
From Classical Extensional Higher-Order Tableau
to Intuitionistic Intentional Natural Deduction

Chad E. Brown1

and Christine Rizkallah2

1 Saarland University, Saarbrücken, Germany
cebrown@ps.uni-saarland.de

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
crizkall@mpi-inf.mpg.de

Abstract

We define a translation that maps higher-order formulas provable in a classical ex-
tensional setting to semantically equivalent formulas provable in an intuitionistic inten-
sional setting. For the classical extensional higher-order proof system we define a Henkin-
complete tableau calculus. For the intuitionistic intensional higher-order proof system we
give a natural deduction calculus. We prove that tableau provability of a formula im-
plies provability of a translated formula in the natural deduction calculus. Implicit in this
proof is a method for translating classical extensional tableau refutations into intuitionistic
intensional natural deduction proofs.

1 Introduction
We describe a way of translating a simply-typed higher-order formula s into a semantically
equivalent formula s′ such that if s is provable in a classical extensional higher-order tableau
calculus, then s′ is provable in an intuitionistic intentional higher-order natural deduction cal-
culus. A potential application of such a translation is mapping refutations found by a classical
extensional tableau-based automated theorem prover like Satallax [4] to corresponding proof
terms in an intuitionistic intensional natural deduction based system like Coq [15, 3].

The problem of translating classical logic into intuitionistic logic has a long history. A
result by Glivenko [11] states that if s is a propositional tautology, then ¬¬s is intuitionistically
provable. This result does not hold for first-order formulas. Kuroda [14] showed a similar result
if one translates by double negating the formula and adding double negations to the bodies
of universal quantifiers. We recently proved that the Kuroda translation generalizes to give a
translation from classical intentional higher-order logic to intuitionistic intentional higher order
logic [5]. The generalized Kuroda translation does not suffice in the presence of functional
extensionality, for an example see [5]. The work of Gandy [9] provides a method to translate
from a higher-order logic with extensionality into a higher-order logic without extensionality.
The translation we give in this paper uses ideas similar to those of Kuroda and Gandy to deal
with both issues at once. The Gandy translation translates equality with the help of a binary
relation and a predicate that are defined by mutual recursion. Our translation is simpler in
that it translates equality with the help of a single binary relation that is defined inductively
on types.

Many logical systems of quite different character are commonly referred to as higher-order
logics. Some forms of higher-order logic allow classical reasoning while others only allow in-
tuitionistic reasoning. For example, formulas such as ∀p.p ∨ ¬p and ∀p.¬¬p → p are provable
if and only if the higher-order logic is classical. Likewise, some forms of higher-order logic
allow extensional reasoning while others do not. Formulas such as ∀fg.(∀x.fx = gx) → f = g

J.C. Blanchette, J. Urban (eds.), PxTP 2013 (EPiC Series, vol. 14), pp. 27–42 27

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

and ∀pq.(p → q) ∧ (q → p) → p = q are provable if the higher-order logic is extensional and
are not provable otherwise. The formula (λx.¬¬x) = (λx.x) is only provable if the logic is
both classical and extensional. The extensionality properties can be factored into propositional
extensionality (i.e., boolean extensionality) and functional extensionality (which can itself be
factored into extensionality properties η and ξ) [1]. In this paper we consider a tableau system
with full extensionality and a natural deduction system with no extensionality.

Many automated and interactive theorem provers (e.g., Isabelle/HOL [16], LEO-II [2] and
Satallax [4]) are based on classical extensional versions of higher-order logic. Automated and
interactive theorem provers are used to create proofs, while the task of a proof checker is
checking the correctness of proofs. In order to check a proof, the proof must be represented
as an explicit object. A well-known way of representing proofs is via the Curry-Howard-de
Bruijn correspondence [13, 8]: a natural deduction proof of P can be encoded as a λ-term of
type P . It is easy to write a natural deduction system for higher-order logic for which one can
obtain proof terms in an obvious way. However, this creates a natural deduction system which
is intuitionistic (not classical) and intentional (not extensional).

One way to resolve this mismatch is to add classical extensional axioms to the natural
deduction system. Currently, Satallax produces Coq proof terms under the assumption that
one has added such axioms to Coq [20]. Using the ideas in this paper, one can avoid assuming
such axioms in Coq and still produce Coq proof terms from Satallax refutations (unless Satallax
makes use of a choice operator).

The basic definitions and lemmas used in the translation have all been formalized and proven
in Coq, as described in [18, 19]. However, there is currently no implementation of the translation
as a whole. In particular, Satallax has not yet been extended to produce Coq proof terms using
these definitions and lemmas.

Since the translation changes the formula, a Coq user could not typically call a classical
extensional theorem prover like Satallax to request a proof term for an arbitrary formula in Coq.
On the other hand, one could use the translation to automatically create a Coq development
from a development in a classical extensional simple type theory.

The rest of the paper is organized as follows. In Section 2 we give a brief overview of simply
typed λ-calculus and in Section 3 we introduce a tableau calculus T . We then present the
targeted natural deduction calculus N in Section 4. In Section 5 we present our translation.
We prove that it maps T -refutable branches to N -refutable contexts in Section 6. We conclude
in Section 7 and provide suggestions for future work.

More details about the translation in this paper and other translations can be found in the
Master’s thesis of one of the authors [18].

2 Simply Typed Lambda Calculus

2.1 Syntax

We describe simply typed λ-calculus in the style of Church [7]. The set of types T is given
inductively: o and ι are types and στ is a type whenever σ and τ are types. The types o (the
type of propositions) and ι (the type of individuals) are called base types. Types of the form
στ are called function types. Often the function type στ is written as σ → τ , but we use the
shorter notation since there are only base types and function types. We use σ and τ to range
over types.

For each type σ, let Nσ be an infinite set of names of type σ. Some of the names are logical
constants:

28

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

• > and ⊥ are (distinct) logical constants in No.

• ∧, ∨, and → are (distinct) logical constants in Nooo.

• For each σ, =σ is a logical constant in Nσσo.

• For each σ, ∀σ and ∃σ are (distinct) logical constants in N(σo)o.

The remaining names are variables . Let Cσ be the set of logical constants of type σ and Vσ be
the (infinite) set of all variables of type σ. Let N =

⋃
σNσ, C =

⋃
σ Cσ and V =

⋃
σ Vσ.

For any C′ ⊆ C we define a family of sets of terms ΛC
′

σ for each type σ by induction.

