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Abstract

In bioinformatics, DNA sequence assembly refers to the reconstruction of an original
DNA sequence by the alignment and merging of fragments that can be obtained from
several sequencing methods. The main sequencing methods process thousands or even
millions of these fragments, which can be short (hundreds of base pairs) or long (thousands
of base pairs) read sequences. This is a highly computational task, which usually requires
the use of parallel programs and algorithms, so that it can be performed with desirable
accuracy and within suitable time limits. In this paper, we evaluate the performance
of DALIGNER long read sequences aligner in a system using the Intel Xeon Phi 7210
processor. We are looking for scalable architectures that could provide a higher throughput
that can be applied to future sequencing technologies.

1 Introduction

In the very first years of DNA sequencing, mostly due to the technologies then available, the
amount of data acquired in the sequencing processes had a very small volume and slow growth.
Recently, however, new technologies for DNA sequencing with long reads have emerged, which
are very promising in terms of assembly quality obtained, with much better results than short
reads sequences methods.

This technology, on the other hand, must process files that contain reads with a high per-
centage of errors (up to 15 %) [8][13], requiring a large amount of repetitions of those reads
and, consequently, a proportional increase in data volume and processing time.

One of the major challenges associated with DNA sequence assembly is the amount of time
and computing resources required for this processing. Recent advances in computing systems
resulted in more processing power, increased memory and data storage capacity, that assembly
programs need to use in a more efficient way.

Parallel systems with high computational power, together with sequence assemblers using
parallel techniques, are more and more used to process large amounts of data produced by DNA
sequencers [1][4].

Intel Xeon Phi is a very cost-effective option to be used as a parallel system to perform DNA
sequence assembly that has been made available in the recent years. This processor delivers
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massive parallelism and vectorization with focus on high performance computing (HPC), which
uses parallel processing for large data demands in a variety of areas, such as Computational
Physics, Chemistry, Biology, and Finance [7].

The integrated and power-efficient architecture delivers significantly more compute per unit
of energy consumed versus similar platforms, supplying an improved total cost of ownership.

2 Related Work

In recent years, very large genomes’ assembly and alignment have improved with the develop-
ment of new programs and sequencing technologies [6]. These programs are able to perform
genome alignment and assembly with higher performance but using fewer computational re-
sources.

BLASR (Basic Local Alignment with Successive Refinement) is an example of program used
to aligning single Molecule Sequencing (SMS), using long read sequences [2].

BLASR combines the data structures used in short reads mapping with alignment methods
used for whole genomes. The strategy used for mapping SMS reads is to locate a relatively
small number of ranges where reads can be mapped and then detailed alignments are used to
determine which one is the best range.

Another program is MECAT [9]. It uses an alignment method based on a different global
alignment score. For large human SMS data, this method is 7 times more faster than MHAP
[15] for paired alignment and 15 times more faster than BLASR using reference mapping. It is
able to assembly large genome from single molecular sequencing (SMS) with high quality and
low computing cost, using a smaller amount of memory and processor usage.

DALIGNER aligner for long read sequences finds local overlays and alignments in the
datasets sequenced quickly and efficiently [6]. DALIGNER implementation process is divided
into two steps. During the first step it looks for common k-mers present in the reference and
target sequence. In the second step the alignment process is improved between the reference
and the destination, to do this, DALIGNER uses an algorithm that is O(nd). In the next
section more details about this will be presented.

These specific tools used in bioinformatics differ one from another not only in their algo-
rithmic designs and methodology, but also in their performance robustness across a variety of
datasets, processing time, memory usage and scalability [10].

As seen above, there are several studies published about DNA sequence assemblers evalua-
tion, some focusing on quality and others addressing performance aspects.

The study presented here focus on evaluating DALIGNER performance using several exe-
cution parameters and compiler options, as well changing some internal configurations of the
Intel Xeon Phi 7210 processor.

3 DALIGNER Aligner

DALIGNER can also be used as a general reading mapper, and a comparison tool between
sequences, once ”reads” can now be a DNA sequence. To find overlays, DALIGNER aligner
uses a new adaptive computation method, based on an O(nd) algorithm described in [6], so
that in practice an alignment is detected in linear time with the number of existing columns in
the alignment.

