
Kalpa Publications in Computing
Volume 4, 2018, Pages 169–183

28th International Workshop on
Principles of Diagnosis (DX’17)

Diagnosing Discrete Event Systems Using Nominal
Models Only

Yannick Pencolé1, Gerald Steinbauer2, Clemens Mühlbacher2, and Louise
Travé-Massuyès1

1 LAAS-CNRS, Toulouse, France
2 Graz University of Technology, Graz, Austria

Abstract

Complex technical systems usually show a dynamic behavior that is often conveniently repre-
sented with a discrete event model. Such a behavior is the result of dynamic components which
interact with each other. Due to the complexity of technical systems faults are not totally avoidable.
In order to deal with such faults diagnosing the system at run-time is of great interest. To perform
such a diagnosis it is common to use fault models. Such models are in practice often hard to obtain.
To address this problem we show a diagnosis approach for discrete event systems which uses the
model of the nominal behavior only. In order to perform this diagnosis we adopt the well known idea
of consistency based diagnosis.

1 Introduction
Technical systems usually show a certain dynamic behavior. Examples range from the simple control of
an elevator to complex systems such as production lines or autonomous robots. Most of these systems
have in common that they consist of components which show dynamic behavior. Through the interaction
of the different components and their dynamics an overall dynamic behavior of the system emerges that
fulfills the given tasks.

System are never designed or implemented without flaws or exposed to an environment which may
trigger undesired behaviors. If a flaw manifests without being detected this may lead to catastrophic
consequences. Therefore, it is essential to diagnose if system components are malfunctioning. In order
to to automate the process of diagnosis, model-based approaches tailored towards different formalisms
are available [1], [2], [3]. A classification of diagnosis techniques used across the different modeling
frameworks can be found in [4].

Often these approaches are designed in a way that requires a description of the faulty behavior of
a component in order to generate a diagnosis. Thus the nominal as well as the faulty system behavior
needs to be known and modeled. The latter can be very difficult to obtain and it is not always possible
to know all faulty behaviors of a component in advance. Furthermore, it is a cumbersome task to model
all these behaviors. This is even more of a problem in the field of discrete event systems (DES) because
all the established diagnosis theories require fault models [5].

This paper is concerned with dynamic systems whose dynamics can be conveniently abstracted
as a DES (see the introduction chapter in [6]). To address the problems coming from the need for

M. Zanella, I. Pill and A. Cimatti (eds.), DX’17 (Kalpa Publications in Computing, vol. 4), pp. 169–183

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

faulty behavior models, we propose a consistency-based diagnosis approach for DES. The approach
allows modeling the system as interacting dynamic components just using the nominal behavior of the
components. Thus neither knowledge about fault modes is needed nor the faulty behavior has to be
modeled.

The main contribution of this paper is that we show how the concept of consistency-based diagnosis
with nominal behavior models only [1] can be adopted for dynamic systems comprising components
and their behaviors modeled as DES.

Furthermore, we show how to perform a conflict-driven search to calculate diagnoses.
The remainder of the paper is organized as follows. The next section introduces a simple running

example which is used to show the principle of the proposed consistency-based diagnosis approach. In
Section 3 the proposed consistency based diagnosis method for DES is defined in a formal way, fol-
lowing the well known idea of consistency-based diagnosis of [1]. In the proceeding section a conflict-
driven search to calculate the diagnoses is presented. In Section 5 we briefly discuss related research.
Finally we conclude the paper and point out some future work.

2 Running Example
We will use a baggage transfer system, denoted by BTS, as a running example throughout the paper.
The system comprises the following eight components as shown in Figure 1:

• two conveyor belts C1 and C2 actuated by two motors,

• one piston P and its controller Cont,

• four sensors Sk, Sa, Sb, and Sc.

Sensor Sb

Sensor Sa
Sensor Sk

Sensor Sc

Conveyor C1
→

Conveyor C2
→

Piston P

Controller	
Cont

Figure 1: Running example: the baggage transfer system (BTS).

The transfer of the baggage is initiated by putting it on the left end of conveyorC1. After the transfer
the baggage can be removed from conveyor C2.

The piston transfers the baggage from C1 to C2. It is controlled to move out, respectively in, by
the commands pistonOut, respectively pistonIn, sent by the controller Cont. The sensors Sa and Sb

are associated with the piston and correspond to the outer and inner limit switches. The BTS system
has a sensor Sk for the presence of the baggage at the right end of conveyor C1. The sensor Sc denotes
the presence of it at the right end of conveyor C2, which makes it possible to load the next baggage on
C1. We assume that the baggage is removed from C2 in time. The nominal behavior of the controller is
that it pushes the baggage using the piston form C1 to C2 once sensor Sk recognizes it. To control the
movement out, respectively in, of the piston the input of sensor Sa, respectively Sb, is used.

Once we have introduced the modelling of the system formally in the Section 3 we will present a
formal model representation of the components’ behavior.

170

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

3 Consistency Based Diagnosis
In this section we will introduce the proposed consistency based diagnosis approach for DES formally.
In this paper we make the following basic assumptions:

• Assumption 1: a faulty component does not produce any other events than the ones already in the
model,

• Assumption 2: the synchronization between components works always correctly,

• Assumption 3: any event e of a component is only generated by this component.

