participating theorem provers. Details on the benchmark sets and the evaluation
modes can be found in previous editions of the HSTP category [MST+18, MST+19, MMJ+20].
The 218 examples in the benchmark competition are grouped into the following categories:

• Hybrid systems design shapes: small-scale examples over a large variety of model shapes
to test for prover flexibility.

• Nonlinear continuous models: test for prover flexibility in terms of generating and proving
properties about continuous dynamics, based on [SMT+19, SMT+20].
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• Hybrid games: small-scale examples with adversary dynamics in differential dynamic
game logic.

• Hybrid systems case studies: hybrid systems models and specifications at scale to test for
application scalability and efficiency, based on [MGVP17].

• Hybrid systems from Simulink/Stateflow models: examples translated from Simulink/S-
tateflow models to verify.

In each of these categories, tools can select the degree of automation depending on their
focus in the spectrum from fast proof checking to full proof automation:
(A) Automated: hybrid systems models and specifications are the only input, proofs and

counterexamples are produced fully automatically.
(H) Hints: select proof hints (e.g., loop invariants) are provided as part of the specifications.
(S) Scripted: significant parts of the verification is done with dedicated problem-specific scripts

or tactics.
Benchmark examples in the hybrid systems design shapes, nonlinear continuous models, hy-
brid games and hybrid systems case study benchmarks are available at https://github.com/
LS-Lab/KeYmaeraX-projects/tree/master/benchmarks and specified in differential dynamic
logic (dL) [Pla08, Pla17]. Benchmark examples for HHLPy, including the Simulink/Stateflow
models and their translations to Hybrid CSP [ZWR95], are available at https://gitee.com/
bhzhan/mars/tree/master/hhlpy/examples/simulink. The participating tools are presented
in Section 3. An overview of the examples together with the findings from the competition is
given in Section 4.

2 Problem Format
Benchmarks in the hybrid systems design shapes, nonlinear continuous models, hybrid games
and hybrid systems case study benchmarks categories are written in differential dynamic logic
(dL) [Pla08, Pla17] which has axioms and an unambiguous semantics available [BRV+17] in
KeYmaera 3, KeYmaera X, Isabelle/HOL, and Coq. A tutorial on the modeling principles in
dL can be found in [QML+16], details on the ASCII syntax are in [MMJ+20]. Here, we list the
extensions over [FMBP17] to the scripting language that are introduced instances of the com-
petition. Benchmarks in the hybrid systems design shapes and nonlinear continuous models are
also translated to the HHLPy input language, along with the Simulink/Stateflow benchmarks.
In the second subsection, we describe the input language for HHLPy in the competition.

Scripting Language ASCII syntax. The KeYmaera X ASCII syntax is illustrated in the
example below, with tactics using position identifiers to refer to formulas and terms in a sequent.

The proof script language uses search locators, e.g., implyR(’R==...) in line 2 refers to a
formula in the alternatives to prove (right-hand side of the sequent turnstile), as opposed to
implyR(1), which refers to a fixed position in the sequent and is vulnerable to changes in formula
ordering in case automated tactics progress in proofs differently across prover versions. Tactics
can use marker # to refer to sub-formulas or terms: e.g., the locator simplify(’R=="x>=0
& #y+0#>=x") applies tactic simplify to term y+0. Branch labels (e.g., "Init" in line 4)
unambiguously identify on which of the branches to apply some tactic. The branch labels
themselves are created by tactics, e.g., tactic loop generate labels Init, Post, and Step in
lines 4, 6, and 8, respectively, while tactic andR generates labels according to the formula it was
applied to.

1 ArchiveEntry "Benchmark Example 1"
2
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3 Definitions /∗ definitions cannot change their value ∗/
4 Real A = 5; /∗ real−valued maximum acceleration defined to be 5 ∗/
5 Real b; /∗ real−valued braking, undefined so unknown value ∗/
6 Bool geq(Real x, Real y) <−> x>=y; /∗ predicate geq defined to be formula x>=y ∗/
7 HP drive ::= { /∗ program drive defined to choose either ∗/
8 ?v<=5; a:=A; /∗ maximum acceleration if slow enough ∗/
9 ++ a:=−b; /∗ or braking, nondeterministically ∗/

10 };
11 End.
12
13 ProgramVariables /∗ program variables may change their value over time ∗/
14 Real x; /∗ real−valued position ∗/
15 Real v; /∗ real−valued velocity ∗/
16 Real a; /∗ current acceleration chosen by controller ∗/
17 End.
18
19 Problem /∗ conjecture in differential dynamic logic ∗/
20 v>=0 & b>0 /∗ initial condition ∗/
21 −> /∗ implies ∗/
22 [ /∗ all runs of this hybrid program ∗/
23 { /∗ braces {} group programs ∗/
24 drive; /∗ expand program drive here as defined above ∗/
25 { x’=v, v’=a & v>=0 } /∗ differential equation system ∗/
26 }∗ @invariant(v>=0) /∗ loop repeats, with @invariant contract ∗/
27 ] v>=0 /∗ safety/postcondition after hybrid program ∗/
28 End.
29
30 Tactic "Automated proof in KeYmaera X"
31 auto
32 End.
33
34 Tactic "Scripted proof in extended Bellerophon tactic language"
35 implyR(’R=="v>=0&b()>0−>[{{?v<=5;a:=5;++a:=−b();}{x’=v,v’=a&v>=0}}∗]v>=0");
36 loop("v>=0", ’R=="[{{?v<=5;a:=5;++a:=−b();}{x’=v,v’=a&v>=0}}∗]v>=0"); <( /∗ < splits branches ∗/
37 " Init " :
38 id , /∗ initial case: shown with close by identity ∗/
39 "Post":
40 QE, /∗ postcondition: prove by real arithmetic QE ∗/
41 "Step":
42 composeb(’R=="[{?v<=5;a:=5;++a:=−b();}{x’=v,v’=a&v>=0}]v>=0");
43 solve(’R=="[?v<=5;a:=5;++a:=−b();]#[{x’=v,v’=a&v>=0}]v>=0#");
44 choiceb(’R=="[?v<=5;a:=5;++a:=−b();]\forall t_ (t_>=0−>\forall s_ (0<=s_&s_<=t_−>a∗s_+v