DALIGNER is based on the same filtering concept adopted in BLASR, but using an opti-
mized version of the radix sort algorithm [3]. The radix sort is an algorithm that uses counting
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sort as a subroutine to sort. It sorts data with integer keys by grouping keys by the individ-
ual digits which share the same significant position and value. The second step improves the
alignment between the reference and the destination.

It is necessary to split the dataset into smaller blocks to efficiently use DALIGNER on
larger datasets. The comparisons required to perform all overlaps is quadratic in time relative
to the number of blocks. DALIGNER optionally outputs full overlaps, but will first output
local alignment trace points to aid in computing a full alignment in later steps, producing large
auxiliary files [14].

4 Intel Xeon Phi

Knights Landing (KNL) is Intel’s code name for its second-generation many-integrated-core
(MIC) Xeon Phi processor, 7200 family. The change in hardware represents a significant im-
provement over the first-generation Knights Corner (KNC), giving the KNL the potential to be
even more effective for memory-bound problems. The Table 1 shows some details and technical
specifications of the Xeon Phi 7210 processor.

Table 1: Intel Xeon Phi System Technical Specifications

Intel Xeon Phi 7210
Clock 1.30 GHz
CPU cores 64
Threads 256
Level 1 Cache 64 x 32 KB 8-way instruction

64 x 32 KB 8-way data
Level 2 Cache 32 x 1 MB 16-way shared
HBM memory 16 GB (Level 3 Cache)
Extensions AVX-512 Vector Extensions
Physical memory up to 384 GB
Performance 2.66 TFlops
TDP 215W

4.1 Memory Architecture

The Intel Xeon Phi KNL memory subsystem is composed of 16 GB accessed by 8 memory
controllers, as well as up to 384 GB of DDR4 accessed by 2 x 3-channel memory controllers. An
important aspect of the Knights Landing design, the achievable memory bandwidth is perhaps
of the same or even greater importance. It is expected that the KNL chip can get more than
400 GB/sec of bandwidth out of the 16 GB of MCDRAM and more than 90 GB/sec out of the
regular DRAM.

• Flat Mode: In this mode software modifications are required in order to use both the
DDR and the MCDRAM in the same application. The MCDRAM memory is mapped
into the same address space as the DDR memory and acts the same in terms of reading
and writing. The advantage is that the 16GB of MCDRAM are seen as addressable, hence
increasing the total addressable memory in a KNL system.
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• Cache Mode: Using this mode does not require any software change and works well for
many applications. In this mode cache is managed by the hardware and legacy applica-
tions will work just fine and can benefit from the high bandwidth memory (HBM).

• Hybrid Mode: This mode will use some of the MCDRAM as a cache, and some of it as
flat memory. This is great for applications which can benefit from increased caching as
well as take advantage of the higher bandwidth memory.

In Figure 1 one find the memory modes of the Intel XEON PHI. These modes are configured
through the BIOS at boot time.

Figure 1: Memory Modes [11]

4.2 Clustering Modes

The KNL memory architecture has two types of memory: the high-bandwidth memory (HBM)
integrated on package, MCDRAM, with capacity up to 16 GB and peak bandwidth over 450
GB/s and external DDR with capacity up to 384 GB (64 GB per channel) and peak bandwidth
around 90 GB/s. The Knights Landing interconnecting mesh operates in one of three clustering
modes: all-to-all, quadrant and sub-NUMA.

• All-to-all: Memory addresses are uniformly distributed across all tag directories in the
chip. This is the most general mode with the easiest programming model.

• Quadrant: In the quadrant clustering mode, which divides the cores into into two (hemi-
spheres) or four parts called quadrants and attempts to decrease intra-process communi-
cation time by keeping all threads of a single process close together.

• Sub-NUMA: Attempts to increase memory performance by keeping shared memory
accesses to MCDRAM closer to the quadrant where the request originated. This mode
provides the lowest latency, provided that applications are NUMA-aware.