3.1 Component description
When modelling the behavior of a system we follow a component-based modelling schema. The normal
behavior of the individual components is described using a deterministic finite automaton.

Definition 1 (Model of a component). The model of a component ci is an automaton Ai =
(Qi, Ei, Ti, q0i) where Qi is a finite set of states, Ei is a set of events, the transition function
Ti : Qi × Ei → Qi, and q0i

is the initial state.

Let T ∗i : Qi×E∗i → Qi denote the transitive closure of Ti (i.e. T ∗i (τe) = T ∗i (τ)Ti(e), τ ∈ E∗i , e ∈
Ei and T ∗i (ε) = ε)). A component ci then generates the prefix-closed language L(Ai) composed of the
traces τ such that T ∗i (τ) is defined in the automaton Ai of component ci. A component is associated
to a local observation mask obsi : Ei → EOi

∪ {ε}. If an event e ∈ Ei is observable then it means
obsi(e) 6= ε and the event obsi(e) is observed. In the following, without loss of generality, we consider
that if obsi(e) 6= ε then obsi(e) 6= e. In this case, it means that the set Ei is divided into the two disjoint
sets EOi and EUi representing the observable, respectively the unobservable events.

In this framework, we assume that the system is composed of n components C = {c1, . . . , cn}. By
Assumption 3, any set of events Ei is disjoint from any other set of events Ej , i, j ∈ {1, . . . , n}, j 6= i.

The automata AC1
and AC2

representing the normal behaviors of conveyors C1 and C2 are shown
in Figure 2. The events Left1 (Left2), Right1 (Right2), and Empty1 (Empty1) represent the cir-
cumstances that the baggage entered the conveyor on the left, reached the right end, and was removed
from the conveyor. None of these events are observable.

The automataAP andACont representing the normal behaviors of the piston P and controller Cont
are shown in Figure 3. The events moveOut, respectively moveIn, represents that the piston received
the command to move out, respectively in, while the events endOut, respectively endIn, represents
the fact that the piston reached its outer, respectively inner, terminal position. The controller alternated
between the commands for sending the piston out and in. The commands emitted by the controller are
observable. Please note that the global behavior of the system is determined by the synchronization of
events we will discuss below. Observable events are shown in bold.

The automata ASa
and ASk

representing the normal behaviors of sensors Sa and Sk are shown in
Figure 4. Sensor Sa emits the event a once it sensed the piston at its inner terminal position represented
by event sensA. Sensor Sk emits the event k once it sensed that the baggage reached the end of conveyor
C1 represented by event sensK. The events a and k are observable.

The automata ASb
and ASc

representing the normal behaviors of sensors Sb and Sc are shown in
Figure 5. Sensor Sb emits the event b once it sensed the piston at its outer terminal position represented
by event sensB. Sensor Sc emits the event c once it sensed that the baggage reached the end of conveyor
C2 represented by event sensC. The events b and c are observable. The intermediate events wcb and
wcc are used to model the fact that normally event b occurs before event c as pulling back the piston
takes less time than moving baggage along conveyor C2.

171

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

Left_1

Right_1

chRight1

Empty_1

chEmpty1

chLeft1

Empty_2

Left_2

chLeft2

Right_2

chRight2

chEmpty2

Figure 2: Normal model automata AC1
and AC2

of conveyors C1 (left) and C2 (right).

In

Moving_out

moveOut

Out

endOut

Moving_in

moveIn

endIn

Cont1

Cont2

pistonOutpistonIn

Figure 3: Normal model automata AP and ACont of the piston P (left) and its controller Cont (right).
Observable events are shown in bold.

3.2 System description

In order to model the system it is now required to model the interactions between the components. We
follow here the way it is defined in [7] and implemented in the software DIADES [8]. The components
interact with each other by the synchronization of some events. The interaction model between com-
ponents is then ruled by a synchronization product that relies itself on a set of synchronization rules

172

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

Sa_1

Sa_2

 sensA a

Sk_1

Sk_2

sensK k

Figure 4: Normal model automata ASa and ASk
of sensors Sa (left) and Sk (right). Observable events

are shown in bold.

Sb_1

Sb_2

sensB

Sb_3

 b

wcb

Sc_1

Sc_2

 sensC

Sc_3

wcc

 c

Figure 5: Normal model automata ASb
and ASc of sensors Sb (left) and Sc (right). Observable events

are shown in bold.

R.
Firstly, in order to formally define the generic synchronization product as a synchronised product

over the complete set of components, we transform any automaton Ai to the automaton Aε
i where the

associated transition function T ε
i extends Ti with ∀q ∈ Qi, T

ε
i (q, ε) = q (such an ε-transition expresses

the fact that the component ci stays in state q while other components evolve).
A synchronisation rule r is a constraint evi1 = evi2 = · · · = evik where any evi ∈ Ei and any

ij 6= il, 2 ≤ k ≤ n. A rule r intuitively states that if an event evi1 occurs in the component ci1
then an event evi2 (resp. evik) occurs in the component ci2 (resp. cik) at the same time. A rule r
then implicitly defines a synchronised event e||r over the system as follows. The event e||r is the n-uple
e||r = (e1, . . . , en) such that for any i ∈ {1, . . . , n}, ei = ε if r does not involve any event of component
ci or ei = evi if evi is in r. Let Esync =

∏n
i=1(Ej ∪ ε) be the Cartesian product of the events involved

173

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

in the automata Aε
i , then the event e||r is part of it. Consider now a set of synchronization rules R, it

implicitly represents:

1. the set of synchronized events e||r, r ∈ R;

2. any synchronized event of type (ε, . . . , ε, ei, ε, . . . , ε), ei 6= ε such that ei is not involved in any
rule ofR (event ei is not synchronized with any other event).