• For every x ∈ Vσ, x ∈ ΛC
′

σ .

• For every c ∈ Cσ ∩ C′, c ∈ ΛC
′

σ .

• For every x ∈ Vσ and s ∈ ΛC
′

τ , (λx.s) ∈ ΛC
′

στ .

• For every s ∈ ΛC
′

στ and t ∈ ΛC
′

σ , (st) ∈ ΛC
′

τ .

We defined ΛC
′

σ relative to a set of logical constants. There are two particular sets of logical
constants of interest in this paper: the full set C of logical constants and the set

C− := {→,∀σ|σ is a type}.

To simplify notation, we define Λσ to be ΛCσ and Λ−σ to be ΛC
−

σ . Note that ΛC
′

σ ⊆ Λσ for any
C′ ⊆ C. An element of Λσ is called a term of type σ. A term is an element of

⋃
σ Λσ. Terms

of the form (λx.s) are called λ-abstractions. Terms of the form (st) are called applications. A
formula is a term of type o.

We write ¬s for ((→ s)⊥). We write stu for (st)u, except that ¬st means ¬(st). We
use the infix notations s ∧ t, s ∨ t, s → t and s =σ t as shorthand for ∧st, ∨st, → st and
=σ st, respectively. We also write s 6=σ t for ¬(s =σ t). Using infix notation note that ¬s
is the same term as s → ⊥. We sometimes write ∀x : σ.s and ∃x : σ.s for ∀σ(λx.s) and
∃σ(λx.s), respectively. We may also omit the type entirely from a quantified formula, equation
or disequation and write ∀x.s, ∃x.s, s = t or s 6= t when the types are clear from the context.

If s is a term, x ∈ Nσ and t is a term of type σ, then s[x := t] is defined to be the result
of substituting t for x in s via a capture-avoiding substitution. A simultaneous substitution
θ substitutes several variables simultaneously. We use the notation θ, [x := t] to mean the
simultaneous substitution that agrees with θ on all variables except (possibly) x which is mapped
to t. A term of the form (λx.s)t is called a β-redex with β-reduct s[x := t]. We say s β-reduces
to t (and write s→β t) if a subterm of s is a β-redex such that t is the result of replacing this
subterm by its β-reduct. We define s ∼β t to be the least equivalence relation containing →β .
When s ∼β t holds, we say s and t are β-equivalent . A term is β-normal if it has no β-redexes.
It is well-known that β-reduction is confluent and terminates on simply typed terms. Hence for
every s ∈ Λσ there is a β-normal form of s which is unique (up to names of bound variables).
We write dseβ to denote the β-normal form of s.

The set of free variables of a term, written FV , is defined as follows.

FV (x) := {x}
FV (s t) := FV (s) ∪ FV (t)
FV (λx.s) := FV (s)− {x}

A term s is ground if FV (s) = ∅. The set of free variables of a set of terms B is defined as
FV (B) :=

⋃
s∈B FV (s).

29

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

2.2 Semantics
Henkin proved completeness of a form of Church’s simple theory of types [7] relative to a
semantics now known as Henkin semantics [12]. We briefly describe Henkin semantics. The
interested reader may find more details of a similar presentation in [6].

A frame is a function D defined on T such that D(o) = {0, 1}, ∀σ ∈ T : D(σ) 6= ∅
and ∀σ, τ ∈ T : D(στ) ⊆ {f | f : D(σ) → D(τ)}. An assignment into a frame D is a function
I defined on T ∪ V such that I(x) ∈ D(σ) for all types σ and variables x : σ. Let I be an
assignment into a frame D, x : σ be a variable and a ∈ D(σ). We write Ixa to denote the
assignment into D that agrees everywhere with I except possibly on x where it yields a. We
define a partial evaluation function ̂ that maps assignments I and terms s ∈ Λσ possibly to
values Î(s) in D(σ) as follows:

1. Î(x) := I(x)

2. Î(c) := f if c : σ, f ∈ D(σ) and f has the usual classical meaning of c

3. Î(s t) := Î(s)(Î(t))

4. Î(λx.s) := f if λx.s : στ , f ∈ D(στ) and ∀a ∈ D(σ) : Îxa(s) = fa

Note that Î is a partial function from typed terms into the frame. An interpretation is a pair
(D, I) where D is a frame, I is an assignment into D and Î is a total function, i.e., Îs is defined
for every s ∈ Λσ. We write Interp for the set of all interpretations.

A formula is a term of type o. We say an interpretation (D, I) satisfies a formula s if
Î(s) = 1. A set A of formulas is satisfiable if there is an interpretation (D, I) simultaneously
satisfying all the formulas in A. Otherwise, we say A is unsatisfiable. We say two terms s, t ∈ Λσ
are semantically equivalent (written s ≈ t) if Îs = Ît for all interpretations (D, I).

3 Tableau Calculus T
We briefly describe a tableau calculus for classical extensional higher-order logic which is com-
plete relative to Henkin semantics. A similar tableau calculus is presented and proven complete
in [6]. The calculus in [6] only uses the logical constants =σ and ¬ while here we include many
more logical constants. Also, we include rules such as Cut and DeMorgan which are not needed
for completeness. We include these rules because they are sound relative to Henkin semantics
and the translation we give later is able to handle the extra rules.

A branch is a set of β-normal formulas. A step is an n+ 1-tuple 〈A1, . . . , An, A〉 of branches
with n ≥ 0. Given a set of steps T , one can inductively define the set of branches which are
T -refutable as follows: If 〈A1, . . . , An, A〉 ∈ T and Ai is T -refutable for i ∈ {1, . . . , n}, then A
is T -refutable.

A rule is a set of steps. The rules are presented in the form

RuleName
C

B1 · · · Bn

to indicate the set of steps of the form 〈A1, . . . , An, A〉 where C ⊆ A and Ai = A ∪Bi for each
i ∈ {1, . . . , n}. There are also sometimes side conditions on the branch A. For example if we
say a variable y must be fresh in a rule, this means that for the step 〈A1, . . . , An, A〉 to be in
the rule there is the additional requirement that y /∈ FV (A). In most cases C is a singleton set
{s} and in the remaining cases C is either empty (e.g, Cut) or contains two formulas (e.g., Mat).

30

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

Definition 3.1 (Tableau Calculus T). We define the tableau calculus T as the union of the
rules in Figure 1. This also defines the corresponding notion of T -refutability. We say a formula
s is T -refutable if the branch {dseβ} is T -refutable. We say a formula s is T -provable if the
formula ¬dseβ is T -refutable.