↪→ >=0)−>a∗t_+v>=0)");
45 /∗ separate controller branches ∗/
46 andR(’R=="[?v<=5;a:=5;]\forall t_ (t_>=0−>\forall s_ (0<=s_&s_<=t_−>a∗s_+v>=0)−>a∗t_+v

↪→ >=0)&[a:=−b();]\forall t_ (t_>=0−>\forall s_ (0<=s_&s_<=t_−>a∗s_+v>=0)−>a∗t_+v
↪→ >=0)"); <(

47 " [?v<=5;a:=5;]\forall t_ (t_>=0−>\forall s_ (0<=s_&s_<=t_−>a∗s_+v>=0)−>a∗t_+v>=0)":
48 /∗ decompose some steps then ask auto ∗/
49 composeb(’R=="[?v<=5;a:=5;]\forall t_ (t_>=0−>\forall s_ (0<=s_&s_<=t_−>a∗s_+v>=0)−>

↪→ a∗t_+v>=0)");
50 testb(’R=="[?v<=5;][a:=5;]\forall t_ (t_>=0−>\forall s_ (0<=s_&s_<=t_−>a∗s_+v>=0)−>a∗

↪→ t_+v>=0)");
51 auto,
52 " [a:=−b();]\forall t_ (t_>=0−>\forall s_ (0<=s_&s_<=t_−>a∗s_+v>=0)−>a∗t_+v>=0)":
53 /∗ assignment, then real arithmetic ∗/
54 assignb(’R=="[a:=−b();]\forall t_ (t_>=0−>\forall s_ (0<=s_&s_<=t_−>a∗s_+v>=0)−>a∗t_

↪→ +v>=0)");
55 QE
56 )
57 )
58 End.
59
60 End. /∗ end of ArchiveEntry ∗/

Proof scripts expressed in the locator style ’R==... and ’L==... are more explicit about
how they operate on specific examples, but such scripts do not transfer well between different
examples. In order to generalize a script for applicability to other examples, or to increase
robustness to changes in the input model, locators ’R∼=... and ’L∼=... use unification to
decide where to apply tactics.
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Input Language for HHLPy Benchmarks in the Hybrid Systems from Simulink/Stateflow
category are modeled using Hybrid CSP, with properties specified as Hoare triples in Hybrid
Hoare Logic. Both Hybrid CSP programs and properties as Hoare triples can be written using
an ASCII syntax, as illustrated below. They are composed of pre-condition, program and
post-condition. The program is annotated with invariants and rules for proof.

1 # ArchiveEntry Benchmark Example 2
2
3 pre; # pre−conditon
4 t := 0; # Assignment command
5 x := 0;
6 { # braces {} group programs
7 Chart_A_done := 0;
8 if (t >= 1) { # If command
9 t := 0;

10 x := 0;
11 Chart_A_done := 1;
12 }
13 Chart_ret := Chart_A_done;
14 {x_dot = 1, t_dot = 1 & t < 1} # differential equation systems
15 invariant [x == t]{di}; # differential equation invariant , with proof rule
16 }∗ # loop repeats
17 invariant [x == t] [0 <= x] [x <= 1]; # loop invariant
18 post [0 <= x] [x <= 1]; # post−condition

The pre-condition is true and the post-condition is 0 ≤ x ∧ x ≤ 1 in the above example. In
the program, t and x are assigned as 0, followed by a loop command. The invariants of the
loop are x == t, 0 ≤ x and x ≤ 1. A differential equation is in the loop with invariant x == t
proved by the rule dI (differential invariant).

3 Participating Tools
KeYmaera X. KeYmaera X [FMQ+15] is a theorem prover for the hybrid systems logic
differential dynamic logic (dL). It implements the uniform substitution calculus of dL [Pla17].
A comparison of the internal reasoning principles in the KeYmaera family of provers with a dis-
cussion of their relative benefits and drawbacks is in [MP20], and model structuring and proof
management on top of uniform substitution is discussed in [Mit21]. KeYmaera X supports
systems with nondeterministic discrete jumps, nonlinear differential equations, nondetermin-
istic inputs, and allows defining functions implicitly through their characterizing differential
equations [GTMP22]. It provides invariant construction and proving techniques for differential
equations [SMT+21, PT20], and stability verification techniques for switched systems [TMP22].
To discharge proof obligations in real arithmetic, KeYmaera X interacts with trusted backend
procedures for quantifier elimination (Z3, Wolfram Mathematica, Wolfram Engine); a verified
backend procedure based on virtual term substitution is under development [SCMP21]. Proofs
in KeYmaera X can be conducted interactively [MP16a], steered with tactics [FMBP17], or
attempted fully automatic. Compared to previous editions of this benchmark, KeYmaera X de-
velopment focused on extending interactive and scripted proof capabilities (for switched systems
and user-defined functions), and unified several automation heuristics into easier-to-maintain
and more broadly applicable automated tactics.