Finally, the synchronization rulesR generate the following set of synchronized eventsER ⊆ Esync:

ER = {e||r : r ∈ R} ∪ {(ε, . . . , ε)}∪

{(e1, . . . , en) : ∃j ∈ {1, . . . , n}, ej ∈ Ej ,

∀r ∈ R, ej 6∈ r ∧ ∀i 6= j, ei = ε}.

Based on a set of synchronization rulesR, we can now formally define the synchronization product
between components.

Definition 2 (Operator ‖R). The synchronized product of A1, . . . , An with respect to a set of synchro-
nization rules R denoted by A1‖R · · · ‖RAn is defined as the automaton A = (QA, EA, TA, q0A)
with QA ⊆ Q1 × · · · × Qn, EA = ER, q0A = (q01

, . . . , q0n
), and the transition function

TA : TA((q1, . . . , qn), (e1, . . . , en)) = T ε
1 (q1, e1)× · · · × T ε

n(qn, en) with qi ∈ Qi and ei ∈ Ei ∪ {ε}
if all Ti(qi, ei), i = 1, . . . , n are defined. TA is undefined otherwise.

The use of rules R allows for a generic definition of the synchronization product as it defines a
specific subspace ER of Esync. For instance, if R = ∅, then none of the events are synchronised,
R = ∅ defines the free product of the components. On the other hand, if any rules of R contains n
events (no ε) and any event of any component is a least in a rule of r thenR implements a synchronous
product where all the components always evolve simultaneously.

Proposition 1. The synchronized product operator ‖R with respect to a set of synchronization rules R
is commutative and associative.

Proof. By definition (Aj‖RAi, i 6= j) can be obtained by index permutation of Ai‖RAj (see
Definition 2). Associativity holds by definition. �

Table 1 depicts the synchronization rules used to model the global normal behavior of the running
example.

r1 < chRight1, sensK >
r2 < k,pistonOut,moveOut >
r3 < endOut, sensA, chEmpty1, chLeft2 >
r4 < a,pistonIn,moveIn >
r5 < endIn, sensB >
r6 < chRight2, sensC >
r7 < c, chEmpty2, chLeft1 >
r8 < wcc,wcb >

Table 1: Synchronization rules for the BTS. Observable events are marked in bold.

Following the terminology of [1], the model of the system is as follows.

174

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

Definition 3 (System). A system comprises: (1) a set of components C = {c1, . . . , cn}, (2) a system de-
scription SD = ({A1, . . . , An},R) where the Ai’s are the automata representing the normal behavior
of the components ci’s, andR is a set of synchronization rules.

The global normal behavior of the system is given by A which is the synchronized product of the
automata in SD. The language generated by the system is L(A), also denoted by L(SD).

Figure 6 depicts the synchronized product of the models of the running example components, rep-
resenting the global normal behavior of the BTS.

Figure 6: Automaton ABTS representing the global normal behavior of the BTS system. Observable
synchronizing events are mapped to observable events only.

3.3 Consistency based diagnosis problem
This subsection aims at defining the consistency based diagnosis problem over a discrete event system
defined by (C, SD). First, we define what is observable within SD by an observation mask [9] also
called a viewer in [10].

Definition 4 (Observation mask). The observation mask obs : ER →
∏n

i=1(EOi
∪ {ε}) maps a syn-

chronized event to a synchronized observable event or to (ε, . . . , ε):

obs((e1, . . . , en)) = (obs1(e1), . . . , obsn(en)).

The observation function can be easily extended for a sequence of events τ : if τ = e1e2e3 . . . then
obs∗(τ) = obs(e1)obs∗(e2e3 . . .). Note that here we do not consider uncertain observations as in [11],
the extension of our framework to deal with uncertain observations is straightforward.

The inverse observation mask for a sequence of observable events σ is defined as obs−1(σ) = {τ ∈
E∗R|obs(τ) = σ}.

In the context of discrete event system, the observation OBS is a sequence of events from EO. In
order to define diagnosis formally in our framework we have to define if a sequence of observable events
OBS reflects the normal behavior of a system. This is performed by checking the consistency of the
system with OBS.

175

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

Definition 5 (Consistency). A system description SD is consistent with a sequence of observations
OBS if obs−1(OBS) ∩ L(SD) 6= ∅.

A system description SD is consistent with some observation sequence OBS if there is at least
one trace τ generated by the system (τ ∈ L(SD)) that can produce the observation OBS. In contrast
to [1] where this property is based on the consistency of a first-order theory we define consistency as the
problem of checking membership in a language.