Closed⊥
⊥

Closed¬>
¬>

Closed
s,¬s

Closed 6=
s 6= s

ClosedSym
(s = t), (t 6= s)

Cut
s ¬s

Dneg
¬¬s
s

And
s ∧ t
s, t

Or
s ∨ t
s t

Imp
s→ t

¬s t
NegAnd

¬(s ∧ t)
¬s ¬t

NegOr
¬(s ∨ t)
¬s,¬t

NegImp
¬(s→ t)

s,¬t

Forall
∀s
ds teβ

DeMorgan∀
¬∀s

∃x.¬ds xeβ
x /∈ FV (s) Exists

∃s
ds yeβ

y is fresh

DeMorgan∃
¬∃s

∀x.¬ds xeβ
x /∈ FV (s) Bool =

s =o t

s, t ¬s,¬t
BoolExt

s 6=o t

s,¬t t,¬s

Func =
s1 =στ s2

ds1 t =τ s2 teβ
FuncExt

s 6=στ t

ds x 6=τ t xeβ
x is fresh Mat

x s1 . . . sn,¬x t1 . . . tn
s1 6= t1 . . . sn 6= tn

Dec
x s1 . . . sn 6=ι x t1 . . . tn

s1 6= t1 . . . sn 6= tn
Con

s1 =ι t1, s2 6=ι t2

s1 6= s2, t1 6= s2 s1 6= t2, t1 6= t2

Figure 1: Tableau rules used to define the tableau calculus T

Many variations of the tableau rules are possible. For example, instead of the rule

DeMorgan∃ ¬∃s
∀x.¬ds xeβ x /∈ FV (s)

we could have an alternative rule

Neg∃ ¬∃s
¬ds xeβ x is fresh.

Note that if we use Neg∃, then x must be fresh rather than the weaker requirement x /∈ FV (s)
in DeMorgan∃. By using the DeMorgan∃ version, there is one fewer rule for which the freshness
condition needs to be taken care of later. One could similarly modify the rule FuncExt so that
the only rule with a freshness condition would be Exists. In this paper the form of the tableau
rules are chosen to match those considered in [18].

We briefly consider two examples of T -provable formulas.

Example 3.2. Let p be a variable of type o. We show the formula p 6= ¬p is T -provable, i.e.,
the branch A0 := {p 6= ¬p} is T -refutable. The branch A0 is T -refutable because of the NegOr
rule and the fact that A1 := A0 ∪ {p,¬¬¬p} and A2 := A0 ∪ {¬p,¬¬p} are T -refutable. We
know A2 is T -refutable using the Closed rule. We know A1 is T -refutable using the Dneg and

31

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

Closed rules. The reason we call this a tableau refutation is that one can display the refutation as
a picture we refer to as a tableau. For this example the following is the corresponding tableau:

p 6=o ¬p
p

¬¬¬p
¬p

¬p
¬¬p

Example 3.3. Let p be a variable of type o. The formula (λp.¬¬p) =oo (λp.p) is T -provable.
In this case we simply show the tableau and note that the steps are justified by the FuncExt,
BoolExt, Dneg and Closed rules.

(λp.¬¬p) 6= (λp.p)
(¬¬p) 6= p

¬¬p
¬p

¬¬¬p
p
¬p

4 Natural Deduction Calculus N
We now present a natural deduction calculus for formulas in Λ−o . That is, we only consider
formulas that use the logical constants → and ∀σ. Such calculi were introduced by Gentzen in
1935 [10] and studied further by Prawitz [17].

A context Γ is a finite subset of Λ−o . Γ `N s holds when derivable using the rules in Figure 2.
Note that if for some context Γ and some formula s we are given a derivation of Γ `N s that

uses the wk rule, we can construct a derivation of Γ `N s that does not use the wk rule. This
follows from how the hy rule is stated. We only add the wk rule for convenience.

hy
t ∈ Γ
Γ `N t

β
Γ `N s s ∼β tΓ `N t

wk
Γ′ `N t Γ′ ⊆ Γ
Γ `N t

∀I Γ `N t x /∈ FV (Γ)
Γ `N ∀x.t

→ I
Γ, s `N t
Γ `N s→ t

∀E Γ `N ∀x.s
Γ `N s[x := t]

→ E
Γ `N s→ t Γ `N s

Γ `N t

Figure 2: Rules in our ND calculus N

We write `N s for ∅ `N s. We say a formula s ∈ Λ−o is N -provable if `N s. We say a context
Γ is N -refutable if Γ `N ∀op.p. Likewise, a formula s ∈ Λ−o is N -refutable if the context {s} is
N -refutable.

Example 4.1. Let x, y, p and q be variables with x, y ∈ Vι and p, q ∈ Vιo. We use the following
diagram to show that the formula (∀p.px→ py)→ qy → qx is N -provable.

→ I

→ E

β

∀E
hy
{∀p.px→ py} `N ∀p.px→ py

{∀p.px→ py} `N (λy.qy → qx)x→ (λy.qy → qx)y

{∀p.px→ py} `N (qx→ qx)→ (qy → qx)
wk

→ I

hy
{qx} `N qx
`N qx→ qx

{∀p.px→ py} `N qx→ qx

{∀p.px→ py} `N qy → qx

`N (∀p.px→ py)→ qy → qx

32

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

5 Translating Terms, Formulas and Branches

In this section we introduce a meaning preserving translation that maps tableau refutable
formulas in Λo to N -refutable formulas in Λ−o . Since a tableau calculus operates on branches
instead of formulas, we will also need to define a branch translation Ψ∗ that maps branches to
contexts.

We begin by considering the most important issue: the translation of logical constants. We
will associate with each logical constant c ∈ Cσ a term ċ ∈ Λ−σ . For the propositional connectives
we can use terms which are sometimes called the Russell-Prawitz definitions [17].

→̇ := λx.λy.x→ y

⊥̇ := ∀p : o.p

>̇ := ∀p : o.p→ p
¬̇ := λx.x→ ∀p : o.p
∧̇ := λx.λy.∀p : o.(x→ y → p)→ p
∨̇ := λx.λy.∀p : o.(x→ p)→ (y → p)→ p

We also define ≡̇ to be λxy : o.(x → y)∧̇(y → x), even though we do not have a logical
constant ≡, since it will be useful below.

