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Abstract. This study proposes a semi-Lagrangian scheme for numerical simulation of 
advection-diffusion equation. The proposed method provides unconditional stability and 
highly accurate solutions even at large time steps. Another advantage of this method is that it 
requires a low computational time. Accuracy of the method is tested by a numerical 
application. 
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1 Introduction 
The significant applications of advection-diffusion equation can be seen in fluid 
dynamics [1], heat transfer [2] and mass transfer [3]. The 3-D advection-diffusion 
equation without source is given by 

 
𝜕𝐶
𝜕𝑡 + 𝑈

𝜕𝐶
𝜕𝑥 + 𝑉

𝜕𝐶
𝜕𝑦 +𝑊

𝜕𝐶
𝜕𝑧

= 𝐷-
𝜕.𝐶
𝜕𝑥. + 𝐷/

𝜕.𝐶
𝜕𝑦. + 𝐷0

𝜕.𝐶
𝜕𝑧. 																																																								 (1) 

 
Where t is time, x, y and z are spatial directions in cartesian coordinates, C is 
concentration of substance, U, V and W are velocity components of flow in each 
direction and D represents the diffusivity coefficent in each direction.  
 
In this paper, we consider one-dimensional advection-diffusion equation is given by: 
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𝜕𝐶
𝜕𝑡 + 𝑈

𝜕𝐶
𝜕𝑥

= 𝐷-
𝜕.𝐶
𝜕𝑥. 																																																																																																																												(2) 

 
with U and D is constant, 0 ≤ 𝑥 ≤ 𝐿, and 0 ≤ 𝑡 ≤ 𝑇. L and T represent spatial and 
temporal boundaries of computational domain, respectively. 
 
We denote the spatial and temporal step sizes by ∆𝑥 and ∆𝑡, respectively. Also Courant 
number, Cr, is computed as 𝑈∆𝑡/∆𝑥 and the Peclet number, Pe, is obtained as 
𝑈∆𝑥/𝐷-. 
 
The initial condition is 𝐶(𝑥, 0) = 𝑓(𝑥) and boundary conditions are 
 
𝐶(0, 𝑡) = 𝑔?(𝑡),

0 ≤ 𝑡
≤ 𝑇																																																																																																											(3) 

 
𝐶(𝐿, 𝑡) = 𝑔A(𝑡),

0 ≤ 𝑡
≤ 𝑇																																																																																																											(4) 

 
Where 𝑓, 𝑔?, 𝑔A are known functions. 
Accurate solution of equation (2) is very important for reducing existing pollutant 
concentrations or taking precautions by predicting pollution formation in water 
resources, which is the basic requirement of human beings. However, since this 
equation contains two different physical processes such as advection and diffusion, the 
precise numerical solution is quite difficult. To overcome this difficulty such as 
classical finite difference method [4], high-order finite element method [5], high-order 
finite difference methods [6, 7], green element method [8], cubic and extended B-
spline collocation methods [9-11], cubic, quartic and quintic B-spline differential 
quadrature methods [12, 13], method of characteristics unified with splines [14-16], 
cubic trigonometric B-spline approach [17] Taylor collocation and Taylor-Galerkin 
methods [18] , Lattice Boltzmann method [19] have been developed. In addition, with 
the help of operator splitting methods, the appropriate methods for the physical 
processes of the problem can be combined. 
 
In the scope of the study, equation (2) will be divided into two processes as the 
advection and diffusion by the operator splitting method. Method of characteristics 
with cubic spline interpolation (MOC-CS) and Saulyev scheme will be used for the 
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solution of advection and diffusion processes, respectively. Though Saulyev scheme 
is an explicit method, it has the same order as the Crank-Nicolson scheme which is an 
implicit method. Saulyev scheme will shorten the computation time because it is 
explicit, but the precision of the solutions must be examined. For this purpose, the 
results obtained with Saulyev scheme will be compared with other methods in the 
literature and analytical solution of the problem. 
 