5 Experimental Setup

Long read sequences obtained from Escherichia coli sequencing are used to perform the tests.
It is also known as E. coli, and is a Gram-negative bacillary bacteria normally found in the
intestines of humans and animals. Most E. coli strains are harmless; however, some are
pathogenic, which means they can cause diseases that can be transmitted through contami-
nated food or water, or through contact with animals or people.

The dataset used to perform the tests was downloaded from the National Center for Biotech-
nology Information (NCBI) database at https://www.ncbi.nlm.nih.gov/nuccore/U00096.3. We
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chose these data file because it is simple, very used in other works and our computing resources
do not support a bigger dataset [14].

The sequence files are composed of fastq files captured from a PacBio RS II System and
P6-C4 chemistry, the very first long read DNA sequencer [5]. A summary can be seen in Table
2.

Table 2: The size of data files

E. Coli str. K-12 substr. MG1655
700 GB

Since DALIGNER aligner does not use files in the fastq format, the seqtk [12] program was
used to convert from the fastq to the fasta format.

It is possible to specify the k-mer size (k) to be used by DALIGNER. Three values for k-mer
were used: the default value of k=14 and other two values, k=13 and k=15. These k-mer values
were chosen because they presented the best hit count values. Some other k-mer values were
also used, but presented very low hit count values, which indicates a poor alignment quality.

Two other parameters were set too: -M that specifies the maximum amount of memory to
be used. As the system has 112 GB, this was fixed in 96 GB, so the program can be executed
without any swap operation. Some other parameter defined was -T, specifying the amount of
threads to be used. In the experiments performed this parameter was set between 1 and 60.

There is also a -t parameter which suppresses the use of any k-mer that has more than t×t oc-
currences in either the subject or target block. If the number set for -t is high, DALIGNER will
need bigger memory to store the indexes of k-mer, if the number set for -t is low, DALIGNER
will use less memory and storage but it could miss some alignments.

The best value for -t parameter depends on the size and repetition in the genome. If the
-M parameter is used, the program automatically selects an effective value of -t that meets the
memory limit specified [16]. We noticed that when k-mer values greater than 14 are used, the
effective value of -t is set to its default value (100). But, when smaller k-mer values are chosen
(e.g 13 or 12), the effective value of -t is reduced (e.g. 21 or 30) to fit into the memory limits
specified.

The Intel VTune Amplifier XE 2017 tool was used to identify routines that consume more
computational resources. It was observed that the Local Alignment function consumes on
average 81.5% of total execution time. The lex thread, that performs k-mer sorting, is highly
optimized and has a low impact (14.5%) in overall execution time.

Table 3: CPU usage by DALIGNER functions

Function CPU Used (%) Module
merge thread 4% daligner

lex thread 14.5% daligner
Local Alignment 81.5% daligner

The Local Alignment module finds local alignments given a seed position, representing such
local alignment with its interval and a set of pass-thru points, so that a detailed alignment can
be efficiently computed on demand [6]. The Local Alignment finds the longest significant local
alignment between the sequences. A local alignment is specified by the point at which its path
in the underlying edit graph starts, and the point at which it ends.
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The Local Alignment function has two routines: waves of f.r. (forward and reverse). The
search takes place both in the forward direction and the reverse direction from a seed. The
larger the size of the dataset, the greater will be the time spent in the function Local Alignment
over the other functions.

The majority of the tests were performed on a server with an Intel Xeon Phi 7210 accelerator
and 112 GB (96 GB + 16 GB) of memory, and is called XEON PHI System for short. The
files used in the experiment were stored on a local high-speed SSD (Solid-State Drive) disk.
The operating system used was the version 7.2 of the 64-bit Centos Linux distribution and to
compile DALIGNER it was used the Intel icc compiler version 17.0.4.

We also used a conventional multicore server, referenced as XEON system, whose charac-
teristics are presented in the Table 4.

Table 4: XEON System Technical Specifications

Specifications
Processor Intel Xeon E5-2680 v2
Frequency 2.80 GHz
Cores 2 x 10
Cache 25 MB SmartCache
Memory 128 GB
Storage (SSD) 480 GB

For each result presented in this study, three series of tests were executed, the average time
calculated and after that, the speedup and efficiency estimated.