HHL Prover/HHLPy. HHL Prover is a verification tool for hybrid systems modelled by
Hybrid CSP (HCSP) [He94, ZWR96], implemented in Isabelle/HOL. HCSP is an extension of
CSP by introducing differential equations for modeling continuous evolution and interrupts for
modeling interaction between continuous and discrete dynamics. The proof system of HHL
Prover is Hybrid Hoare Logic (HHL) [LLQ+10].
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HHLPy is a new verification tool for HCSP, that provides a friendlier web-based user inter-
face. Currently it handles only the sequential fragment of HCSP, with reasoning rules similar
to those in dL. We briefly introduce each of the two tools in the following paragraphs.

HHL Prover HHL Prover [WZZ15] is an interactive theorem prover for verifying hybrid
systems modelled by Hybrid CSP (HCSP). We use the trace-based hybrid Hoare logic for
reasoning about HCSP processes as in last year. Traces for both sequential and parallel HCSP
processes are represented as lists of trace blocks. There are two types of trace blocks: ODE
blocks and communication blocks. ODE blocks specify evolution of the process over an interval
of time, consisting of duration of the interval, the state of the process as a function of time, and
a set of communications that are ready during the interval. Communication blocks are of three
types: input, output, and IO. Input and output blocks specify an unmatched communication
event, while IO blocks specify a matched communication event. All three types of events also
specify the value that is communicated.

HHLPy HHLPy is a theorem prover with a friendlier user interface, currently for verifying
sequential HCSP programs only. It is implemented using Python and JavaScript. The sequential
fragment of HCSP contains ODEs with domain boundary, but not communication, interrupts,
and parallel processes. Extending HHLPy to handle the full HCSP language is left for future
work. Given a sequential HCSP process P , a specification takes the form of Hoare triple,
{Pre}P{Post}, where Pre and Post are pre-/post-conditions in first-order logic.

To reason about differential equations, HHLPy makes use of a set of proof rules that are
inspired by dL [Pla10, Pla11, PT18], but adapted to the semantics of sequential HCSP. The
differential weakening (dW) rule reduces a Hoare triple concerning ODEs to an invariant triple
of the ODE and some verification conditions. Invariant triple is in the form of JP K⟨ẋ = e⟩JQK,
whose semantics is roughly stated as follows: for any solution to the differential equation ẋ = e,
if Q is satisfied at beginning and P is satisfied throughout, then Q is satisfied throughout.
Rules such as differential invariant (dI), differential cut (dC), Darboux’s rule (dbx) and barrier
certificates (barrier), many of which borrowed from differential dynamic logic, are then used to
prove invariant triples.

HHLPy stores proof information after the corresponding assertion (post-condition, invari-
ant), so that the user can still reuse proofs when they modify the program or the assertions
slightly. Specifically, proof rules are stored after the corresponding invariants, and proof meth-
ods for proving verification conditions, for example, Z3 or Wolfram Engine, are stored after
the assertion that generates the corresponding verification condition. Sometimes one asser-
tion corresponds to several verification conditions. HHLPy also proposed a labeling system to
distinguish these verification conditions.

IsaVODEs. Isabelle Verification with Ordinary Differential Equations [FHGS21] is an ex-
tension of a hybrid systems verification component [HS22, Hue19] with lenses from the Unifying
Theories of Programming (UTP) framework [HH98, FBC+20]. IsaVODEs shallowly represents
programs as state transformers and propositions as predicates, while lenses algebraically char-
acterise access and mutation of state. Proving soundness in Isabelle/HOL of Hoare logic and
weakest liberal precondition (wlp) laws makes them available for verification with IsaVODEs.
In particular, IsaVODEs provides its own wlp-rules for reasoning about hybrid programs. It
also offers dL-like syntax and all the major dL-rules. Specifically, IsaVODEs now includes rules
for reasoning with forward diamonds and it can manipulate differential invariants with cuts,
ghosts, and inductions in the style of dL. Since IsaVODEs is only restricted to Isabelle’s higher
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order logic (HOL), it also offers support for direct reasoning with transcendental functions like
exponentials, sines and cosines. Similarly, it can encode linear systems of ODEs as operations
between matrices and vectors [Hue20a, Hue20b]. IsaVODEs also provides more automation
than its predecessor verification components [HS22, FHS20]. It has Eisbach-methods for au-
tomatically discharging common differential induction and Hoare logic arguments, and it adds
support for manipulating real arithmetic expressions. Through the Wolfram engine, IsaVODEs
can suggest solutions to systems of ODEs to aid in the verification process. We use Isabelle’s
pdf-generation tool to produce a proof-document with our solutions to the competition’s prob-
lems in our reproducibility package. Recent IsaVODEs developments are available online1.

4 Benchmarks
One of the strengths of hybrid systems theorem proving as a verification technique is its support
for combined automated and interactive verification steps as well as its applicability to proof
search and proof checking. The benchmark examples were analyzed in three modes:

Automated The specification is the only input to the theorem prover. Proofs and counterex-
amples are obtained fully automated to highlight the capabilities of theorem provers in
terms of invariant generation, proof search, and proof checking.

Hints Known design properties of the system, such as loop invariants and invariants of dif-
ferential equations, are annotated in the model and allowed to be exploited during an
otherwise fully automated proof to highlight the capabilities of theorem provers in terms
of proof search and proof checking.

Scripted User guidance with proof scripts is allowed to highlight the capabilities of theorem
provers in terms of proof checking.

The benchmark examples are structured into 5 categories: hybrid systems design shape
examples to test for system design variations at a small scale, nonlinear continuous models to
test for continuous invariant construction and proving capabilities, hybrid game examples to
test adversarial dynamics, hybrid systems case studies to test for prover scalability, and a new
category for hybrid systems from Simulink/Stateflow models.