2 Numerical Discretization 

2.1. Operator Splitting Approach 
Lie-Trotter operator splitting method is a first-order splitting method and solves 
problems sequentially. Its application to the equation (2) separates advection-diffusion 
equation into the two sub-problem such as advection and diffusion. Mathematical 
formulation of the application is as follows: 
 
𝜕𝐶CA
𝜕𝑡 + 𝑈

𝜕𝐶CA
𝜕𝑥 = 0, 𝐶CA(𝑡D, 𝑥) = 𝐶(𝑡D, 𝑥),

𝑡
∈ [𝑡D, 𝑡DGA]																																																																																																			(5) 

 
𝜕𝐶C.
𝜕𝑡 = 𝐷-

𝜕.𝐶C.
𝜕𝑥. , 𝐶C.(𝑡D, 𝑥) = 𝐶CA(𝑡DGA, 𝑥),

𝑡 ∈ [𝑡D, 𝑡DGA]																																																																																															(6) 
 
Equation (5) and equation (6) represent advection and diffusion equations, 
respectively. These problems are solved consecutively, but are combined through the 
initial conditions. First, Equation (5) will be solved by the MOC-CS method at the 
time interval of ∆𝑡 using the initial condition of the general advection-diffusion 
problem and the result obtained from this will be used as the initial condition of the 
diffusion process. Then equation (6) will be solved in the time interval of ∆𝑡 with the 
help of the explicit Saulyev method and thus the solution of the advection-diffusion 
problem in the time interval of ∆𝑡 will be obtained. 

2.2. Numerical Discretization of Advection Part 
By multiplying both sides of the advection equation given in equation (5) by dt, this 
partial differential equation can be transformed into two ordinary differential equations 
as follows: 
 

A Semi-Lagrangian Scheme for Advection-Diffusion Equation E. Bahar and G. Gurarslan

164



 

 

𝑑𝐶CA
𝑑𝑡
= 0																																																																																																																																												(7) 
 
𝑑𝑥
𝑑𝑡
= 𝑈																																																																																																																																											(8) 
 
Thus, the equation (5) which is a partial differential equation can be solved as a simple 
ordinary differential equation along the line defined in the equation (8) in the plane 
(𝑥, 𝑡). As a result of equation (7), there is no change in the concentration along the 
characteristic line shown in Figure 1. In this case, the exact solution of equation (5) 
can be expressed as follows. 
 
𝐶CA(𝑥NGA, 𝑡DGA) = 𝐶CA(𝑥ON, 𝑡D)

= 𝐶CA P𝑥NGA − R 𝑈𝑑𝑡, 𝑡D
STUV

ST
W																																																														(9) 

 

 
Figure 1 Finite difference grid and trajectory line of concentration in one-dimension 

 
Since the coordinate of the point 𝑥ON is between the nodal points, interpolation must be 
made using the concentration values which are known from initial condition in the 
nodal points so that the concentration value at this point can be calculated. The only 
error encountered in solving the advection process is the interpolation. For this 
purpose, cubic spline polynomials with pretty low interpolation error will be used. 
Cubic spline polynomials can be written in the form 
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𝐶(𝑥) = 𝐶N + 𝛼N(𝑥 − 𝑥N) + 𝛽N(𝑥 − 𝑥N). + 𝛾N(𝑥 − 𝑥N)\,
𝑥N ≤ 𝑥 ≤ 𝑥NGA																												(10) 

 
Where 𝐶N is the concentration value of at node 𝑖 and 𝛼N, 𝛽N, 𝛾N  are polynomial 
coefficients determined from values at nodes. The detailed description about 
construction of the cubic spline polynomials and calculation of coefficients in the 
polynomials are given, for example, at [20]. 
 
After the polynomial is calculated in equation (10), the concentration values in all 
nodes at time 𝑡DGA can be calculated as follows. 
 

𝐶CA(𝑥NGA, 𝑡DGA) = 𝐶CA(𝑥N, 𝑡D) + 𝛼N(𝑥ON − 𝑥N) + 𝛽N(𝑥ON − 𝑥N).
+ 𝛾N(𝑥ON − 𝑥N)\																														(11) 

 
As stated in equation (7), this method is time-independent and therefore does not have 
any stability condition. Solutions can be produced by selecting very large time steps. 