We will define =̇σ to be a term Rσ of type σσo. This term Rσ will also be used in the
definitions of ∀̇σ and ∃̇σ. Since =̇σ will be defined as Rσ, the meaning of Rσ in every (classical
extensional) interpretation must be equality. A simple way to satisfy this constraint is to define
Rσ to be Leibniz equality, i.e., λxy.∀q : σo.qx → qy, at each type σ. For each T -provable
formula the translation should be N -provable. If Rιι and Rι were both Leibniz equality, then
even though ∀fg : ιι.(∀x : ι.fx = gx) → f = g is clearly T -provable its translation would not
be N -provable.

This suggests that we should not define Rσ to be Leibniz equality for every type σ. Instead
we will define Rσ to be Leibniz equality only when σ is the base type ι. We will define Ro to be
logical equivalence (as expressed by ≡̇) and on function types we will use functional equivalence
modified by a double negation.

Definition 5.1. For every type σ we define inductively a term Rσ in Λ−σσo as follows:

Ro = λx y.(x→ y)∧̇(y → x)
Rι = λx y.∀q : ιo.q x→ q y
Rσ→τ = λf g.∀x y : σ.Rσ x y → ¬̇¬̇Rτ (f x)(g y)

The term Rσ corresponds to a binary relation on type σ. We sometimes speak of Rσ as a
relation rather than as a term.

It will turn out that we cannot generally prove (inN) thatRσ is reflexive. As a consequence,
we must restrict the binders in the definitions of ∀̇σ and ∃̇σ to x satisfying Rσ x x. In terms
of Henkin semantics, this will not make a difference since we will prove that Î(Rσ) is equality
on D(σ) in every interpretation (D, I). When considering provability of formulas in N , the
restriction to x satisfying Rσ x x will be important.

Now we define =̇σ, ∀̇σ, and ∃̇σ as follows:

=̇σ := Rσ

∀̇σ := λf.∀σx.Rσxx→ ¬̇¬̇fx
∃̇σ := λf.∀op.(∀σx.Rσxx→ fx→ p)→ p

33

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

Definition 5.2. We define our translation Ψ : Λσ → Λ−σ by recursion as follows.

Ψx := x for variables x
Ψst := (Ψs)(Ψt)

Ψλx.s := λx.Ψs
Ψc := ċ for constants c

We call Ψ compositional because it respects application and λ-abstraction. As a simple
consequence of compositionality, we know that Ψ preserves β-equivalence.

Lemma 5.3. If s and t are β-equivalent, then Ψs and Ψt are also β-equivalent.

We now prove Ψs ≈ s for all s ∈ Λσ. We first prove that Rσ behaves like equality.

Lemma 5.4. ∀σ ∈ T : ∀(D, I) ∈ Interp : ∀a, b ∈ D(σ) : (Î(Rσ) a b = 1) ⇐⇒ a = b

Proof. We prove this lemma by induction on types. Let (D, I) be an arbitrary interpretation
and let a and b be arbitrary elements in D(σ).

• Case σ = o:
It is easy to check that Îxyab ((x→ y)∧̇(y → x)) = 1 ⇐⇒ a = b.

• Case σ = ι:
We know Î(Rι) a b = 1 ⇐⇒ a = b since Rι is Leibniz equality.

• Case σ = σ1σ2:
We want to show Î(Rσ1σ2) a b = 1 ⇐⇒ a = b.

– Assume Î(Rσ1σ2) a b = 1. We need to show a = b. Let c ∈ D(σ1) be given. We
prove a(c) = b(c) as follows.

Î(Rσ1σ2) a b = 1

⇐⇒ Îfgab (∀x y.Rσ1 x y → ¬̇¬̇Rσ2(f x)(g y)) = 1

=⇒ Îfgxyabcc (Rσ1 x y → ¬̇¬̇Rσ2(f x)(g y)) = 1

⇐⇒ (Î(Rσ1) c c = 1 =⇒ Î(Rσ2)(a(c))(b(c)) = 1)

⇐⇒ (c = c =⇒ a(c) = b(c)) (IH)
⇐⇒ a(c) = b(c)

– Assume a = b. Let c, d ∈ D(σ1) be such that Î(Rσ1) c d = 1. We know c = d
by the inductive hypothesis and so ac = bd. By the inductive hypothesis we have
Î(Rσ2) (ac) (bd) = 1. Hence Î(Rσ1σ2) a b = 1.

Lemma 5.5. For every interpretation (D, I) and every a in D(σ) we have I(Rσ) a a = 1.

Proof. Follows directly from Lemma 5.4.

Lemma 5.6. For every c ∈ Cσ, ċ ≈ c.

34

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

Proof. Let (D, I) be an interpretation. In order to prove Î(ċ) = Î(c) it is enough to prove
Î(ċ) has the usual classical meaning of c in I since at most one element of D(σ) can have this
property. It is easy to check this for Î(ċ) when c ∈ {→,⊥,>,¬,∧,∨}. We know Î(=̇τ) behaves
like equality by Lemma 5.4. It remains to prove Î(∀̇τ) and Î(∃̇τ) behave like universal and
existential quantification. Let q ∈ D(τo) be given. We use Lemma 5.4 to obtain

Î(∀̇τ) q = 1

⇐⇒ Îfq (∀τx.(Rτxx)→ ¬̇¬̇fx) = 1

⇐⇒ Îfq (∀τx.fx) = 1

⇐⇒ qa = 1 for every a ∈ D(τ)

and

Î(∃̇τ) q = 1

⇐⇒ Îfq (∀op.(∀σx.(Rσxx)→ fx→ p)→ p) = 1

⇐⇒ Îfq (∀op.(∀σx.fx→ p)→ p) = 1

⇐⇒ qa = 1 for some a ∈ D(τ).

Theorem 5.7. For every s ∈ Λσ, Ψs ≈ s.

Proof. We argue by induction on s. If s is a variable, then the result is clear. If s is a logical
constant, then the result follows by Lemma 5.6. Suppose s is tu. Let (D, I) be an interpretation.
By inductive hypothesis Î(Ψt) = Î(t) and Î(Ψu) = Î(u). Hence Î(Ψ(tu)) = Î(tu).

Finally, suppose s is λx.t of type σ1σ2 and let (D, I) be an interpretation. Let a ∈ D(σ1)

be given. By the inductive hypothesis Îxa(Ψt) = Îxa(t). Generalizing over a, we conclude
Î(Ψt) = Î(t).

Using Lemma 5.4 and Theorem 5.7 we easily obtain the following corollary.