Experimental setup. IsaVODEs participated only in scripted format in the hybrid systems
design shapes problems and in the European train control System case study benchmark. The
IsaVODEs setup was an 8 core Apple M1 machine with a 16 GB memory.

HHLPy participated in three benchmark sets, which are hybrid systems design shapes, non-
linear continuous models and hybrid systems from Simulink/Stateflow models. The performance
results were obtained on Windows11, with Z3-solver 4.8.12.0 and Wolfram Engine 13.0, on the
same machine with 8-core Intel(R) Core(TM) i5-1035G4 CPU @ 1.10GHz and 16 GB memory.

HHL Prover participated in hybrid systems design shapes. The results were obtained on
Windows10, with Isabelle2020 and afp-2020-12-22 on the machine with Intel(R) Core(TM)
i7-8550U CPU @ 1.80GHz.

KeYmaera X participated in scripted, hints, and automated mode in the design shapes,
games, nonlinear continuous models, and case study benchmarks categories. The performance
results reported here are obtained on MacOS, with KeYmaera X 5.0, Wolfram Mathematica
12.3, and Pegasus invariant generator on Matlab 2021b with SOSTools 3.04. The proof duration

1https://github.com/isabelle-utp/Hybrid-Verification
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measurements were taken on a 2013 Mac Pro with 6-core Intel Xeon E5 3.5GHz and 28GB
memory; KeYmaera X uses a single core, but hands some real arithmetic proof obligations to
Mathematica for parallel execution inside Mathematica.

4.1 Hybrid Systems Design Shapes
This category is designed to test for basic verification features on simple examples. The bench-
mark examples are grouped as follows:

Static semantics correctness 9 examples with various sequential orders and nested struc-
tures of assignments, differential equations, and loops.

Dynamics 30 examples with differential equations ranging from solvable to nonlinear.
LICS Tutorial 9 dL tutorial examples [Pla12] ranging from basic time-triggered motion

control to model-predictive control.
STTT Tutorial 12 dL modeling tutorial examples [QML+16] ranging from basic discrete

event-triggered and time-triggered control for straight-line motion to speed control with a tra-
jectory generator and lane-keeping with two-dimensional curved motion.

Harmonic Oscillator This year, we add a new design shape problem, see Section 5.1.

KeYmaera X KeYmaera X participated in the scripted, hints, and automated format of the
competition (proof attempts were aborted after 60s, every proof attempt was made in a fresh
prover instance with all caches cleared): In the scripted format, KeYmaera X solved 60 of the 61
examples with a total amount of 119s for checking the scripted proofs. The remaining unsolved
example is “LICS: Example 4b progress of time-triggered car”, where the script advances the
proof using a parametric variant [Mit21] but misses a witness for its existential quantifier. In the
hints format, KeYmaera X solved 52 of the 61 examples with a total amount of 109s for filling
in the missing proof details and checking the proofs. In the automated format, KeYmaera X
generated proofs for 51 of the examples, with a total duration of 144s. Compared to previous
instances of this competition [MJZ+21, MMJ+20], automation solves a few examples less, which
is likely caused by hybrid systems and ODE automation refactoring to a more general (but not
yet complete) implementation with less specialized heuristics.

HHL Prover/HHLPy. The HHL Prover successfully proved 49 of the 61 examples in Is-
abelle/HOL using our proof system. Since the benchmarks are originally formulated in terms
of dynamic logic, some modifications are made to adapt it to a Hoare-logic style system.

HHLPy successfully solved 50 of the 61 design shapes problems. 8 of the unsolved problems
are hard to translate into a Hoare-logic style system or a HCSP program. Another unsolved
problem is “Dynamics: Exponential growth (4)”, which is with a non-polynomial expression
that HHLPy cannot handle yet. For another two unsolved problems, “STTT Tutorial: Example
10” and “Harmonic Oscillator”, we have not found appropriate invariants or rules to prove
them. All 50 problems were verified in 12.84 seconds, which means 0.26 seconds per problem.

IsaVODEs. The IsaVODEs’ team participated only in the scripted format of the competition.
We solved 59 of the 61 Design Shapes problems with it. We fully proved 55 of those 59, while the
remaining 4 required involvement of the WolframEngine. Computer algebra systems usually
help interactive provers discharge proof obligations about real-arithmetic. In our case, the
WolframEngine reduced useful (in)equalities to the boolean value true. Thus, we could assert
(but not prove) within Isabelle those (in)equalities and use them as facts in our proofs of the

191



ARCH-COMP22 Hybrid Systems Theorem Proving S. Mitsch et al.

aforementioned four Design Shapes. Isabelle-asserted lemmas appear in our reproducibility
package’s proof document with sorry commands below them.

Due to the competition time constraints, we could not find an argument for the truth of one
of the remaining two problems: “LICS: Example 4b progress of time-triggered car”. However,
we were able to state the verification formula in IsaVODEs and formalise forward diamond
operator rules to tackle it. We marked unsolved problems with oops in our proof document.
The last unsolved problem, “Dynamics: Fractional Darboux equality”, requires an unproved
variant of Isabelle’s Picard-Lindelöef theorem or a generalisation of our differential Ghost rule.

We measured Isabelle’s speed to certify our proofs in two ways. Firstly, we measured the
time it took Isabelle to certify our proofs for each problem. The average per Design Shape
solved problem was 2.39 seconds in our 8 core Apple M1 machine. Alternatively, we measured
the time it took the same machine to certify all problems. The computer averaged 34.21 seconds
for the first 58 problems, making each of them solved in less than 0.59 seconds. We attribute
the disparity between both methods to the inaccuracies generated by manual measurements in
the first method and the extra effort the machine needs to display each problem to the monitor.

