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Abstract. 
Since the network of rainfall gauges and ground radars is generally not dense enough, 
satellite data have been used to estimate Precipitation (P). These data have the ability to 
capture the spatial variability pattern of the parameter, but are often inaccurate in relation 
to the value of the field measured parameter. Therefore, geostatistical methods were eval-
uated to improve the spatial representativeness of field measurements (FM) and satellite 
estimates. The work has been made for a hydrological sub region in the Mexican tropic. 
The geostatistical methods used to interpolate P-FM were ordinary kriging (KO), univer-
sal kriging (KU) and regression kriging (RK) as well as the Inverse Distance Weighted 
(IDW) mechanical interpolator for comparison purposes. Furthermore, the values at the 
pixel centers of the Tropical Rainfall Monitoring Mission (TRMM) images were inter-
polated using OK and evaluated using leave-one-out cross validation (LOO-CV). The 
best LOO-CV evaluated method consisted of the RK interpolation of the point FM taking 
as auxiliary variable the OK interpolation of the TRMM cell centers. It is concluded that 
the geostatistical integration between rainfall estimates from satellite data and FM data is 
promising because satellite information has the ability to capture spatial variability and 
the point FM add accuracy to the results. These characteristics combined can produce a 
P product useful for modeling activities and environmental management.  
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1 INTRODUCTION 
Sustainable planning and environmental management require reliable estimates of P and other elements 
of the hydrological cycle. P represents a life-critical energy and hydrologic exchange between the 
Earth’s atmosphere and its surface and that knowledge of where, when and how much rain falls is 
essential for scientific research and societal applications (Skofronick-Jackson et al. 2018). However, a 
better understanding of the spatial and temporal P patterns is still necessary in order to quantify risks 
and design suitable mitigation measures in a context of P pattern change (Agou et al. 2019).  

Gauges that measure P at a point remain the most common approach to ground-based measurement 
and are the ultimate reference and the only measurement method available in many regions of the world 
(New et al. 2001). However, the direction and magnitude of regional climatic trends cannot be reliably 
inferred from single-site records, even over relative homogeneus terrain (Pielke et al. 2000). The rep-
resentativeness of an observation is the degree to which it accurately describes the value of the variable 
needed for a specific purpose (WMO, 2008). Synoptic observations should be representative of an area 
up to 100 km around the station, but for small-scale or local applications the considered area may have 
dimensions of 10 km or less (WMO, 2008). WMO (2008) also indicates that achieving good location 
of stations for data collection is difficult. Unfortunately, the situation in Mexico regarding the repre-
sentativeness of field values taken in the stations is unfavorable. The information measured in ground 
stations does not meet the appropriate representativeness criteria that allow the generation of data, in-
formation and knowledge to support better decision making. An example is the case mentioned by 
Tapia-Silva et al. (2013) about the National Meteorological Service (SMN) stations that include approx. 
3,300 observation sites. Assuming that each station is representative of an area of 100 km2, as defined 
by WMO (2008) for flat areas, a total area of 330,000 km2 would be covered, which represents only 
17% on the territorial extension of Mexico. Therefore, it is necessary to use other information sources 
and to apply spatial analysis methods in order to better capture the spatial variability of this parameter 
at regional level.  

Geostatistical interpolation (kriging) has become very important to environmental studies (Math-
eron, 1969), since it has been defined as the best unbiased linear estimator (Cressie, 1990; Hengl, 2007). 
These techniques have been successfully explored to generate more representative P spatial layers from 
point measurements (Holawe & Dutter 1999, Goovaerts, 2000, Keblouti et al. 2012, Agou et al. 2019). 
However, its application in countries such as Mexico presents problems in capturing spatial variability 
due to the aforementioned problem regarding the quantity and location of field stations. Most of these 
were installed in accessible areas without making a correct geographic sampling design. An additional 
problem is that many of them are not functioning anymore.  

Rain estimates by satellite media have been intensely investigated since the 70’s (New at al. 2001). 
One of the emblematic missions has been TRMM (Kummerow et al., 2000) which has a satellite-borne 
active microwave system as well as a pasive microwave radiometer. However, rainfall satellite products 
are not error-free (Anagnostou et al., 2010; Zulkafli et al., 2014). This is due to factors such as spatial 
resolution and the used estimation methods. The spatial resolution produces generalization of the value 
for a geographical area, for example, TRMM offers rain products with information for surfaces of 4 
km2. About the estimation methods implemented, Greene and Morryssey (2000) mention that a large 
uncertainty is associated with satellite P estimates, stemming from unknown variations in space and 
time of the physical and statistical relationships between P and satellite-sensed radiance.  