Let us denote a sequence of events e1, e2 . . . , en−1, en with brackets by [e1, e2_ . . . , en−1, en]
and a synchronized event er ∈ ER by underscoring the events that are not ε in the n-
tuple (e1, . . . , en), Table 2 depicts a nominal observation sequence OBSN as well as two
faulty observation sequences OBSF1 and OBSF2 for the BTS. One can verify on Fig-
ure 6 that depicts ABTS , i.e. the synchronized product of the automata in SDBTS =
{AC1

‖AC2
‖AP ‖ACont‖ASk

‖ASa
‖ASb

‖ASc
}, that obs−1(OBSN) ∩ L(SDBTS) 6= ∅. For in-

stance, [chRight1_senK, pistonOut_k, chEmpty1_chLeft2_
endOut_sensA, chRight2_senC, pistonIn_a, endIn_
sensB, b, c] ∈ obs−1(OBSN) ∩ L(SDBTS). This means that SDBTS is consistent with OBSN . One
can also verify that SDBTS is not consistent neither with OBSF1 nor with OBSF1.

Nominal (OBSN) [pistonOut_k, pistonIn_a, b, c]
Faulty (OBSF1) [pistonOut_k, pistonIn_a, b, c,

pistonOut_k, pistonIn_a, b, c,
pistonOut_k, b, c, b]

Faulty (OBSF2) [pistonOut_k, pistonIn_a, b, c,
pistonOut_k, b, c, pistonOut_k]

Table 2: Nominal and faulty observed sequences.

Definition 6 (universal behavior). The universal behavior Ubi of a component ci is an automaton that
represents the language of the Kleene closure of the component’s events Ei.

The universal behavior is an automaton that represents all possible traces generated using all events
of a component. For instance by replacing a component ci by its universal behavior we remove all
constraints of a component on possible observations. Thus the universal behavior models the nominal
behavior as well as every possible faulty behavior of a component. Please note that the universal behav-
ior is built using observable and unobservable events. The later is important to allow the behavior to be
part of all potential synchronizations.

Proposition 2. The following statements hold:

1. For any component i, L(Ai) ⊆ L(Ubi),

2. For any component i, under Assumption 1, L(Af
i) ⊆ L(Ubi), where Af

i is the (unknown) au-
tomaton representing any faulty behavior of the component ci,

3. Let {ci1 , . . . cim} be any subset of components with 1 < m, let Bij be either the automaton Aij

of component cij or its universal behaviour Ubij , 1 ≤ j < m,

L(Bi1‖ . . . ‖Bim−1
‖Aim) ⊆ L(Bi1‖ . . . ‖Bim−1

‖Ubim)

and
L(Bi1‖ . . . ‖Bim−1

‖Af
im

) ⊆ L(Bi1‖ . . . ‖Bim−1
‖Ubim).

176

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

Proof.

1. Trivial by definition of the universal behaviour Ubi.

2. We prove the result for m = 2. If Bi1 = Ai1 then let τ ∈ L(Ai1‖Ai2), |τ | = n, it follows that
there exists a state (qi1n , q

i2
n) ∈ Qi1 ×Qi2 such that:

T ∗Ai1
‖Ai2

((qi10 , q
i2
0), (ei11 , e

i2
1) . . . (ei1n , e

i2
n)) = (qi1n , q

i2
n).

Therefore T ∗A2
(qi20 , e

i2
1 . . . ei2n) = qi2n in the automaton Ai2 which implies that

T ∗Ubi2
(q

Ubi2
0 , ei21 . . . ei2n) = q

Ubi2
0 is true in Ubi2 . By Definition of the synchronization

operator ‖, we get

T ∗Ai1
‖Ubi2

((qi10 , q
Ubi2
0), (ei11 , e

i2
1) . . . (ei1n , e

i2
n)) = (qi1n , q

Ubi2
0)

so τ ∈ L(Ai1‖Ubi2). The same reasoning applies when Bi1 = Ubi1 , hence the result for m = 2.
For m > 2, as ‖ is associative (see Proposition 1), it suffices to consider first the automaton
B = Bi1‖ . . . ‖Bim−1

and to apply the previous reasoning. �

Definition 7 (Diagnosis). A diagnosis for the diagnosis problem (SD,C,OBS) is a set ∆ ⊆ C such
that ‖{SD\{Aci |ci ∈ ∆} ∪ {Ubci |ci ∈ ∆}} is consistent with OBS.

Definition 8 (Minimal diagnosis). A diagnosis ∆ is minimal if there is no strict subset ∆′ ⊂ ∆ that is
a diagnosis.

Corollary 1. Consider the system C = {c1, . . . , cn} for which a subset of components ∆ =

{ci1 , . . . cim} ⊆ C, 1 < m, are faulty according to unknown faulty behaviors Af
i1
, . . . Af

im
respectively,

and the remaining components {cim+1 , . . . cin} are normal. Denote the language generated by the faulty
system by L(SDf) = Af

i1
‖ . . . ‖Af

im
‖Aim+1

‖ . . . ‖Ain , then if a sequence of observable synchronized
events OBS is such that obs−1(OBS) ∈ L(SDf), then L(SD′) = Ubi1‖ . . . ‖Ubim‖Aim+1

‖ . . . ‖Ain

is consistent with OBS and ∆ is a diagnosis.

Proof. The proof comes directly from Proposition 2 and Definition 7. �

Proposition 3. If a sequence of observable synchronized events OBS is inconsistent with the system
description SD then ∆ = C is a diagnosis for the diagnosis problem (SD,C,OBS).

Proof. According to Definition 5, obs−1(OBS) has an empty intersection with L(SD). According
to Definition 7 we have to show that L(SD′) with SD′ = ‖{Ubi} has a nonempty intersection with
obs−1(OBS).