4.2 Nonlinear Continuous Models
The examples in this category remained unchanged from [MMJ+20] for direct comparison of the
verification performance with previous results; the examples test for pure continuous verification
performance. Future competitions may additionally utilize the extended benchmark set of
[SMT+20].

KeYmaera X. KeYmaera X participated in the scripted, hints, and automated format (proof
attempts were aborted after 60s, every proof attempt was made in a fresh prover instance with
all caches cleared): In the scripted format, KeYmaera X solved 105 of the 141 examples in 247s,
with hints 94 examples were solved in 585s, and fully automatic with invariant generation and
checking, KeYmaera X solved 63 examples in 1344s. Compared to previous instances of this
competition [MJZ+21, MMJ+20], automation solves considerably less examples and points to
potential regression in both the differential invariant generator and the invariant checking tactics
due to partial re-implementation.

HHLPy. HHLPy successfully solved 90 of the 141 nonlinear continuous model problems. Proof
attempts were aborted after a timeout of 300 seconds. For most of the unsolved problems, we
have not come up with appropriate invariants or proof rules. Some other remaining ones are too
slow to give a result. All 90 problems were verified in 48.67 seconds, which means 0.54 seconds
per problem. The longest successful verification among all problems took 35.27 seconds alone.

4.3 Hybrid Games
The hybrid games benchmark tests basic games reasoning over 3 examples with adversarial
dynamics. Future editions of the competition may utilize extended games case studies, such as
[CMP23].

KeYmaera X. KeYmaera X solves all 3 examples in scripted mode, and 2 examples from
hints and fully automatic, with an average duration of about 1s per example in each format.
Again proof attempts were aborted after 60s, every proof attempt was made in a fresh prover
instance with all caches cleared.
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4.4 Hybrid Systems Case Study Benchmarks
Category overview. The benchmark examples in this category are selected to test theorem
provers for scalability and efficiency on examples of a significant size and interest in applications
and remained unchanged from [MST+19]. The benchmark examples2 are inspired from prior
case studies on train control [PQ09, ZLW+13], flight collision avoidance [PC09], robot collision
avoidance [MGVP17], a lunar lander descent guidance protocol [ZYZ+14], and rollercoaster
safety [BLCP18].

KeYmaera X. KeYmaera X participated in the scripted, hints, and automated format (proof
attempts were aborted after 300s, every proof attempt was made in a fresh prover instance with
all caches cleared), and attempted 8 examples (3 ETCS train control, 3 flight collision avoidance,
2 robot collision avoidance). In the scripted format, KeYmaera X solved all 8 attempted
examples with a total time of 225s; in the hints format 7 examples in 203s (robot collision
avoidance passive safety timed out in a real arithmetic proof obligation in the backend real
arithmetic solver); and in fully automated mode, KeYmaera X solved 5 examples in 270s. The
remaining examples not solved automatically include the 4-aircraft flight collision avoidance and
both robot collision avoidance examples (these examples feature high arithmetic complexity and
time out in the backend real arithmetic solvers). Automation in the case study benchmarks sub-
category remained at the level of previous instances of this competition [MJZ+21, MMJ+20].

IsaVODEs. Our participation was in the scripted format of the competition. We tackled
the European train control system (ETCS) case study benchmark. ETCS is further divided
in three: essentials (safety), controllability and reactivity. We fully verified the essentials part
of the problem with IsaVODEs. With the help of the WolframEngine, we also solved the
controllability problem. We were able to formalise ETCS reactivity in Isabelle, but we did not
find an argument for the truth of the problem within the timespan of the competition.

4.5 Hybrid Systems from Simulink/Stateflow Models
Category overview. This category contains hybrid systems modeled using Simulink/State-
flow. These models are first translated into the modeling language used for verification, and
then its properties are verified using the appropriate tools. As this is the first year of compe-
tition including this category, only 4 benchmark problems are included, which illustrates the
basic semantics of Simulink and Stateflow3. They include Stateflow charts with one or two
states, ODEs within each state, and delay blocks in Simulink diagrams.

HHLPy. HHLPy successfully solved all 4 problems. They were verified in 1.61 seconds, which
means 0.40 seconds per problem.

5 Modeling and Proof Comparison
5.1 Harmonic oscillator
The second-order ODE x′′(t) = a · x(t) + b · x′(t) represents a harmonic oscillator. It can be
encoded as a linear system of ODEs and embedded in a hybrid program [Hue20a] (example

2https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/benchmarks/advanced.kyx
3https://gitee.com/bhzhan/mars/tree/master/hhlpy/examples/simulink
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6.1). Thus, this year’s competition now includes the dL-hybrid program below.
1 Problem
2 b^2+a∗4 > 0 & a<0 & b<=0
3 −>
4 [ {
5 x:=∗; ?x>0; y:=0;
6 {x’=y, y’=a∗x+b∗y}
7 }∗@invariant(x>=0)
8 ]x>=0
9 End.

The term b2 + 4 · a is the oscillator’s damping factor [Att03]. The hybrid program then states
that releasing the oscillator starting from rest (y = 0) and arbitrarily extended (x > 0) will
keep the oscillator extended in an overdamped system (b2 + a ∗ 4 > 0, a < 0 and b <= 0).

KeYmaera X The KeYmaera X model below expresses the response of the oscillator to a
non-deterministic input x with a differential equation of non-deterministic duration (any non-
negative duration). Inputs and response can be repeated any non-deterministically chosen
number of times with the loop. The proof shows that a loop invariant x ≥ 0 is maintained,
because the differential equation maintains the invariant − −b+

√
b2+4a

2 x ≤ y ∧ y ≤ 0, which
implies x ≥ 0. The proof shows x ≥ 0 for any number of repetitions and any combination of
inputs x > 0 and durations (infinitely many combinations and durations in each of the infinitely
many loop repetitions).