6 Results

6.1 Execution Time Analysis

Initially DALIGNER was compiled and executed with the default parameters and environment
variables found in the original makefile. On this first test, the XEON PHI system was config-
ured with all-to-all cluster mode, flat memory mode. The results were named as DEFAULT
configuration. Execution time results can be see in Figure 2.

Figure 2: DEFAULT elapsed times
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For comparison, DALIGNER was also compiled and executed on an conventional Intel Xeon
server, using the default configurations and k=14.

Table 5 shows the execution time and speedup results using 1, 20 and 60 threads.

Table 5: Xeon versus Xeon Phi

Architecture
Elapsed Time Speedup

1 Thread 20 Threads 60 Threads 20 Threads 60 Threads
Xeon 5833s 480s 677s 12.15 8.62

Xeon Phi 12840s 1350 540s 9.50 23.80

Although XEON PHI system had shown worse execution times initially, it outperforms
the Xeon server when running 60 threads. This performance gain is mainly due to the higher
number of cores (64) available in the Xeon Phi 7210 processor, and shows Xeon Phi architecture
potential.

After running the DEFAULT tests, a new configuration called CONFIG1 was created, where
the Makefile was modified, and the flag -xMIC-AVX512 and -O3 were added to the compiler
options, and the environment variables KMP AFFINITY and KMP PLACE THREADS were
set to new values.

KMP PLACE THREADS controls allocation of hardware resources. For example, ”64c,4t”
specifies four threads per core on 64 cores, and ”34c,2t” specifies two threads per core on 34
cores. The following value was attributed to variable KMP PLACE THREADS=64c,1t, that
specifies one thread per core and using all cores available at the processor.

KMP AFFINITY controls how threads are bound to resources. Common choices are COM-
PACT, SCATTER, and BALANCED. The granularity can be set to CORE or THREAD.
Using the environment variable KMP AFFINITY=scatter, it makes a round robin distribution
of threads among the cores, so they are spread along the maximum number of cores.

To run this new configuration, the XEON PHI system was configured with all-to-all cluster
mode and flat memory mode, i.e., the same values for the DEFAULT configuration.

With these changes, the execution times were 14% faster on average when compared to the
DEFAULT configuration. In Figure 3 the results are shown.

Figure 3: DEFAULT x CONFIG1 elapsed times

An additional configuration named CONFIG2 was made, with the same flags, optimization
options and memory mode used with CONFIG1, but with the cluster mode changed to quad-
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rant. In this case, the execution times were only 11% better than the results observed using
the DEFAULT configuration, as shown in Figure 4.

Although it was expected a better performance using quadrant mode in comparison with
all-to-all mode, this improvement did not occur. It was verified a performance loss within Local
Alignment function. In this mode, this function consumes more computer resources than with
all-to-all mode.

Figure 4: DEFAULT x CONFIG2 elapsed times

Two other additional tests were performed, changing memory mode to Hybrid and also to
Cache. Using either these two settings, DALIGNER did not finish the alignment. Only the
first step was completed, and when the second step was executed, the program crashes. We
can not devise the reason for that behaviour, probably due to some flaw in the cache coherence
protocol or race condition within the code.

6.2 Speedup and Efficiency Analysis

Figure 5: XEON PHI System speedup versus number of threads

The XEON PHI system presented a very consistent speedup, with an efficiency of 0.54 using
45 threads and k-mer value k=13. Figure 5 shows XEON PHI performance with three different
k-mers values. As one can notice, there are not many differences between the speedups using
k=13 and k=15. Table 6, summarize these results for values between 1 and 60 threads, using the
DEFAULT configuration. Speedup and efficiency are roughly the same when using CONFIG1
and CONFIG2.
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Table 6: Time, Speedup and Efficiency