The universal behavior of a component ci can be represented by the automaton Ubi = ({q0i
}, Eci ∪

{ε}, T, q0i
) with the total transition function T : {q0i

} × Eci ∪ {ε} → {q0i}. This automaton consists
of only one state and has a transition for each event as well as the empty string.

Following Definition 2 the synchronized product of all universal behaviors is represented by the
automaton SD′ = ({q01

× . . . × q0n
}, ESync, T, q01

× . . . × q0n
) with the total transition function

T : {q01
× . . . × q0n

} × ER → {q01
× . . . × q0n

}. As the universal behaviors allow all individual
events in the only one state, in the synchronized product the synchronized events are the full set of ER.
Therefore, this automaton consists of only one state and has a transition for each possible synchronized
event. Thus, the language represented by SD′ is L(SD′) = ER

∗.

177

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

Due to the assumption that a faulty system does not produce any other observable synchronization
events than the ones in EOSynch

, we know that obs−1(OBS) is nonempty because at least OBS is a
proper inverse mapping. Given this we can show that obs−1(OBS) has a nonempty intersection with
L(SD′) = ER

∗. Thus SD′ with ∆ and OBS are consistent and therefore following Definition 7,
∆ = C is a diagnosis for diagnosis problem (SD,C,OBS). �

Consider the running example of the BTS and the observation sequence OBSF1. We have al-
ready assessed earlier that OBSF1 is inconsistent with SDBTS . Hence, from Proposition 3, CBTS =
{C1, C2, P, Cont, Sk, Sa, Sb, Sc} is a diagnosis. But this is only usefull to detect that there is a faulty
component. Now, if we use Definition 8 and Corollary 1, we find that ∆1 = {P}, and ∆2 = {Sb} are
two minimal diagnoses and we can therefore isolate the faulty components. These results can be physi-
cally explained from the expected behavior of the BTS, the interaction of its components illustrated on
Figure 1, and the events that are observed.

Let us retrieve the whole scenarios for both diagnoses. The observed events
are given by the sequence OBSF1 = [pistonOut_k, pistonIn_a, b, c, pistonOut_k,
pistonIn_a, b, c, pistonOut_k, b, c, b]. The subsequence [pistonOut_k, pistonIn_a, b, c,] re-
peats twice and it is consistent with L(SDBTS) since it corresponds to OBSN . After this subsequence
has repeated, the synchronized event pistonOut_k is observed, which means that a baggage is sensed
at the right end of conveyor C1 trigering the controller Cont to send pistonOut, which commands the
piston P to move out. At this point, the scenarios of the two diagnoses diverge.

Scenario for diagnosis ∆1 = {P}. The observation of event b can be explained by the piston
being back at its inner limit without having reached its outer limit, indicating a faulty piston. Note that
otherwise the event a or the event c would have been observed. The piston then moves out again without
receiving the command pistonOut from the controller Cont, which pushes the baggage at the left end
of conveyorC2. The event c indicating that the baggage has travelled all the way downC2 is then issued.
Finally, the piston shows a faulty behavior again and moves back and forth so that b is issued again. We
can therefore conclude that the faulty piston alone is consistent with the observed sequence OBSF1.

Scenario for diagnosis ∆2 = {Sb}. The observations of event b can be explained by sensor Sb

emitting b erronously. In the meanwhile, the piston finishes its stroke which pushes the baggage at the
left end of conveyor C2. The event c indicating that the baggage has travelled all the way down C2 is
then issued. Finally, sensor Sb gets crazy again and b is emitted again.We can therefore conclude that
sensor Sb faulty alone is consistent with the observed sequence OBSF1.

4 Calculating Diagnoses

This section aims at characterizing within the proposed framework a notion of conflict that can be used
to compute the minimal diagnoses in a similar way as for static systems.

Definition 9 (Conflict). A conflict set is a set of components Γ := {c1, . . . , ck} ⊆ C such that ‖{AΓ ∪
{Ubi|ci ∈ C\Γ}} is inconsistent with OBS.

Definition 10. A conflict Γ is minimal if no subset Γ′ ⊂ Γ is a conflict.

Let C1 be a set of components of C and C2 = C \ C1, let L(C1, C2, σ) denote the language
{τ ∈ L((‖ci∈C1Ai)‖(‖ci∈C2Ubi))∩ obs−1(σ)}. Any word of L(C1, C2, σ) is a run consistent with the
observation σ where the components of C2 have been replaced by their repsective universal behaviors.

Lemma 1. For any subsets of components C1, C2 ⊆ C, L(C1 ∪ C2, C \ (C1 ∪ C2), σ) ⊆ L(C1, C \
C1, σ).

178

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

Proof. The result is obvious if C2 ⊆ C1. Consider now that C2 6⊆ C1. Let us denote C1 =
{ci1 , . . . , cim1

}, C2 \ C1 = {cj1 , . . . , cjm2
} and C \ (C1 ∪ C2) = {ck1

, . . . , ckm3
}. Any run τ in

L(C1 ∪ C2, C \ (C1 ∪ C2), σ) is a run of

L(Ai1‖ . . . ‖Aim1
‖Ubk1

‖ . . . ‖Ubkm3
‖Aj1‖ . . . ‖Ajm2

).