FM have been frequently used to validate or compare P information obtained by satellites (e.g. Lau-
rent et al. 1998, Bowman, 2005, Bell, 2003). Alternatively, some integration schemes of FM and satel-
lite estimates have been developed as this reported by New at al. (2001) consisting in a procedure that 
weights the individual input components by the inverse of the random error to produce a final merged 
product. Other merging method was reported by Wu et al. (2018). In this method, the P from rain gauges 
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is added to the first-guess field when combining the P estimates of TRMM Multi-Satellite P Analysis 
(TMPA) 3B42 with rain gauges. More recently, Sivasubramaniam et al. (2019) merged a nonparametric 
k-nearest neighbor (k-nn) estimation of radar P with thin plate spline interpolated gauge P.  

Nevertheless, better integration procedures can be developed. The integration can be based on the 
fact that the information obtained by satellite allows capturing the spatial variability of parameters that 
can be determined based on the interaction of electromagnetic energy with rain-laden clouds and that 
FM capture their accuracy (Nerini et al. 2015, Wu et al. 2018). Hengl et al. (2007) reports the possibility 
to use RK to interpolate FM using estimations from satellite images as auxiliary variable. This type of 
geostatistical integration schemes using kriging are innovative and only a few publications such as 
Wang and Lin (2015) and Lin and Wang (2011) have reported its implementation. 

Considering the above, in this investigation geostatistical methods are applied with the aim of im-
proving the spatial representativeness of the P geographical layers. The methods investigated are OK, 
UK and RK. The IDW mechanical interpolator is also included for comparison purposes. As a main 
result, a geostatistical integration scheme between the FM and P-estimates from TRMM is developed. 
The objective of this work is the answer to the following questions: Is it possible to propose a geosta-
tistical integration method between FM and TRMM satellite P estimates? How do the results of this 
method compare with those of commonly used methods as IDW, OK and UK?  

 

1.1 Theory of Kriging  
Kriging accounts for local variations in the mean by limiting the domain of stationarity to a local neigh-
borhood, Ω, around the position, x, where the variable is to be estimated. Let Z(x) = Y(x) + m(x) be a 
stochastic process with a variable mean that is determined by m(x) and the covariance function C(h). 
As such, Y(x) is a stochastic process with a null mean. A linear estimator is a linear combination of 
measurements Z(x1), Z(x2), …, Z(xn) at positions x1, x2, …, xn ∈ Ω. Specifically: 

	𝑌$ (𝑋) = ∑ 𝜆+(𝑋)𝑌(𝑋+),
+-.              (1) 

or:  

𝑍0(𝑋) = 𝑚(𝑋) + ∑ 𝜆+(𝑋)[𝑍(𝑋+) −𝑚(𝑋+)],
+-.               (2) 

If the mean is constant in domain Ω, then it can be eliminated from the equation above by forcing 
the kriging weights to sum to one, in which case, the estimator is called OK, and is expressed as: 

𝑍067(𝑋) = ∑ 𝜆+(𝑋)𝑍(𝑋+),
+-.               (3) 

with: 
∑ 𝜆+(𝑥) = 1,
+-.                (4) 

The Lagrange multiplier method (Goovaerts, 1997) is used to obtain the optimal weights that mini-
mize the estimation of error variance, which results in the following system of equations: 

	{∑ ;<(=)>?
@
<>? 	

∑ ;<(A)BCADEA<FGH(I)-BCADEAF
@
<>? ,			K-,……,			,

              (5)	

where μ denotes the Lagrange multiplier. Alternatively, when considering the relation between the 
covariance function and the semivariogram function γ(h), i.e., C(h)=C (0) −γ(h), then the above system 
can be written as: 

{∑ ;<(=)>?
@
<>? 	

∑ ;<(A)MCADEA<FGH(I)-MCADEAF
@
<>? ,			K-,……,			,

              (6) 

OK assumes a stationary mean, that is, it is a constant of the random function, Z(x), of the real 
underlying value. But it is often not constant throughout the entire study area. When that is the case, a 
non-stationary regionalized variable has two components (Davis, 1973): drift (average or expected 
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value of the regionalized variable) and residual (difference between the values of the parameter that are 
considered to be real and drift). 