K-mers Threads Time Speedup Efficiency
1 12840 1.00 1.00
15 1740s 7.38 0.49

k=14 30 960s 13.38 0.45
45 600s 21.40 0.48
60 540s 23.78 0.40
1 7320s 1.00 1.00
15 960s 7.63 0.51

k=13 30 540s 13.56 0.45
45 300s 24.40 0.54
60 240s 30.50 0.51
1 3840s 1.00 1.00
15 480s 8.00 0.53

k=15 30 240s 16.60 0.53
45 180s 21.33 0.47
60 120s 32.00 0.53

6.3 Memory Analysis

To assess the amount of memory consumed during the alignment process, the Linux smem
command was used. This command shows how much physical memory is allocated for each
running process. In Figure 6 the results of memory usage by the aligner on Intel XEON PHI
system can be observed. The “-M 96“ parameter was passed to the aligner, which limits the
maximum of memory allocated to 96 GB.

Figure 6: Memory footprint for DALIGNER. The x-axis shows the amount of memory used to
run DALIGNER

As can be observed in Figure 6, as the k-mer size is increased, the memory footprint is
smaller. This is highly expected, because large k-mers sizes reduce the total number of distinct
k-mers and the amount of memory required to process them [16].
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6.4 Alignment Quality

As much important as speedup and time measurements is the alignment quality. If the aligner
has good speedup and time results, but a poor alignment quality, this is worthless. DALIGNER
aligner output quality was verified through hit counting using k-mer sizes: k=14, k=13 and
k=15 as seen in Table 7.

Table 7: Aligner Hits

k-mers hit count seed hits confirmed hits
13-mers 2,767,529,738 6,529,247 8,499,596
14-mers 2,730,992,310 10,860,915 9,732,526
15-mers 1,439,546,906 9,283,118 9,589,822

As can be seen from Table 7, the best results for hit count, seed hits and confirmed hits were
obtained with k-mer k=14. Using k=15 provides the lowest execution times and also better
quality results than using k=13.

7 Conclusion and Future Work

In this study we presented some figures for DALIGNER performance on a system with Intel
Xeon Phi 7210 processor. We made experiments with several configuration options, both in
hardware and software, to evaluate the potential of this novel architecture executing a parallel
genome assembler.

One of the contributions of this work is to quantify the differences in execution time, speedup
and efficiency of an important bioinformatics application running on a system based on the
Intel Xeon Phi 7210 processor. Although DALIGNER has not been designed to this type of
architecture, it behaves pretty well according to our findings.

DALIGNER had a better performance executing on Xeon Phi, when compared to a con-
ventional multicore processor. Although it has a lower clock frequency, this performance was
achieved due to the higher number of cores (64 vs 20) available in Xeon Phi and the good
scalibility attained.

Also, for several k-mer values tested, we concluded that k=14 remains a compromise be-
tween performance and assembly quality. Aligner quality is a very important information, since
obtaining good speedup and time results but with poor alignment quality results is useless. As
observed, when using the default k-mer value k=14, the best hit count results were achieved.

We also noticed that larger k-mers values use much less memory than smaller ones. As
results, since we set a limit to the maximum amount of memory to be used, the quality of
the assembly drops when using small k-mer values. The program automatically reduces the
effective value of the -t parameter, The program automatically reduces the effective value of
the -t parameter, resulting in some alignments loss.

Additionally, when tuning the architecture parameters for the Intel Xeon Phi, an improve-
ment of 14% over the initial results was observed. Later, the configuration of the interconnect-
ing mesh within the chip was modified, from All-to-All to Quadrant mode, resulting in a small
performance loss, with execution times only 11% better than the initial results.

When using a specific feature of the Intel Xeon Phi 7210 as Memory Architecture, Clus-
tering Modes and the environment variables KMP AFFINITY and KMP PLACE THREADS,
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DALIGNER posed a great potential for running on this architecture as seen in the results pre-
sented. With this we intend to help researchers to use computational resources based on Intel
Xeon Phi architeture more efficiently. Although we use the 7210 model, the parameters used
on the tests can be extended to others Intel Xeon Phi family processors.

As future work we intend to expand this work to other aligners such as BLASR, Minimap,
Graphmap and MHAP, looking for a better tuning that includes hardware and software options,
that can reduce the alignment execution time. Also we intend to investigate some others
hardware and software options available to further improvements on DALIGNER performance.
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