Corollary 5.8. Let s be a formula such that FV (s) = {x1, . . . , xn}. We know

s ≈ (x1=̇x1 → · · · → xn=̇xn → ¬̇¬̇Ψs)

We now consider which properties of R are provable in N . In particular, Rσ is provably
symmetric and transitive, i.e., a PER (partial equivalence relation). As we previously men-
tioned, we cannot generally prove Rσ is reflexive in N since N lacks extensionality, but we can
prove that Rσ is reflexive when σ is o or ι. Proofs of the next two lemmas are straightforward
and can be found as Coq proofs in [18, 19].

Lemma 5.9. For each type σ we have `N ∀σxyz.Rσxy → Rσyz → Rσxz. We also have
`N ∀σxy.Rσxy → Rσyx.

Definition 5.10. A type σ is reflexive if `N ∀σx.Rσxx.

Lemma 5.11. The types ι and o are reflexive.

35

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

One can use the model constructed in Example 5.4 of [1] to demonstrate 6`N ∀oox.Rooxx
and 6`N ∀oιx.Roιxx. For more details see [18].

When translating tableau refutations we will sometimes need to consider a term t of type
σ and need to know that Γ `N ¬̇¬̇Rσ(Ψt)(Ψt). One might try to prove this by a simple
induction on t, but such an attempt will fail at the variable case. In general, we cannot prove
Γ `N ¬̇¬̇Rσ x x. However, we are able to prove (see Theorem 5.15) Γ `N ¬̇¬̇Rσ(Ψt)(Ψt)
under the assumption that Γ `N ¬̇¬̇Rσ x x for every x ∈ FV (t). Establishing Theorem 5.15
requires generalizing the result using simultaneous substitutions (Lemma 5.14). In some sense,
Lemma 5.14 and Theorem 5.15 encapsulate a central reason why the translation works.

Lemma 5.12. For each c ∈ C we have `N Rċċ.

Proof. One must consider each case. Details are in [18].

Lemma 5.13. `N ∀fgxy.¬̇¬̇Rστfg → ¬̇¬̇Rσxy → ¬̇¬̇Rτ (fx)(gy)

Proof. This is straightforward using the definition of Rστ .

Lemma 5.14. For all terms t, for all substitutions θ1, θ2 and, for all contexts Γ:

if ∀x ∈ FV (t) : Γ `N R(θ1(x))(θ2(x)) then Γ `N ¬̇¬̇R(θ1(Ψt))(θ2(Ψt))

Proof. We prove this lemma by structural induction on t.

• If t is a variable, then the result holds by the assumption.

• If t is a logical constant, then the result hold by Lemma 5.12.

• Suppose t is t1t2. By the inductive hypothesis we know Γ `N ¬̇¬̇R(θ1(Ψt1))(θ2(Ψt1)) and
Γ `N ¬̇¬̇R(θ1(Ψt2))(θ2(Ψt2)). Hence Γ `N ¬̇¬̇R(θ1(Ψt1t2))(θ2(Ψt1t2)) by Lemma 5.13.

• Suppose t is λx.t′. Renaming variables if necessary, we assume x is chosen to avoid capture
so that θ1(Ψt) = λx.(θ1(Ψt′)) and θ2(Ψt) = λx.(θ2(Ψt′)). It suffices to prove

Γ `N R(θ1(Ψλx.t′))(θ2(Ψλx.t′)).

Let x1 and x2 be distinct fresh variables. Let Γ′ be Γ, (Rx1x2). For each i ∈ {1, 2} let θ′i
be θi, [x := xi]. It is easy to see that we have

∀y ∈ FV (t′) : Γ′ `N R(θ′1(y))(θ′2(y)),

because of the assumption about FV (t) and the fact that FV (t′) ⊆ FV (t) ∪ {x}. We
apply the inductive hypothesis to obtain Γ′ `N ¬̇¬̇Rθ′1(Ψt′)θ′2(Ψt′).

Theorem 5.15. For all terms t, and for all contexts Γ:

if ∀x ∈ FV (t) : Γ `N Rxx then Γ `N ¬̇¬̇R(Ψt)(Ψt)

Proof. Follows directly from Lemma 5.14 by using the identity substitution.

We need to extend Ψ to map branches to contexts. The most obvious extension that just
maps Ψ to all the formulas in the branch to obtain a context does not have the properties we
want. Using the model Mβf constructed in Example 5.4 of [1] one can prove 0N ¬̇¬̇Rooxx.
Consequently, the branch x 6=oo x is T -refutable but ¬̇Ψ(x =oo x) is not N -refutable.

In Definition 5.16 below we define a branch translation Ψ∗A which includes Rxx for each
free variable x in A. Following the definition we give a detailed example to further illustrate
why such extra formulas are desired.

36

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

Definition 5.16 (The Branch Translation Ψ∗). The branch translation Ψ∗ maps a branch to
a context as follows:

Ψ∗A := {Ψs|s ∈ A} ∪ {Rσx x|x : σ and x ∈ FV (A)}

Example 5.17. Consider the formula x 6=oo x. A tableau refutation of this formula starts with
the branch {x 6=oo x}. This branch is directly T -refutable using the Closed6= rule. To mimic
the Closed 6= step in N we need to prove that Ψ∗{x 6=oo x} is N -refutable. If Ψ∗{x 6=oo x} were
defined as simply {Ψ(x 6=oo x)}, then it would not be N -refutable as mentioned above. Our
definition of Ψ∗ maps the branch {x 6=oo x} to the context {¬̇Ryy,Ryy} which is obviously
N -refutable.

Example 5.18. We consider the translation of the formula (λp.¬¬p) = (λp.p) proven in
Example 3.3.

Ψ((λp.¬¬p) = (λp.p)) is Roo(λp.¬̇¬̇p)(λp.p)
is ∀pq : o.(p≡̇q → ¬̇¬̇((¬̇¬̇p)≡̇q)).

A consequence of the final corollary in the next section is that the formula

¬̇¬̇∀pq : o.(p≡̇q → ¬̇¬̇((¬̇¬̇p)≡̇q))

is N -provable.

6 Translating Proofs

We prove that every T -refutable branch A maps to an N -refutable context Ψ∗A (see Theo-
rem 6.14). Implicitly this gives a translation from tableau refutations to natural deduction
refutations. One may attempt to prove this by an induction on the T -refutability of A, but a
problem arises. Namely, a rule such as Forall may introduce a term t with free variables that
prevent us from applying Theorem 5.15. In order to avoid this problem, we define a restricted
tableau calculus Tr.1 We prove that if A is T -refutable, then it is also Tr-refutable. We then
prove that if a branch A is Tr-refutable, then Ψ∗A is N -refutable.