UK divides the random function into a linear combination of deterministic functions: the smooth and 
non-stationary trend (drift or mean) μ(x) ε R, and the residual random function Y(x): = Z (x) - μ (x) 
(Wackernagel, 2003). UK assumes that μ(x) is a function of the spatial location, and it can be approxi-
mated by a model, for example, that of Kumar (2007): 

	𝜇(𝑋) = ∑ 𝛼P𝑓P(𝑋),
P-.               (7) 

 
where: αi = coefficient to be estimated based on the data 

fi = basic function of drift as a function of the spatial coordinates 
n = number of functions used in the drift model  

As with OK, the weights in UK are obtained by minimizing the variance of the prediction error 
subject to the unbiasedness restriction. The Lagrange multiplier is applied once again, taking into con-
sideration the spatial autocorrelation structure in order to obtain the optimal weights. 

RK is the best Linear Unbiased Prediction (BLUP) model for spatial data and all other techniques as 
OK, IDW, etc. can be seen as its special cases (Hengl, 2007, Hengl, 2009). In matrix notation, regres-
sion-kriging is commonly written as: 

𝑍0R6(𝑥S) = 	𝑞SU ∙ 𝛽0XYZ + 𝜆SU ∙ C𝑍 − 𝑞 ∙ 𝛽0XYZF	            (8) 
𝑍0R6(𝑥S) is the predicted value at location 𝑥S, 𝑞S the vector of p + 1 predictors,  

𝛽0XYZ are regression coefficients estimated with OLS (Ordinary Least Squares) or optimally with GLS 
(Generalized Least Squares) and 𝜆S is the vector of n kriging weights used to interpolate the residual. 
It has a prediction variance that reflects the position of new locations (extrapolation) in both geograph-
ical and feature space (Hengl, 2007, Hengl, 2009):  
𝜎\R6] (𝑥S) = (𝐶S − 𝐶.) − 𝑐SU ∙ 𝐶E. ∙ 𝑐S + (𝑞S − 	𝑞` ∙ 𝐶E. ∙ 𝑐S)U ∙ (	𝑞` ∙ 𝐶E. ∙ 𝑞)E. ∙ (𝑞S − 	𝑞` ∙ 𝐶E. ∙ 𝑐S)	              

(9)	
Where Co +C1  is the sill variation and 𝑐S is the vector of covariances of residuals at the unvisited 

location. 
According to Hengl (2007), if the residuals show no spatial auto-correlation (pure nugget effect) RK 

converges to pure multiple linear regression because the covariance matrix (C) becomes identity matrix. 
Hengl (2007) also points out that if the target variable shows no correlation with the auxiliary predictors, 
the RK model reduces to OK because the deterministic part equals the (global) mean value. 

2 METHODOLOGY  
2.1 Study Region  
The Bajo Grijalva basin (fig. 1) is located southeast of Mexico and covers an area of 9,830 km2. It 
includes 12 municipalities of the State of Tabasco and 20 of the State of Chiapas. The largest river 
system in the country, the Grijalva-Usumacinta, converges in this area. The runoff of its rivers is the 
largest in the Mexican Republic, on the order of 3,700 m3/s on annual average (Conagua, 2015). The 
plains of this basin have recurrent flooding due to runoff generated by heavy rains, mainly conducted 
by the Sierra river system that does not have any flood control (Cepal and Cenapred, 2008). They are 
formed rivers, streams, lagoons and swamps. In the upper part of the basin is located the Peñitas dam. 
The plains are covered by six types of plant associations: tropical rainforest, tropical savanna, medium 
and low forest, low formations of the beach, mangrove forest and swamp vegetation (West, et al., 1985). 
The diverse vegetation existing in the plains is a result of climatic conditions and is conserved despite 
alterations caused by man. 
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Figure 1: Bajo Grijalva Basin and its municipalities, 30 km buffer and FM location. 

2.2 Data  
To delimit the study area, a 30 km buffer was generated on the basin polygon (fig. 1), taking this from 
its definition provided by the INEGI hydrographic network (downloadable at 
https://www.inegi.org.mx/temas/hidrografia/default.html#Descargas). 2001 P data of the stations lo-
cated in the buffer (fig. 1) were obtained from the database provided by Mexican Meteorological Ser-
vice (SMN). These data were revised to avoid missing records and were grouped by year. On the other 
hand, the annual aggregates for the same year of TRMM were downloaded from 
https://pmm.nasa.gov/data-access/downloads/trmm. 
 