By Proposition 2, the run τ is also in

L(Ai1‖ . . . ‖Aim1
‖Ubk1

‖ . . . ‖Ubkm3
‖Aj1‖ . . . ‖Ajm2−1

‖Ubjm2
)

and by commutativity, it is in

L(Ai1‖ . . . ‖Aim1
‖Ubk1‖ . . . ‖Ubkm3

‖Aj1‖ . . . ‖Ubjm2
‖Ajm2−1).

Apply m2 − 1 times this reasoning, it follows that the run τ is a run of

L(Ai1‖ . . . ‖Aim1
‖Ubk1

‖ . . . ‖Ubkm3
‖Ubj1‖ . . . ‖Ubjm2−1

‖Ubjm2
).

Therefore, τ ∈ L(C1, C \ C1, σ) as obs∗(τ) = σ. �

Proposition 4. Let MCS be the set of minimal conflicts, a diagnosis ∆ is minimal iff ∆ is a minimal
hitting set of MCS.

Proof (⇒) We prove first that a minimal diagnosis ∆ is a minimal hitting set of MCS . Consider a
minimal conflict Γ of MCS , then by definition:

L(Γ, C \ Γ, σ) = ∅.

From Lemma 1, it follows that ∀C ′ ⊆ C,

L(Γ ∪ C ′, C \ (Γ ∪ C ′), σ) = ∅.

As ∆ is a diagnosis, then there is no setC ′ ⊆ C such that ∆ = C\(Γ∪C ′) which means that ∆∩Γ 6= ∅
for any conflict Γ of MCS . Now, suppose that there exists in ∆ a component c that does not belong to
any conflict of MCS . As ∆ is a minimal diagnosis,

L(C \∆ ∪ {c},∆ \ {c}, σ) = ∅.

SoC\∆∪{c} is a conflict whileC\∆ is not. Any minimal conflict that would be included inC\∆∪{c}
would contain c and would be in MCS , hence the contradiction. Till now, we already prove that ∆ is a
hitting set of MCS , let us prove that it is a minimal one. If ∆ is not a minimal hitting set of MCS , there
must exist a component c such that for any conflict Γ in MCS , ∆ \ {c} ∩ Γ 6= ∅. As ∆ is a minimal
diagnosis, it follows that

L(C \∆ ∪ {c},∆ \ {c}, σ) = ∅

which means that C \ ∆ ∪ {c} is a conflict. However, for any conflict Γ in MCS , Γ 6⊆ C \ ∆ ∪ {c}
(as ∆ \ {c} ∩ Γ 6= ∅). So C \∆ ∪ {c} must contain a minimal conflict that is not in MCS , hence the
contradiction.

(⇐) Let MCS = {Γ1, . . . ,Γk}. For any i ∈ {1, . . . , k}, as L(Γi, C \ Γi, σ) = ∅, Lemma 1 asserts
that any supset Γi ∪ C ′ is also a conflict

∀C ′ ⊆ C,L(Γi ∪ C ′, C \ (Γi ∪ C ′), σ) = ∅.

179

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

Moreover any possible conflict is such a set (if not, it would mean that there exists a minimal conflict
that is not in MCS). ∆ is a minimal hitting set of MCS so for any i in {1, . . . , k}, ∆ ∩ Γi 6= ∅ thus
Γi 6⊆ C \∆. Therefore, C \∆ is not a conflict:

L(C \∆,∆, σ) 6= ∅

so ∆ is a diagnosis.
Consider now ci ∈ ∆. As ∆ is a minimal hitting set, there exists Γ ∈ MCS such that ∆\{c}∩Γ = ∅

which means that Γ ⊆ C \ (∆ \ {c}) = C \∆ ∪ {c} and then

L(C \∆ ∪ {ci},∆ \ {ci}, σ) = ∅.

Therefore ∆ is a minimal diagnosis. �
Proposition 4 shows that it is possible to search for minimal diagnoses by first computing the set of

minimal conflicts and secondly by computing the set of minimal hitting sets. Strategies for computing
such hitting sets, like for instance the one of [12] that is used in the model-based diagnostic engine
DITO [13], can be straightforwarldy implemented for the consistency based diagnosis of discrete event
systems that we introduce in this paper.

Consider the running example of the BTS again and now take the observation sequence OBSF2.
Like for sequence OBSF1, OBSF2 has been shown inconsistent with SDBTS and from Proposition
3, CBTS = {C1, C2, P, Cont, Sk, Sa, Sb, Sc} is a diagnosis, which indicates that there is a fault. Let
us apply the above results to derive the interesting diagnoses, i.e. minimal diagnoses. As stated in
Proposition 4, minimal diagnoses can be obtained from minimal conflicts. For the current scenario,
there are 192 conflicts (over 255 possible configurations) and 2 of them are minimal: Γ1 = {Cont} and
Γ2 = {P} (note that, by using the strategy proposed in [12], only the consistency of 65 configurations
is checked to get the minimal conflicts). From Proposition 4, we therefore obtain one unique diagnosis
∆ = {Cont, P} that indicates a double fault on the controller Cont and the piston P .