Definition 6.1 (Admissible for a Branch). A term t is admissible for a branch A if for each
variable x ∈ FV (t), either x ∈ FV (A) or x is of type ι or o.

Definition 6.2 (Tableau Calculus Tr). The tableau calculus Tr contains all the tableau rules
that are in T (see Definition 3.1) except for Forall, Func=, and Cut, for which it contains restricted
forms as shown in Figure 3. This also defines the corresponding notion of Tr-refutability.

In Proposition 6.7 below we prove that every T -refutable branch is Tr-refutable. The proof
depends on a few simple lemmas.

Lemma 6.3 (Weakening). If a branch A is Tr-refutable, then every branch A′ such that A ⊆ A′
is Tr-refutable.

Proof. This is proven by induction on Tr-refutability, taking care to rename variables from the
Exists and FuncExt rules so they remain fresh.

1The proof of Lemma 6.11 will show how using Tr resolves the problem.

37

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

Forallr
∀s

ds teβ
t is admissible for the branch Cutr

s ¬s
s is admissible for the branch

Func =r

s1 =στ s2

ds1 t =τ s2 teβ
t is admissible for the branch

Figure 3: Restricted Forall, Func=, and Cut Rules

Lemma 6.4. If ¬∃σx.x = x is in a branch A, then A is Tr-refutable.

Proof. Using DeMorgan∃ it suffices to prove A ∪ {∀σx.x 6= x} is Tr-refutable. The type σ has
the form σ1 · · ·σnα where α ∈ {o, ι}. Choose a variable y of type α and for each i ∈ {1, . . . , n}
choose a variable zi of type σi. Let t be the term λz1 · · · zn.y. We know A∪{(∀σx.x 6= x), t 6= t}
is Tr-refutable using the Closed 6= rule. The term t is of type σ and is admissible for the branch
A ∪ {∀σx.x 6= x} since y has type ι or o. Hence the rule Forallr justifies that A ∪ {∀σx.x 6= x}
is Tr-refutable.

Definition 6.5. Let X be a finite set of variables. We define EX to be the branch⋃
x∈X{(∃x.x = x), (x = x)}.

Lemma 6.6. Let A be a branch and X be a finite set of variables such that X ∩ FV (A) = ∅.
If A ∪ EX is Tr-refutable, then A is Tr-refutable.

Proof. We prove this by induction on the number of variables in X. If X is empty, then the
result is trivial since E∅ is empty. Suppose X is Y ∪ {x} where x /∈ Y . In this case EX is
EY ∪ {(∃x.x = x), (x = x)}. Since x is not free in A ∪ EY ∪ {(∃x.x = x)} and A ∪ EX is
Tr-refutable, we know A ∪ EY ∪ {∃x.x = x} is Tr-refutable via the Exists rule. By Lemma 6.4
we also know A ∪ EY ∪ {¬∃x.x = x} is Tr-refutable. By Cutr we know A ∪ EY is Tr-refutable.
Finally, we conclude A is Tr-refutable using the inductive hypothesis.

Now we are in a position to prove that if a branch is T -refutable, then it is Tr-refutable.
The proof implicitly describes an algorithm for modifying a tableau refutation so that it only
uses the restricted rules.

Proposition 6.7. If a branch A is T -refutable, then A is Tr-refutable.

Proof. The proof is by induction on T -refutability. Suppose T -refutability of A follows from
the step 〈A1, . . . , An, A〉 in T where Ai is T -refutable for each i ∈ {1, . . . , n}. By the inductive
hypothesis, we know Ai is Tr-refutable for each i ∈ {1, . . . , n}. If 〈A1, . . . , An, A〉 is a step in
Tr, then we are done. Otherwise, 〈A1, . . . , An, A〉 must be a step in one of the Forall, Func=,
or Cut rules and the new term used in the rule contains free variables not in A. We consider
the Forall rule; the others are similar. Suppose ∀σs ∈ A, n = 1 and A1 is A, dsteβ . Let X be
FV (t) \ FV (A). Clearly X is finite and X ∩ FV (A) = ∅. By weakening (Lemma 6.3) and
Tr-refutability of A1, we know A, dsteβ ∪ EX is Tr-refutable. Clearly every free variable of t is
free in A, dsteβ ∪ EX . Hence, we can use the Forallr rule to conclude A∪ EX is Tr-refutable. By
Lemma 6.6 we know A is Tr-refutable.

Corollary 6.8. The tableau calculus Tr is complete.

Proof. This is a direct consequence of Proposition 6.7 and the completeness of T .

38

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

We can now turn to the main part of the translation from restricted tableau refutations to
natural deduction refutations. We prove that if A is Tr-refutable, then Ψ∗A is N -refutable. We
can reduce this to a local property – the property of a rule being respected.

Definition 6.9. We say a rule (a set of steps) is respected if the following holds for every step
〈A1, . . . , An, A〉 in the rule: If Ψ∗Ai `N ⊥̇ holds for all i ∈ {1, . . . , n}, then Ψ∗A `N ⊥̇ holds.

We prove that every rule defining Tr is respected. The fact that the rules are respected
follows from the N -provability of certain formulas. We prove this for the rules Exists and Forallr
in some detail. For the remaining rules we mainly give corresponding N -provable formulas.

Lemma 6.10. The Exists rule is respected.

Proof. Let s be a term, A be a branch containing ∃σs, and x be a fresh variable.
Assume that Ψ∗(A ∪ {dsxeβ}) `N ⊥̇. We want to show that Ψ∗A `N ⊥̇. Note that if y occurs
free in dsxeβ then

Ψ∗(A ∪ {dsxeβ}) = Ψ∗(A) ∪ {Ψ(dsxeβ)} ∪ {Rxx},

otherwise
Ψ∗(A ∪ {dsxeβ}) = Ψ∗(A) ∪ {Ψ(dsxeβ)}.

In either case we know Ψ∗(A)∪ {Ψ(dsxeβ)} ∪ {Rxx} `N ⊥̇ by assumption and possibly the wk
rule. By Lemma 5.3 we know Ψ(dsxeβ) is β-equivalent to Ψ(sx), i.e., (Ψs)x. Using → I and β
we have Ψ∗A `N Rσxx→ (Ψs)x→ ⊥̇. Since x /∈ FV (A) we can use ∀I to obtain

Ψ∗A `N ∀σx.Rσxx→ (Ψs)x→ ⊥̇.