1 Theorem "Benchmarks/Basic/Affine: Overdamped Door Closing Mechanism"
2
3 Definitions
4 Real a, b;
5 End.
6
7 ProgramVariables
8 Real x, y;
9 End.

10
11 Problem
12 x=0 & b^2+a∗4 > 0 & a<0 & b<=0 −>
13 [{x:=∗; ?x>0; y:=0;
14 {x’=y, y’=a∗x+b∗y}
15 }∗@invariant(x>=0)
16 ]x>=0
17 End.
18
19 Tactic "Scripted proof"
20 implyR(1);
21 loop("x>=0", ’R=="[{x:=∗;?x>0;y:=0;{x’=y,y’=a∗x+b∗y}}∗]x>=0"); <(
22 " Init " : QE using "x=0 :: x>=0 :: nil",
23 "Post": id ,
24 "Step":
25 unfold;
26 cut("\exists w w=(−b+(b^2+4∗a)^(1/2))/2"); <(
27 "Use":
28 existsL(’L=="\exists w w=(−b+(b^2+4∗a)^(1/2))/2");
29 dC("−w∗x<=y&y<=0", ’R=="[{x’=y,y’=a∗x+b∗y}]x>=0"); <(
30 "Use":
31 dW(’R=="[{x’=y,y’=a∗x+b∗y&true&−w∗x<=y&y<=0}]x>=0");
32 QE,
33 "Show":
34 ODEinv(’R=="[{x’=y,y’=a∗x+b∗y}](−w∗x<=y&y<=0)")
35 ) ,
36 "Show":
37 QE using "b^2+a∗4>0 :: \exists w w=(−b+(b^2+4∗a)^(1/2))/2 :: nil"
38 )
39 )
40 End.
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The induction proof in Line 22–42 has 3 subgoals: the loop invariant is true initially (Line 24:
|= x = 0 → x ≥ 0 by real arithmetic QE), it implies the postcondition (Line 26: |= x ≥ 0 → x ≥ 0
by propositional tautology id), and it is preserved through one iteration of the loop body
(Line 28–41: |= x ≥ 0 → [x := ∗; ?x > 0; y := 0; {x′ = y, y′ = ax + by}]x ≥ 0 by symbolic
program execution unfold and differential cut dC −wx ≤ y ≤ 0 with w = −b+

√
b2+4a

2 , justified
by differential invariant reasoning ODEinv [PT20]).

HHLPy The “Harmonic Oscillator” benchmark has not been verified in HHLPy yet. Below we
only list the modeling of this benchmark in HHLPy. The specification below expresses that the
oscillator system always satisfy the postcondition x ≥ 0 in an overdamped system (b2 +a∗4 > 0,
a < 0 and b ≤ 0 in the pre-condition). The loop states repetition for any number of times. The
HCSP program inside the loop states the oscillator is arbitrarily extended (x := ∗(x > 0)) and
at rest (y := 0) at the beginning, then it is released and evolves according to the differential
equation for any non-negative duration.

The semantics of differential equation in HCSP is a little different from that in dL. In HCSP,
the evolution stops exactly when the domain constraint does not hold, instead of stopping at
an arbitrary time inside the domain. Therefore, we introduce a time variable (t) with a non-
deterministic non-negative initial value and a negative derivative (t_dot = −1) to model the
oscillator that will stop at an arbitrary time. Specifically, the evolution stops when t decreases
from its non-deterministic non-negative initial value to 0.

1 pre [b^2 + a ∗ 4 > 0] [a < 0] [b <= 0];
2 {
3 x := ∗(x > 0); # Assign x an arbitrary number that is larger than 0
4 y := 0;
5 t := ∗(t >= 0); # Time variable
6 {x_dot = y, y_dot = a ∗ x + b ∗ y, t_dot = −1 & t > 0} # Stop when t > 0 does not hold
7 }∗
8 post [x >= 0];

IsaVODEs The “Harmonic Oscillator” benchmark has been verified before with the prede-
cessor verification components [Hue20a]. We formalised the dL variant for this competition
and proved it with IsaVODEs. We showed the equivalence with our previous formalisation (in
terms of matrices) and used our results about linear systems of ODEs to verify the specification.
Thus, we represented the system of ODEs via z′ = A · z where z = (x, y)⊤ and

A =
(

0 1
a b

)
.

(in Isabelle) abbreviation A ≡ mtx
([0 , 1 ] #
[a, b] # [])

In the code above, mtx transforms Isabelle lists to square matrices. Then we showed that
A is diagonalizable: A = P · D · P −1 for a change of basis matrix P and diagonal matrix D.

lemma mtx-hosc-diagonalizable:
assumes b2 + a ∗ 4 > 0 and a ̸= 0
shows A = P (−ι2/a) (−ι1/a) ∗ (diag i. if i = 1 then ι1 else ι2) ∗ (P (−ι2/a) (−ι1/a))−1

<proof>

We omit the definition of P and abbreviate the 7-line proof for the above lemma with the
indicator <proof> (see proof document for full proofs). Also, ι1 and ι2 are A’s eigenvalues in
the diagonal matrix D. Therefore, the solution Φ∗ to the linear system of ODEs is Φ∗(t) =
P · exp(−tD) · P −1, where exp is the matrix exponential.
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definition discr ≡ sqrt (b2 + 4 ∗ a)

abbreviation Φ t ≡ mtx (
[ι2∗exp(t∗ι1) − ι1∗exp(t∗ι2), exp(t∗ι2)−exp(t∗ι1)]#
[a∗exp(t∗ι2) − a∗exp(t∗ι1), ι2∗exp(t∗ι2)−ι1∗exp(t∗ι1)]#[])

lemma mtx-hosc-solution-eq:
assumes b2 + a ∗ 4 > 0 and a ̸= 0
shows P (−ι2/a) (−ι1/a) ∗ (diag i. exp (t ∗ (if i=1 then ι1 else ι2))) ∗ (P (−ι2/a) (−ι1/a))−1