Let us use the expected behavior of the BTS, the interaction of its components illustrated on Figure
1, and the events that are observed to explain this result physically. The observed events are given
by the sequence OBSF2 = [pistonOut_k, pistonIn_a, b, c, pistonOut_k, b, c, pistonOut_k]. The
subsequence [pistonOut_k, pistonIn_a, b, c,] is consistent with L(SDBTS) since, as already seen,
it corresponds to OBSN . After this subsequence, the synchronized event pistonOut_k is observed,
which means that a baggage is sensed at the right end of conveyor C1 trigering the controller Cont to
send pistonOut, which commands the piston P to move out.

The observation of event b can be explained by the piston being back at its inner limit without hav-
ing reached its outer limit, indicating a faulty piston. Note that otherwise the event pistonIn_a or the
event c would have been observed. The piston then moves out again without receiving the command
pistonOut from the controller Cont, which pushes the baggage at the left end of conveyor C2. The
event c indicating that the baggage has travelled all the way down C2 is then issued. Finally, one can
assume that anoter baggage is charged on conveyor C1 and reaches the right end so that the sensor Sk

emits the event k but this event is synchronized with the event pistonOutsent by the controller. How-
ever, the observation of pistonOut_k implies that the controller Cont is faulty because the controller
cannot emit pistonOut two times in a row.

We can therefore conclude that the observed sequence OBSF1 is explained by the double fault
∆ = {Cont, P}.

180

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

5 Related Work

We start our discussion of related research with the discussion of diagnosis discrete event system with
known fault modes. In [2] a method was proposed to generate from a system description comprising
the nominal as well as the faulty system behavior a so called diagnoser. This diagnoser represents the
system behavior using an automaton where the states are labeled with faults which would explain why
the system reaches this state from the initial state. This method is on the one hand fast during the runtime
as only the diagnoser needs to be traversed. On the other hand the generation of the diagnoser can be
complex and probably infeasible. The major difference to our approach is that the approach needs a
description of the faulty behavior of the system. Thus as we argued above such a description is not
always easy to obtain.

In order to overcome the problem of the generation of a diagnoser for a large system a merging
based method was proposed in [14]. The system is described as a set of components connected to each
other through communication channels. Each component is described by an automaton describing the
normal and the faulty behavior. If a fault occurs the diagnosis is performed by splitting the system into
clusters, calculating a local diagnosis for each cluster and afterwards merging the local diagnosis into a
global diagnosis. This approach shows several similarities to our approach but as in the case above it
uses fault modes to characterize the faulty behavior of the system.

All the above approaches considered the system as a discrete system. In contrast the work proposed
in [15], [16] considers the system as a continuous system. The major difference imposed is that through
the use of a continuous system one can apply differential equations for a system. Thus the consistency-
based diagnosis can be applied by retracing equations which belong to certain components. This is in
contrast to our approach which doesn’t retract equations but the constraints imposed by an automaton.

As our approach operates on automatons we have a strong relation to Kripke structures. In principle
these structures represent states comprising a set of propositions with their truth value and transitions
between these states. This representation is very similar to ours. In order to detect an inconsistency
of such a structure an update method was proposed in [17]. The method updates the Kripke structure
in order to guarantee that the Kripke structure is consistent with a CTL specification. The same idea
was also used in [18] by finding a minimal set of updates. Such a minimal set of updates together with
the resulting structure is considered as the preferred repair. This is in contrast to our approach as we
minimize the faulty components and not the changes to the automaton. Thus a minimal diagnosis in our
case can cause a non-minimal set of updates to the automaton and vice versa.

The idea of updating a Kripke structure was also used in [19]. The Kripke structure represented
the observations of a conference system. These observations were checked for consistency with an
LTL formula, which was used to impose plausibility constraints. After updating the structure to guar-
anty consistency, those paths in the structure with the minimal distance to the original observations are
accumulated to form the preferred histories of events. Thus the diagnosis was on minimal changing
the observation history to be consistent with the LTL formula. This is in contrast our approach which
changes the system description to conform the observation history.

Due to the usage of LTL formulas to specify the system behavior the correct design of such formu-
las is of interest. In order to easy the design process a method was proposed in [20] to diagnose LTL
formulas. The idea is to determine those operators in the formula which are the root cause of an incon-
sistency with a given trace. Thus the diagnosis is a set of operators which needs to be revised in order
to reflect the trace correctly. The authors propose a consistency-based as well as a fault mode based
version, thus enabling a fast or more precise diagnosis. The main difference to our approach is that we
use an automaton which as such can represent any regular expression which is not possible through an
LTL formula. Furthermore we consider one automaton of the system to be faulty instead of a specific
part of this automaton as it was done in the LTL formula.

181

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

Work very much related to our approach was presented in [21]. In the paper the authors how Re-
iter’s approach can be generalized for a much broader class of systems including discrete event systems.
Following the consistency-based paradigm the space of diagnosis hypotheses is explored for valid di-
agnoses. Using an order-relation of the hypotheses-space and conflict-driven search diagnoses can be
obtained very efficiently. Following the same consistency-based idea and an advanced search pattern in
contrast to our approach the method still needs a model of the faults in order to work.

6 Conclusion and Future Work
Usually complex systems show a dynamic behavior that can be model using discrete event systems.
When it comes to diagnosis of such systems information about possible faults and the faulty behavior
is needed. Such information is usually hard to obtain. In this paper we presented an approach that
adopts the well known idea of consistency-based diagnosis for discrete event systems. The idea is
that system’s components are modeled as automatons which are synchronized to represent the global
behavior of the system. In defining the diagnosis we follow Reiter’s consistency-based approach where
we represent consistency of the system and some observations using the membership of the language
of the system description. We introduced the notion of a universal behavior that does not constrain the
consistent observations of a component. We showed that using this representation we are able to detect
an inconsistent observation and to derive a diagnosis for it. Finally, we defined the notion of conflict
related to our representation and showed that we can use minimal hitting sets to calculate diagnoses as
well.