Since ∃s ∈ A, we know Ψ(∃s) ∈ Ψ∗A and thus Ψ∗A `N ∃̇σ(Ψs) by the hy rule. The following
is easy to verify (for a Coq proof term see [18, 19]) :

`N ∀σof.(∀σx.Rσxx→ fx→ ⊥̇)→ (∃̇σf)→ ⊥̇.

Hence we have Ψ∗A `N ⊥̇ as desired.

The argument for the Forallr rule is similar. In this case we must make use of Theorem 5.15.

Lemma 6.11. The Forallr rule is respected.

Proof. Let s be a term, A be a branch containing ∀σs, and t be a term admissible for A. Note
that

Ψ∗(A ∪ {dsteβ}) ⊆ Ψ∗(A) ∪ {Ψ(dsteβ)} ∪ {Rxx|x ∈ FV (t)}.

By assumption and possibly the wk rule we know

Ψ∗(A) ∪ {Ψ(dsteβ)} ∪ {Rxx|x ∈ FV (t)} `N ⊥̇.

We know t is admissible. Thus for each x ∈ FV (t) either x ∈ FV (A) or x has the reflexive
type ι or o. Hence for each x ∈ FV (t) we know Ψ∗A `N Rxx. Consequently, we have
Ψ∗(A) ∪ {Ψ(dsteβ)} `N ⊥̇. Using Lemma 5.3 we know

Ψ∗A `N (Ψs)(Ψt)→ ⊥̇.

Applying Theorem 5.15 we also have

Ψ∗A `N ¬̇¬̇Rσ(Ψt)(Ψt).

39

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

Closed: ∀op.p→ (¬̇p)→ ⊥̇
Closed⊥: ⊥̇ → ⊥̇
Closed¬>: (¬̇>̇)→ ⊥̇
Closed 6=: ∀σx.¬̇¬̇(Rσxx)→ ¬̇(Rσxx)→ ⊥̇
ClosedSym: ∀σxy.(Rσxy)→ ¬̇(Rσyx)→ ⊥̇
Cutr: ∀op.(p→ ⊥̇)→ ((¬̇p)→ ⊥̇)→ ⊥̇
DNeg: ∀op.(p→ ⊥̇)→ (¬̇¬̇p)→ ⊥̇
And: ∀p q.(p→ q → ⊥̇)→ (p∧̇q)→ ⊥̇
Or: ∀p q.(p→ ⊥̇)→ (q → ⊥̇)→ (p∨̇q)→ ⊥̇
Imp: ∀op q.((¬̇p)→ ⊥̇)→ (q → ⊥̇)→ (p→ q)→ ⊥̇
NegAnd: ∀p q.((¬̇p)→ ⊥̇)→ ((¬̇q)→ ⊥̇)→ ¬̇(p∧̇q)→ ⊥̇
NegOr: ∀p q.((¬̇p)→ (¬̇q)→ ⊥̇)→ ¬̇(p∨̇q)→ ⊥̇
NegImp: ∀op q.(p→ (¬̇q)→ ⊥̇)→ (¬̇(p→ q))→ ⊥̇
DeMorgan∀: ∀σ→of.((∃̇σ(λx.¬̇fx))→ ⊥̇)→ (¬̇(∀̇σf))→ ⊥̇
DeMorgan∃: ∀σ→of.((∀̇σ(λx.¬̇fx))→ ⊥̇)→ (¬̇(∃̇σf))→ ⊥̇
Bool=: ∀opq.(p→ q → ⊥̇)→ ((¬̇p)→ (¬̇q)→ ⊥̇)→ (Ropq)→ ⊥̇
BoolExt: ∀opq.(p→ (¬̇q)→ ⊥̇)→ (q → (¬̇p)→ ⊥̇)→ ¬̇(Ropq)→ ⊥̇
FuncExt: ∀στkh.¬̇¬̇(Rστhh)→ (∀σx.(Rσxx)→ ¬̇(Rτ (kx)(hx))→ ⊥̇)→ ¬̇(Rστkh)→ ⊥̇
Func=r: ∀στkh.∀σt.¬̇¬̇(Rσtt)→ ((Rτ (kt)(ht))→ ⊥̇)→ (Rστkh)→ ⊥̇

Mat: ∀σ1σ2...σnop.∀σ1x1y1.∀σ2x2y2.∀σnxnyn.¬̇¬̇(Rσ1σ2...σnopp)→
(¬̇(Rσ1x1y1)→ ⊥̇)→ (¬̇(Rσ2x2y2)→ ⊥̇)→ · · · → (¬̇(Rσnxnyn)→ ⊥̇)→

px1x2 . . . xn → ¬̇(py1y2 . . . yn)→ ⊥̇

Dec: ∀σ1σ2...σnιh.∀σ1x1y1.∀σ2x2y2.∀σnxnyn.¬̇¬̇(Rσ1σ2...σnιhh)→
(¬̇(Rσ1x1y1)→ ⊥̇)→ (¬̇(Rσ2x2y2)→ ⊥̇)→ · · · → (¬̇(Rσnxnyn)→ ⊥̇)→

¬̇(Rι(hx1x2 . . . xn)(hy1y2 . . . yn))→ ⊥̇

Con: ∀ιxyzw.(¬̇(Rιxz)→ ¬̇(Rιyz)→ ⊥̇)→ (¬̇(Rιxw)→ ¬̇(Rιyw)→ ⊥̇)→
(Rιxy)→ ¬̇(Rιzw)→ ⊥̇

Figure 4: Formulas provable in N used in the proof of Lemma 6.12

Since ∀s ∈ A, we know Ψ(∀s) ∈ Ψ∗A thus Ψ∗A `N ∀̇σ(Ψs) by the hy rule. The following is
easy to verify (for a Coq proof term see [18, 19]) :

`N ∀σof.∀σx.¬̇¬̇Rσxx→ (fx→ ⊥̇)→ (∀̇σf)→ ⊥̇

Hence we have Ψ∗A `N ⊥̇ as desired.

The proofs of Lemmas 6.10 and 6.11 illustrate how one proves that a rule is respected. For
the remaining rules we will simply indicate the formulas whose N -provability implies the rule
is respected.

Lemma 6.12. All of the rules in Tr are respected.