= (1/discr) ∗R (Φ t)
<proof>

Here, Φ∗(t) = (1/discr)Φ(t). The fact that this function is the unique solution to the system
of ODES corresponds to the Isabelle statement below.

lemma local-flow-mtx-hosc:
assumes b2 + a ∗ 4 > 0 and a ̸= 0
shows local-flow ((∗V ) A) UNIV UNIV (λt. (∗V ) ((1/discr) ∗R Φ t))

<proof>

We used this solution to prove the corresponding solution for the dL-style system of ODEs.
Then, we apply usual wlp-reasoning to prove the benchmark’s specification.

lemma local-flow-hosc: a ̸= 0 =⇒ b2 + 4 ∗ a > 0
=⇒ local-flow-on [x ; y, y ; a ∗ x + b ∗ y] (x +L y) UNIV UNIV
(λt. [x ; x-sol t x y, y ; y-sol t x y])

<proof>

lemma a < 0 =⇒ b ≤ 0 =⇒ b2 + 4 ∗ a > 0
=⇒ {x=0}
LOOP (

(x ::= ?);(y ::= 0 ); ¿x>0?;
{x‘ = y, y‘ = a ∗ x + b ∗ y}

) INV (x≥0 )
{x≥0}
apply (rule hoare-loopI ) (* apply Hoare-rule for loops with invariants *)

prefer 3 apply expr-simp (* discharge invariant implies postcondition *)
prefer 2 apply expr-simp (* discharge precondition implies invariant *)

apply (clarsimp simp add:
wp fbox-g-dL-easiest[OF local-flow-hosc]) (* apply wlp-rules including ODEs solution*)

apply expr-simp
apply (clarsimp simp: iota1-def iota2-def discr-def )
using overdamped-door-arith[of b a] by force (* discharge remaining real-arithmetic obligations *)

5.2 Train Collision Avoidance
KeYmaera X The formalization of the ETCS example [PQ09] uses the definitions mechanism
of KeYmaera X [Mit21] to characterize functions and relevant properties of the system, such as
initial conditions and a loop invariant which the proof will show to be inductive. The definitions
also provide abbreviations for the control (ctrl) and dynamics (drive) of the train.
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1 Definitions
2 Real ep; /∗ Control cycle duration upper bound ∗/
3 Real b; /∗ Braking force ∗/
4 Real A; /∗ Maximum acceleration ∗/
5 Real m; /∗ End of movement authority (train must not drive past m) ∗/
6
7 Real stopDist(Real v) = v^2/(2∗b); /∗ Train stopping distance from speed v with braking force b ∗/
8 Real accCompensation(Real v) = ((A/b + 1)∗((A/2)∗ep^2 + ep∗v)); /∗ Dist. compensate speed increase ∗/
9 Real SB(Real v) = stopDist(v) + accCompensation(v); /∗ Dist. to stop safely when accelerating once ∗/

10
11 /∗ Initial states ∗/
12 Bool initial(Real m, Real z, Real v) <−> (
13 v >= 0 &
14 m−z >= stopDist(v) & /∗ train distance to the end of the movement authority sufficient to stop safely ∗/
15 b>0 & /∗ brakes are working ∗/
16 A>=0 & /∗ engine is working ∗/
17 ep>=0
18 ) ;
19
20 /∗ Loop invariant: always maintain sufficient stopping distance ∗/
21 Bool loopInv(Real m, Real z, Real v) <−> (v >= 0 & m−z >= stopDist(v));
22
23 HP ctrl ::= {
24 ?m − z <= SB(v); a := −b; /∗ emergency brake when close to end of movement authority ∗/
25 ++ ?m − z >= SB(v); a := A; /∗ free driving: accelerate when sufficient distance ∗/
26 };
27
28 HP drive ::= {
29 t := 0; /∗ reset control cycle timer ∗/
30 {z’=v, v’=a, t’=1 & v >= 0 & t <= ep} /∗ drive (not backwards v>=0)
31 for at most ep time (t<=ep) until next controller run ∗/
32 };
33 End.

The safety specification below lists the (discretely and/or continuously) changing variables
of the system and the dL formula of the form initial → [{ctrl; drive}∗]safe.

1 ProgramVariables
2 Real a; /∗ Actual acceleration −b <= a <= A ∗/
3 Real v; /∗ Current velocity ∗/
4 Real z; /∗ Train position ∗/
5 Real t; /∗ Actual control cycle duration t <= ep ∗/
6 End.
7
8 /∗ Safety specification of the form: initial −> [{ctrl;plant}∗]safe
9 ∗ Starting in any state where initial is true,

10 ∗ any number of repetitions of running a controller ’ ctrl ’ and then driving according to ’plant’
11 ∗ keeps the system safe (end up only in states where ’safe ’ is true) . ∗/
12 Problem
13 initial (m, z, v) −>
14 [
15 {
16 ctrl ;
17 drive;
18 }∗@invariant(loopInv(m, z, v)) /∗ repeat, loop invariant documents system design property ∗/
19 ] (z <= m) /∗ safety property: train never drives past end of movement authority ∗/
20 End.

The proof script below shows that the train maintains sufficient stopping distance, which is
a straightforward consequence of the control decisions since the differential equation has a poly-
nomial solution. After solve and unfolding program definitions unfold, only real arithmetic
proof obligations remain, which are each justified by real arithmetic QE.