2.3. Numerical Discretization of Diffusion Part 
Although the Saulyev scheme is an explicit scheme, it uses values from the new time 
step. Thus, the quality of the solution is improving. There are two ways of solutions, 
from left to right and from right to left. The left to right version was used in the study. 
Spatial discretization of diffusion process via Saulyev scheme as follows:  
 
𝜕.𝐶C.
𝜕𝑥.

^
N,D

≈

𝜕𝐶C.
𝜕𝑥 `NGA/.,D

− 𝜕𝐶
C.
𝜕𝑥 `NaA/.,D

∆𝑥 ,																																																																																													(12) 
 
we can replace the left hand side derivate term at time level 𝑛 with derivative term at 
time level 𝑛 + 1 as the solution process goes from left to right. Similar modification 
can be done for right to left solution procedure. 
 
𝜕.𝐶C.
𝜕𝑥.

^
N,D

≈

𝜕𝐶C.
𝜕𝑥 `NGA/.,D

− 𝜕𝐶
C.
𝜕𝑥 `NaA/.,DGA

∆𝑥 ,																																																																																									(13) 
 
Also following approximations are used 
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𝜕𝐶C.
𝜕𝑥

^
NGA/.,D

≈
𝐶C.cNGA,D − 𝐶C.cN,D

∆𝑥 																																																																																																														(14) 
 
𝜕𝐶C.
𝜕𝑥

^
NaA/.,DGA

≈
𝐶C.cN,DGA − 𝐶C.cNaA,DGA

∆𝑥 																																																																																																						 (15) 
 
𝜕𝐶C.
𝜕𝑡
^
N,D

≈
𝐶C.cN,DGA − 𝐶C.cN,D

∆𝑡 																																																																																																															(16) 
 
Combining these equations gives us the solution of diffusion equation using left to 
right Saulyev scheme as follows: 
 
𝐶C.cN,DGA

=
𝜃𝐶C.cNaA,DGA + (1 − 𝜃)𝐶C.cN,D + 𝜃𝐶C.cNGA,D

(1 + 𝜃) 																																																																	(17) 

 
where 𝜃 = ∆𝑡/∆𝑥.. 
 
At each unknown time level, 𝑛 + 1, at 𝑖 = 1 the term 𝐶C.c?,DGA is known from boundary 
conditions. Thus for 𝑖 > 1 the value of 𝐶C.cNaA,DGA is computed from equation (17), 
hence this method is explicit method. 

3 Numerical Applications 
In this section, we consider two one-dimensional advection-diffusion problems. One 
of them has a sharp gradient and the other one has smooth behavior. Obtained 
numerical results are compared with exact solution and the solutions of the other 
researchers in the literature. Many analyses have been done to test our numerical 
method’s efficiency for a wide range of Courant numbers. Also error norms are 
compared and computed as follows: 
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𝐿f
= max

N
c𝐶Nj-klS

− 𝐶NDmnjoNlkpc 																																																																																																																						 (18) 
 
𝐿.

= qrc𝐶Nj-klS − 𝐶NDmnjoNlkpc
.

s

NtA

																																																																																							(19) 

 
Example: Flow velocity and diffusion coefficient are taken as 𝑈 = 0.01	𝑚/𝑠 and 𝐷 =
0.002	𝑚./𝑠 in this experiment. Length of the channel picked as 𝐿 = 100	𝑚. Exact 
solution of this problem given as follows [21]: 
 

𝐶(𝑥, 𝑡) =
1
2 𝑒𝑟𝑓𝑐 {

𝑥 − 𝑈𝑡
√4𝐷𝑡

}

+
1
2 𝑒𝑥𝑝 {

𝑈𝑥
𝐷 }𝑒𝑟𝑓𝑐 {

𝑥 + 𝑈𝑡
√4𝐷𝑡

}																																																															(20) 

 
Following boundary conditions are used: 
 
𝐶(0, 𝑡)
= 1																																																																																																																																										(21) 
 

−𝐷 {
𝜕𝐶
𝜕𝑥}

(𝐿, 𝑡)

= 0																																																																																																																																								(22) 
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Figure 2 Comparison of the exact solution and the numerical solution obtained with MOC-

CS-Saulyev method for ∆𝑥 = 1	𝑚 and ∆𝑡 = 10	𝑠 
 
In all calculations the spatial step size picked as ∆𝑥 = 1	𝑚. Also maximum 
computational time taken as 3000	𝑠. As maximum computational time remain same 
in all analyzes, critical concentration values can be observed at from 18	𝑚 to 42	𝑚 
(Figure 2). Also it should be taken to consideration that this problem is advection 
dominant (𝑃𝑒 = 5) and has sharp shape. This makes the solution difficult for almost 
all numerical methods. 
 