Proof. We have already proven this for Exist in Lemma 6.10 and Forallr in Lemma 6.11. For the
remaining rules one can argue similarly making use of formulas which are provable in N and
correspond to the structure of the rule. We display formulas corresponding to the remaining

40

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

rules in Figure 4. Proof terms (in Coq) for these formulas are available in [18, 19] with the
exception of the lemmas for Mat and Dec. The lemmas for Mat and Dec have been formulated
and proven in Coq for the cases with 1 and 2 arguments.

Proposition 6.13. If A is Tr-refutable, then Ψ∗A is N -refutable.

Proof. The proof is by an easy induction on the Tr-refutation using Lemma 6.12 at each step.

We finally conclude similar results for T -refutability.
Theorem 6.14. If A is T -refutable, then Ψ∗A is N -refutable. Also, if s is a ground formula
and s is T -refutable, then Ψs is N -refutable.

Proof. This follows from Propositions 6.7 and 6.13.

We can also conclude the following using Theorem 6.14 and Corollary 5.8.

Corollary 6.15. Let s be a formula such that FV (s) = {x1, . . . , xn}. If s is T -provable, then
s ≈ (x1=̇x1 → · · · → xn=̇xn → ¬̇¬̇Ψs) and (x1=̇x1 → · · · → xn=̇xn → ¬̇¬̇Ψs) is N -provable.

7 Conclusion
Given a higher-order formula s and a classical extensional tableau proof of s, our aim was to
find a formula s′ that is semantically equivalent to s and construct an intuitionistic intentional
natural deduction proof of s′. We defined two tableau calculi T and Tr and proved that
whenever a branch is T -refutable, it is also Tr-refutable (Proposition 6.7). Moreover, we gave a
translation Ψ and proved that it maps higher-order formulas to semantically equivalent formulas
in the sense of Henkin semantics (Theorem 5.7). Furthermore, we defined a branch translation
Ψ∗ that maps branches to contexts and proved that for any Tr-refutable branch A, Ψ∗A is
N -refutable (Proposition 6.13). We concluded that for any T -provable formula s with free
variables x1, . . . , xn, the formula

Ψ(x1 = x1)→ · · · → Ψ(xn = xn)→ Ψ(¬¬s)

is semantically equivalent to s and isN -provable (Corollary 6.15). Hence for any ground formula
s that is T -provable, Ψ(¬¬s) is N -provable.

Several issues are still open for future work. One may want to determine the precise re-
lationship between our translation Ψ and the translation given by Gandy [9]. One could also
investigate to what extent the translation can be extended to handle a choice operator.

A choice operator is a logical constant εσ : (σo)σ satisfying ∀p : σo.∀x : σ.px → p(εσp).
Such operators are supported by Satallax. To extend the translation in this paper to handle εσ
one would need to find a term Ψεσ satisfying

`N Ψ(¬¬(εσ = εσ))

and
`N Ψ(¬¬∀p : σo.∀x : σ.px→ p(εσp)).

This will not generally be possible, but might be possible in special situations. For example,
one might restrict to having the choice operator only at the base type ι and assume that the
base type ι is finite.

On the more practical side, one can implement a mapping from tableau proofs to natural
deduction proof terms. This would enable proof checking the tableau proofs that Satallax
outputs using Coq. This implementation could make use of the Coq lemmas that are provided
in [18, 19].

41

From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

References
[1] C. Benzmüller, C. E. Brown, and M. Kohlhase. Higher-order semantics and extensionality. Journal

of Symbolic Logic, 69:1027–1088, 2004.
[2] C. Benzmüller, L. Paulson, F. Theiss, and A. Fietzke. LEO-II — A cooperative automatic theorem

prover for classical higher-order logic. In Fourth International Joint Conference on Automated
Reasoning (IJCAR’08), volume 5195 of LNCS (LNAI), pages 162–170. Springer, 2008.

[3] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Coq’Art: The
Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2004.

[4] C. E. Brown. Satallax: An automated higher-order prover. In U. S. Bernhard Gramlich,
Dale Miller, editor, 6th International Joint Conference on Automated Reasoning (IJCAR 2012),
pages 111 – 117. Springer, 2012.

[5] C. E. Brown and C. Rizkallah. Glivenko and Kuroda for simple type theory. Technical report,
Saarland University, Dec 2011. Article to be published in Journal of Symbolic Logic.

[6] C. E. Brown and G. Smolka. Analytic tableaux for simple type theory and its first-order fragment.
Logical Methods in Computer Science, 6(2), Jun 2010.

[7] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5(1):56–68,
1940.

[8] N. G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin and J. R. Hindley, editors,
To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, pages 579–606.
Academic Press, 1980.

[9] R. O. Gandy. On the axiom of extensionality–part I. Journal of Symbolic Logic, 21(1):36–48, 1956.
[10] G. Gentzen. Untersuchungen über das natürliche Schließen I, II. Mathematische Zeitschrift,

39:176–210, 405–431, 1935.
[11] V. Glivenko. Sur quelques points de la logique de M. Brouwer. Bulletins de la classe des sciences,

15:183–188, 1929.
[12] L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15(2):81–91, June

1950.
[13] W. A. Howard. The formula-as-types notion of construction. In J. P. Seldin and J. R. Hindley,

editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages
480–490. Academic Press, 1980.

[14] S. Kuroda. Intuitionistische Untersuchungen der formalistischen Logik. Nagoya Mathematical
Journal, 2:35–47, 1951.

[15] The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004.
Version 8.0.

[16] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002.

[17] D. Prawitz. Natural deduction: a proof-theoretical study. PhD thesis, Almqvist & Wiksell, 1965.
[18] C. Rizkallah. Proof representations for higher-order logic. Master’s thesis, Saarland University,

Saarbruecken, Germany, Dec 2009.
[19] C. Rizkallah. Proof representations for higher-order logic: Coq proofs, 2009. http://www.mpi-inf.

mpg.de/~crizkall/Full_Tableau_ND_Translation.v.
[20] A. Teucke. Translating a Satallax refutation to a tableau refutation encoded in Coq. Bachelor’s

thesis, Universität des Saarlandes, 2011.

42

http://www.mpi-inf.mpg.de/~crizkall/Full_Tableau_ND_Translation.v
http://www.mpi-inf.mpg.de/~crizkall/Full_Tableau_ND_Translation.v

	Introduction
	Simply Typed Lambda Calculus
	Syntax
	Semantics

	Tableau Calculus T
	Natural Deduction Calculus N
	Translating Terms, Formulas and Branches
	Translating Proofs
	Conclusion