2.3 Geostatistical Interpolations  
The FM were interpolated by IDW, KO and KU. The values of the TRMM cell centers were also inter-
polated using OK to generate a product that better capture the spatial variability pattern of the parameter 
in comparison to the original TRMM product. RK was initially tested using TRMM with a resolution 
of 5 km as an auxiliary variable and the FM as the variable to be interpolated. RK was also applied to 
interpolate FM using as auxiliary variable the resulted layer of the OK interpolation of the values of the 
TRMM cell centers. In case of RK, the mean was estimated from the linear relationship with the auxil-
iary variable and the spatially autocorrelated error by fitting a semivariogram model using the FM. 
Since no linear relationship between altitude and P-values was found, this variable was not included in 
the RK interpolation. LOO-CV was performed to evaluate the interpolations results that shown a suit-
able spatial pattern.   
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2.4 LOO-CV  
Interpolation results were evaluated using LOO-CV. The evaluation parameters were correlation coef-
ficients (r) and z-scores (𝑧P) calculated as (Bivand et al. 2008):  

𝑧P =
b(cd)Ebe[d](cd))

f[d](cd)
               (10) 

With 𝑍0[P](𝑠P) the cross validation prediction for 𝑠P and 𝜎[P](𝑠P) the corresponding kriging standard 
error. According to Bivand et al. (2008) it is a standardized residual, and if the variogram model is 
correct, the 𝑧P should have mean and variance values close to 0 and 1. 

Additionally, a comparison by principal components (PC) was made for the resulting spatial layers. 
All procedures were performed in the free statistical software R. 

3 RESULTS AND DISCUSSION 
An overview of the results of all interpolations is presented in fig.2. Boxes b and a show the results of 
the IDW interpolation. The effect of the values of the individual stations that generate concentric circles 
around them can be observed. This spatial pattern is not suitable and therefore this results were not 
considered correct. Boxes b through c show the results of the OK interpolation. The spatial pattern 
obtained is considered suitable and that is why these results were analyzed in greater detail in the fol-
lowing paragraph. Boxes b through d and e show the results of the FM-RK interpolation using TRMM 
at its original resolution (5 Km) as an external variable. It can be seen that the spatial pattern of the 
variable is not expected and that interpolation is therefore considered incorrect. Among boxes d, g and 
h it can be observed that an OK interpolation of the P values assigned to the TRMM cell centers gener-
ated an acceptable spatial distribution of the parameter. Therefore, this result and its cross-validation 
were analyzed in subsequent paragraphs. Boxes b and f show the results of the UK prediction from FM. 
These results are quite similar in terms of the spatial pattern obtained in box i. Therefore, in a subsequent 
section, the results shown among boxes b, h and i are analyzed and validated. The former correspond 
to the process of integration between FM and satellite products (TRMM) using RK. In this case the 
external variable is the TRMM layer obtained from the OK interpolation of the TRMM cell centers 
values. The box l of the figure shows the PC results comparison. RK of FM using the results of the OK 
interpolated TRMM cell centers as an external variable is located in the middle of all other methods, 
showing good results balance.  

 

Geostatistical integration to improve representativeness of satellite precipitation ... F.-O. Tapia-Silva

6



7 

 
Figure 2: Overview of the results of all interpolations of annual 2001 P. At the bottom, a PC com-

parison of the interpolations results is shown. 

3.1 OK of FM  
The results of this interpolation are shown in fig. 3. The variable must have been logarithmically trans-
formed to avoid large deviation from the nominal data to the lowest values. A gaussian semivariogram 
model was fitted. The result of the OK interpolation shows a smoothed spatial pattern with maximum 
P values in the western and eastern parts of the basin.  Likewise, it is less affected by the values of the 
individual stations than the IDW results (shown in fig. 2). Nevertheless, since the spatial pattern of the 
layer shown in fig. 2 box i is more suitable in comparison to the results of this interpolation, the former 
were not evaluated by LOO-CV. 

 
Figure 3: Results of the OK interpolation of the P values measured in stations of the Bajo Grijalva 

basin for 2001. 
 