1 implyR(1);
2 loop("v>=0&m−z>=stopDist(v)", 1) ; <(
3 " Init " : prop,
4 "Post": QE,
5 "Step":
6 composeb(1);
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7 composeb(1.1);
8 solve (1.1.1) ;
9 unfold;

10 doall(QE)
11 )

The proof script language of KeYmaera X lists the justifying proof steps, but does not
repeat intermediate proof obligations (lemma statements). If necessary, print statements can
be inserted into the script to display the proof obligations on the command line, or alternatively,
the proof script can be loaded in the KeYmaera X web UI [MP16b] to browse the entire proof
in a step-by-step fashion.

HHLPy The HHLPy model of the ETCS example, annotated with invariants and proof rules
is listed below. We use function to define real functions (stopDist(v), accCompensation(v)
and SB(v)) and boolean functions (safeInv(m, z, v)). The specification expresses that starting
from the initial condition (pre-condition), after repeatedly running the controller (if, else if,
else commands) and then driving according to the differential equation any number of times,
the system is safe (z ≤ m in post-condition).

To prove safety, the loop is annotated with invariants (v ≥ 0 and safeInv(m, z, v)), and
the differential equation is annotated with invariant (m − z ≥ v2/(2 ∗ b)) and the proof rule
(sln). The abbreviation sln represents using the solution of the differential equation for proof.
HHLPy will then generate verification conditions for proof and call Z3 or Wolfram Engine to
verify these verification conditions.

1 function stopDist(v) = v^2/(2∗b);
2 function accCompensation(v) = ((A/b) + 1)∗((A/2)∗ep^2 + ep∗v);
3 function SB(v) = stopDist(v) + accCompensation(v);
4
5 function safeInv(m, z, v) = m−z >= stopDist(v);
6
7
8 pre [v >= 0] [m−z >= stopDist(v)] [b>0] [A>=0] [ep>=0];
9 {

10 # The controller
11 if (m − z < SB(v)){
12 a := −b;
13 }
14 else if (m − z > SB(v)) {
15 a := A;
16 }
17 else {
18 a := −b; ++ a := A;
19 }
20
21 # The plant
22 t := 0;
23 {z_dot=v, v_dot=a, t_dot=1 & v > 0 && t < ep} # Drive forwards for ep time (v > 0 && t == ep)

↪→ , or drive forwards until v == 0, for at most ep time (v == 0 && t <= ep)
24 invariant [m−z >= v^2/(2∗b)]{sln}; # Invariant with its proof rule
25 }∗ invariant [v >= 0] [safeInv(m, z, v) ];
26 post [z <= m];

IsaVODEs Our formalisation of the European Train Control System (ETCS) resembles that
of KeYmaera X. We begin each problem by describing its set of variables and constants.

dataspace ETCS =
constants

ε :: real — control cycle duration upper bound
b :: real — braking force
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A :: real — maximum acceleration
m :: real — end of movement authority (train must not drive past m)

variables
t :: real — Actual control cycle duration t <= ep)
z :: real — Train position)
v :: real — Current velocity)
a :: real — Actual acceleration -b <= a <= A)

Next, we formalise the definitions with the command abbreviation as shown below.

abbreviation stopDist w ≡ w2/(2∗b)

Once all definitions are in place, we provide the solution to the problem’s system of ODEs,
and show that it is indeed the unique solution to it.

lemma local-flow-LICS1 : local-flow-on [t ; 1 , v ; $a, z ; $v] (z +L v +L t) UNIV UNIV
(λτ. [t ; τ + t, z ; $a ∗ τ2 / 2 + $v ∗ τ + $z, v ; $a ∗ τ + $v])

apply (clarsimp simp add: local-flow-on-def )
apply (unfold-locales; expr-simp)
by (rule c1-implies-local-lipschitz[of UNIV UNIV - (λ(t::real,c). Blinfun (λc. (fst (snd c), 0 )))])

(auto intro!: has-derivative-Blinfun derivative-eq-intros poly-derivatives)

Finally, we use this result to prove the safety specification applying Hoare and wlp-laws.

lemma initial ≤ |LOOP ctrl;drive INV @loopInv] (z ≤ m)
apply (subst change-loopI [where I=(@loopInv ∧ b > 0 ∧ A ≥ 0 ∧ ε ≥ 0 )e])

apply (rule hoare-loopI )
using ETCS-arith1 [of b A getv - - ε m getz -]
by (auto simp: unrest-ssubst var-alpha-combine wp usubst usubst-eval

fbox-g-dL-easiest[OF local-flow-LICS1 ] field-simps taut-def )
(smt (verit, best) mult-left-le-imp-le zero-le-square)

6 Conclusion and Outlook

The hybrid systems theorem proving friendly competition focuses on the characteristic features
of hybrid systems theorem proving: flexibility of programming language principles for hybrid
systems, unambiguous program semantics, and mathematically rigorous logical reasoning prin-
ciples.

The automation tactic simplifications, nonlinear invariant generator improvements, and con-
current arithmetic backend utilization make a difference on some examples and especially in
pure continuous systems verification performance, but their potential is not yet truly realized in
case study verification performance. Future competitions are planned to extend the case study
sub-category with game examples [CMP23] to provide better assessment of verification perfor-
mance on realistic examples, and to gain insight into potential proof automation to generalize
the current specialized tactics and proof scripts from single example applicability to general-
purpose proof automation. A related challenge for proof repeatability and transferability are
timeouts used in proof automation to decide how long to explore specific proof alternatives,
and overall proof timeouts as used in this competition.
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