In Table 1, all concentration values obtained for the time interval of ∆𝑡 = 10	𝑠. This 
makes Courant number equals to 0.1. It clearly can be seen that MOC-CS-Saulyev 
scheme has closer results to exact solution compare to other numerical methods. This 
situation can also be recognized by looking at the error norms. It should be noted that 
even though MOC-CS-Saulyev has low order discretization compare to the sixth order 
compact finite difference it has smaller error norm values.  
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Table 1 Comparison between numerical solutions and exact solution (∆𝑡 = 10	𝑠) 

 
x	(m)  

[7] 
MC-CD6 

[6] 
RK4-CD6 

[17] 
CuTBSM 

MOC-CS 
Saulyev Exact 

0 1.000 1.000 1.000 1.000 1.000 
18 1.000 1.000 1.000 1.000 1.000 
19 0.999 0.999 0.999 0.999 0.999 
20 0.998 0.998 0.998 0.998 0.998 
21 0.996 0.996 0.996 0.996 0.996 
22 0.991 0.992 0.991 0.991 0.991 
23 0.982 0.982 0.982 0.981 0.982 
24 0.965 0.965 0.963 0.964 0.964 
25 0.936 0.936 0.933 0.934 0.934 
26 0.891 0.891 0.885 0.889 0.889 
27 0.827 0.827 0.818 0.824 0.823 
28 0.743 0.743 0.732 0.739 0.738 
29 0.642 0.641 0.631 0.636 0.636 
30 0.529 0.528 0.517 0.524 0.523 
31 0.414 0.413 0.404 0.409 0.408 
32 0.306 0.306 0.298 0.302 0.301 
33 0.213 0.212 0.207 0.211 0.208 
34 0.138 0.138 0.134 0.138 0.135 
35 0.084 0.084 0.081 0.085 0.082 
36 0.048 0.048 0.045 0.049 0.046 
37 0.025 0.025 0.023 0.027 0.024 
38 0.012 0.012 0.011 0.014 0.012 
39 0.006 0.006 0.005 0.006 0.005 
40 0.002 0.002 0.002 0.003 0.002 
41 0.001 0.001 0.001 0.001 0.001 
42 0.000 0.000 0.000 0.000 0.000 
L. 0.0148 0.0142 - 0.0071 - 
Lf 0.0060 0.0055 - 0.0031 - 

 
 
In Table 2, infinity error norms of MOC-CS-Saulyev, cubic B-spline and extended 
cubic B-spline collocation methods are compared for different time interval values. 
When Table 2 is examined it can be seen that MOC-CS-Saulyev scheme always has 
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smaller error norm values except for extended cubic B-spline collocation method at 
the time interval of ∆𝑡 = 1	𝑠.  
 

Table 2 Comparison of 𝐿f error norms (∆𝑥 = 1	𝑚) 

 
∆t	(s)  

[11] 
BSCM 

[11] 
ECuBSCM 

MOC-CS 
Saulyev 

60 0.04330 0.04250 0.01235 
30 0.01962 0.01961 0.00635 
20 0.01270 0.01260 0.00471 
10 0.00685 0.00608 0.00314 
5 0.00409 0.00307 0.00243 
1 0.00224 0.00127 0.00193 

 

4 Conclusions 
This paper deals with the advection-diffusion equation with the help of Lie-Trotter 
opeator splitting method. The problem splits into advection and diffusion processes. 
Each process solved by suitable methods for physical processes. Method of 
characteristics with cubic spline and Saulyev scheme is used for advection and 
diffusion, respectively. The effectiveness of method was tested using a one-
dimensional problem. The problem has a sharp gradient which is quite difficult to 
solve accurately. Obtained results are compared with exact solution and other 
researcher’s solutions available in the literature. 
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