3.2 Analysis and validation of OK of cell centers from TRMM  
The results of the OK interpolation of the TRMM cell center values are shown in fig. 4. In this case it 
was not necessary to perform a logarithmic transformation and it was possible to fit a spherical semi-
variogram model. The spatial pattern obtained is very different from that of the original TRMM image, 
in addition to presenting the advantage of having a much higher spatial resolution (from 4 km to 300 
m). The results of the validation of this interpolation are shown in the lower part of fig.4. The 𝑧P shown 
in the bubble diagram are centralized to 0 and fluctuate between ± 1.6 which indicates a good fit of the 
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semivariogram model. r between predicted and residual values was 0.1 indicating a correct prediction 
(considering that the ideal is 0). Estimated variances are greater in locations where there are no meas-
urements. r between predicted and residual values is very close to zero, which also gives validity to the 
model. Another result that indicates a high degree of validity is the r between the predicted and esti-
mated values of 0.95.   

 
Figure 4: Results of the OK interpolation of the values of the TRMM cell centers. Results of LOO-

CV are shown in the bottom. 

3.3 Analysis and validation of RK interpolation of FM taking OK inter-
polation of TRMM cell centers as external variable  

Figure 5 shows the results of the RK interpolation of the FM taking as an external variable the results 
of the OK interpolation of the TRMM cell centers. r between the auxiliary variable and the variable to 
be interpolated was 0.7 indicating the achievability of this integration scheme. This result is appropriate 
given that both sources of information allow quantifying the same parameter and can be taken as an 
indicator of the deviation between both sources of information for the analyzed case of study (approx. 
30%). The spatial distribution of the variance is shown in the figure. This has a spatial pattern not 
determined by the locations where measurements are made as in OK (see fig. 4). The fitted semivario-
gram model was spherical. r between predicted and residual values was 0.1, indicating a correct pre-
diction using this semivariogram model. The zi are centralized to 0 and fluctuate between ± 1.69 indi-
cating a good fit of the semivariogram model. Finally, r of the cross-validation exercise between the 
predicted and the measured values is 0.61, which indicates an adequate performance of the predictive 
model (Hengl et al. 2007). 
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Figure 5: RK interpolation of P-FM taking as auxiliary variable the OK interpolated rainfall from 

TRMM cell centers. LOO-CV results are included. 

 

3.4 General Discussion  
The results obtained allow to confirm the possibility to implement a method of geostatistical inte-

gration between FM and TRMM satellite estimates. This scheme worked satisfactorily and substantially 
improved the information quality of the obtained P layers. Additionally, through schemes such as the 
one proposed, it is possible to perform downscaling processes of geographic information, given that for 
example in the case of OK interpolation of the TRMM cell centers, a final resolution of 300 m per pixel 
was obtained from one of 5 km. In this case the spatial pattern is greatly favored with statistical indica-
tors that define low error for the generated layers. These discoveries must be confirmed by more re-
search, but the results are promising. 

As shown in Figure 2, the spatial pattern of the analyzed methods, particularly IDW, OK and RK is 
completely different. I argue that this pattern is a first element to select the method of obtaining the 
continuous spatial variable for research purposes as well to make decisions and formulate plans and 
programs. Among the unexpected results that were quite interesting is that an OK interpolation of 
TRMM cell center values allows for a substantial improvement in the spatial pattern and resolution of 
the resulting TRMM layer. 

As Hengl et al. (2007) argue, I found that remote sensors data allow capturing spatial variability of 
the parameters to be interpolated and if they are integrated using geostatistical RK-type schemes with 
point FM that capture parameter accuracy, it is possible to improve the quality of the geographic layers 
of P (as done by Wang and Lin, 2015 and Lin and Wang, 2011). The integration method must be eval-
uated considering other climatic conditions, as well as its performance for other years, since this study 
only considers aggregates of rain for one year. The effects of the selected pixel size for the interpolation 
process, as well as the use of other auxiliary variables such as elevation and distance to the coast the 
use should also be investigated. In this research no linear relationship between P-values and altitude 
were found. However, for other conditions and geographic zones it is possible that elevation is a factor 
that partly defines the spatial variability of P and therefore its inclusion can improve the estimates within 
the proposed integration scheme. These activities are included in my future lines of research.	
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4 CONCLUSIONS  
Geostatistical techniques allow increasing the effectiveness of the use of data from the field and satel-
lites by improving their spatial representativity and enabling the generation of surface generation 
schemes (mapping) of the available information, including the use of additional information that pro-
vides value to the original information. 

The main advantage of using these integration methods is that they increase the spatial representa-
tives of the mapped variables and that is why their use should be encouraged, especially by researchers 
and organizations responsible for disseminating the basic information for decision-making about water 
resources and in general for the environment.  
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