In future work we have to investigate how we can use our notion of conflict to calculate diagnoses
more efficiently. Moreover, by dropping the need for fault-modes the diagnosis process becomes less
focused. Further research needs be done in the relation of our novel representation and properties like
diagnosability.

Acknowledgement
The work presented in this paper was partly supported by the visiting professor program of the INSTI-
TUT NATIONAL POLYTECHNIQUE DE TOULOUSE (INP Toulouse), Toulouse, France.

References
[1] Raymond Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95, April 1987.
[2] Meera Sampath, Raja Sengupta, Stephane Lafortune, Kasim Sinnamohideen, and Demosthenis Teneketzis.

Diagnosability of discrete-event systems. Automatic Control, IEEE Transactions on, 40(9):1555–1575, 1995.
[3] Sriram Narasimhan and Gautam Biswas. Model-based diagnosis of hybrid systems. IEEE Transactions on

Systems, Man, and Cybernetics, Part A, 37(3):348–361, 2007.
[4] Alban Grastien. A spectrum of diagnosis approaches. In The 24th International Workshop on Principles of

Diagnosis, pages 130–135. Citeseer, 2013.
[5] Janan Zaytoon and Stéphane Lafortune. Overview of fault diagnosis methods for discrete event systems.

Annual Reviews in Control, 37(2):308–320, 2013.
[6] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event Systems. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2006.
[7] Yannick Pencolé, Anika Schumann, and Dmitry Kamenetsky. Towards low-cost fault diagnosis in large

component-based systems. In 6th IFAC Symposium on Fault Detection, Supervision and Safety of Techni-
cal Processes, pages 1473–1478, Beijing, China, 8 2006.

182

Diagnosing Discrete Event Systems Using Nominal Models Only Y. Pencolé, G. Steinbauer, C. Mühlbacher, L.Travé-Massuyès

[8] Yannick Pencolé. Fault diagnosis in discrete-event systems: How to analyse algorithm performance? In
Diagnostic reasoning: Model Analysis and Performance, pages 19–25, Montpellier, France, 8 2012.

[9] Shengbing Jiang, Zhongdong Huang, Vigyan Chandra, and Ratnesh Kumar. A polynomial algorithm for
testing diagnosability of discrete-event systems. Transactions on Automatic Control, 46(8):1318–1321, 8
2001.

[10] Gianfranco Lamperti and Marina Zanella. Flexible diagnosis of discrete-event systems by similarity-based
reasoning techniques. Artificial Intelligence, 170(3):232–297, 2006.

[11] Gianfranco Lamperti and Marina Zanella. Diagnosis of discrete-event systems from uncertain temporal ob-
servations. Artificial Intelligence, 137(1):91 – 163, 2002.

[12] Xiangfu Zhao and Dantong Ouyang. Improved algorithms for deriving all minimal conflict sets in model-
based diagnosis. In Advanced Intelligent Computing Theories and Applications. With Aspects of The- oretical
and Methodological Issues. Third International Conference on Intelligent Computing, pages 157–166, Qing-
dao, China, aug 2007.

[13] Yannick Pencolé. Dito: a csp-based diagnostic engine. In 21st European Conference on Artificial Intelligence,
pages 699–704, Prague, Czech Republic, 8 2014.

[14] Pietro Baroni, Gianfranco Lamperti, Paolo Pogliano, and Marina Zanella. Diagnosis of large active systems.
Artificial Intelligence, 110(1):135–183, 1999.

[15] Hwee Tou Ng. Model-based, multiple-fault diagnosis of dynamic, continuous physical devices. IEEE Intelli-
gent Systems, (6):38–43, 1991.

[16] Franz Lackinger and Wolfgang Nejdl. Integrating model-based monitoring and diagnosis of complex dynamic
systems. In IJCAI, pages 1123–1128, 1991.

[17] Franz Wotawa and Bibiane Angerer. Retaining consistency in temporal knowledge bases. In Advances in
Applied Artificial Intelligence, pages 600–609. Springer, 2006.

[18] Yulin Ding and Yan Zhang. Model updating ctl systems. In AI 2005: Advances in Artificial Intelligence,
pages 5–16. Springer, 2005.

[19] Bibiane Angerer, Andreas Griesmayer, and Franz Wotawa. Maintaining temporal consistency in a multimedia
knowledge base.

[20] Ingo Pill and Thomas Quaritsch. Behavioral diagnosis of ltl specifications at operator level. In IJCAI. Citeseer,
2013.

[21] Alban Grastien, Patrik Haslum, and Sylvie Thiébaux. Conflict-Based Diagnosis of Discrete Event Systems:
Theory and Practice. In International Conference on Principles of Knowledge Representation and Reasoning
(KR 2012), 2012.

183

	Introduction
	Running Example
	Consistency Based Diagnosis
	Component description
	System description
	Consistency based diagnosis problem

	Calculating Diagnoses
	Related Work
	Conclusion and Future Work

