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Abstract

This paper discusses the tragic accident in which the first pedestrian was killed by an au-
tonomous car: due to several grave errors in its design, it failed to recognize the pedestrian
and stop in time to avoid a collision. We start by discussing the accident in some detail,
enlightened by the recent publication of a report from the National Transportation Safety
Board (NTSB) re. the accident. We then discuss the shortcomings of current autonomous-
car technology, and advocate an approach in which several AI agents generate arguments
in support of some action, and an adjudicator AI determines which course of action to
take. Input to the agents can come from both symbolic reasoning and connectionist-style
inference. Either way, underlying each argument and the adjudication process is a proof/ar-
gument in the language of a multi-operator modal calculus, which renders transparent both
the mechanisms of the AI and accountability when accidents happen.

1 Introduction

On March 18, 2018, the first pedestrian was killed by an autonomous car. Of course, accidents
do happen, and some are unavoidable. However, this one was not. Several key deficiencies in
the design of Uber’s autonomous car came into play in the moments immediately preceding the
collision. We believe that, had there been a type of logicist automated reasoning in the car’s
automated systems, the fatality could have been prevented. In this paper, we present a quintet
of desiderata describing such a logicist system, and outline an argument showing how things
might have gone differently had the system been designed using a hybrid approach.

1.1 A Tragic Case Study

The accident occurred on a four-lane roadway, and began with the vehicle driving 44 mph in the
rightmost lane, and the pedestrian walking a bicycle across the street starting from the (driver’s)
left side. The vehicle’s radar first detected the pedestrian approximately 5.6 seconds before the
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fatal collision [2]. Less than half a second later, the lidar detects the pedestrian but classifies her
as “Other” and as an unmoving object. For the next 2.5 seconds, the lidar re-classifies her several
times, alternating between “Vehicle” and “Other”. The vehicle’s automated-driving system
(ADS) attempted to predict her direction of travel several times, but discarded any previous
information about her trajectory every time it reclassified her. Finally, with 2.6 seconds until
collision, the lidar classifies her as a bicycle, but as it was yet again changing her classification,
discarded any past trajectory information, and hence determined that she was not moving. The
upshot is that to this point the car had not taken any evasive or corrective action.

With 1.5 seconds left, the lidar re-classifies her yet again, this time as “Unknown”. The
system once again loses all of its tracking history. However, since at this point the pedestrian
has entered the vehicle’s lane, the ADS generates a plan to turn the car to the right to avoid
her. Three hundred milliseconds later, the lidar re-classifies her as a bicycle, and determines
that it would be impossible at this point to maneuver around her. With just 200 ms until
collision, the ADS begins braking the vehicle, pitifully too late to stop in time.

2 A Hybrid Approach

Autonomous driving is — at least in the first author’s opinion — an ideal application for a
hybrid approach to AI, as the process of human driving at least seems to naturally call for both
symbolic reasoning and statistical learning.

Consider the process of learning how hard to press the accelerator in order to move a car
at various speeds. Within this task are many machine-learning sub-tasks, including computing
a best-fit curve to an unknown function (e.g. a new driver learning the appropriate actuation
of the pedal to gently accelerate without jolting the car forward) and transfer learning (e.g. an
experienced driver adjusting the needed pressure on the pedal for a car they have never driven
before). These tasks by our lights appear to be clearly best solved by machine learning.

Next, consider a scenario where you are trying to merge onto the highway in heavy traffic.
You (d1) see a space that you can merge into, and look to the driver (d2) of the car behind that
space. You make eye contact, and the other driver flashes his/her high beams at you. This has
no formalized meaning, but you (rationally) interpret1 it to mean that the driver perceives
you and your vehicle, and hence believes that you desire to merge, and is intending to
allow you to merge; therefore, you safely merge in front of them, and give a thank-you wave
back. This scenario, unlike the last, isn’t well-suited to being trained from numerical data. It
is a reasoning process that one learns through one’s ability to understand other humans at the
“theory-of-mind” [16] (t-o-m) level.2 This reasoning is best formalized in a modal logic which
models the necessary t-o-m operators. In this paper we use the Inductive DCEC (IDCEC), a
nascent descendent of the DCEC; both cognitive calculi are described in the following section.
We can formalize the merging scenario above in standard DCEC as:

P(d2, now,D(d1, now,merge))

I(d2, now,Allow(d1,merge))

With regard to the Uber accident, we believe that were there certain logicist elements
present in the autonomous car, the accident could have been averted. Specifically, we propose
the following list of desiderata (denoted by ‘D’) to characterize the type of automated reasoner
we are looking to create:

1Though we do not discuss it here, such an act of interpretation may also be the kind of inferential leap that
is better modeled by the hybrid approach we advocate [12, 17, 13].

2Each boldface verb in the prose immediately above is at the t-o-m level. For one of the first automated
simulations of t-o-m reasoning, see [1].
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Desiderata ‘D’

We desire an automated reasoner that has the following properties:

p1 is defeasible (and hence nonmonotonic) in nature;

p2 is able to resolve or contain inconsistencies;

p3 makes use of values beyond bivalence (e.g. probabilities and/or strength-factors);

p4 is argument-based, where the arguments have internal inference-to-inference structure, so that
justification (and hence explanation) is available; and

p5 is able to allow automated reasoning over the knowledge, belief, perception, etc. (t-o-m aspects)
of humans involved in the scenario.

3 Steps Towards A Satisfactory Reasoner

We argue that a system which meets the above desiderata will be able to model and reason
about not only the autonomous-car accident described above, but also a variety of scenarios in
many domains. To the authors’ knowledge, no such system currently exists. In order to create
one, we will need to add several elements to our logicist armamentarium. The first addition
is to turn to so-called cognitive calculi. We quickly summarize these calculi in the following
subsections, then turn back to presenting our techniques with regard to the crash scenario.

3.1 Cognitive Calculi (Deductive)

Essentially, a deductive cognitive calculus is a quantified multi-operator modal logic such that
its: proof/argument theory is specified in “natural deduction” form (traceable back to [7, 6]),
operators cover all or most of human-level cognition (e.g., believing, knowing, perceiving, com-
municating, and also obligations, etc.), and semantics is exclusively proof-theoretic in nature.3

Proof-theoretic semantics eschews model-theoretic and possible-worlds semantics in favor of the
basic idea that meaning is provided to formulae and their constituents solely by virtue of the
nature of proofs in which these things appear.4

In the present work, we specifically utilize elements of the Deontic Cognitive Event Calculus
(DCEC) to model the perceptions (or lack thereof) and beliefs of the pilots, denoted B and P
respectively. A dialect of DCEC is specified and used in [11]. DCEC can be thought of roughly
as a quantified multi-operator modal logic with all of the introduction and elimination rules for
first-order logic, plus a host of inference schemata to cover its many modal operators. Soundness
proofs for cognitive calculi have been obtained but are out of scope. Also, an automated theorem
prover for DCEC — ShadowProver [8] — has been created and is under active development.

3.2 Inductive Cognitive Calculi

DCEC is purely deductive and employs no uncertainty system, so it fails to satisfy p1–p4.
Therefore, to meet desiderata p1 and p2, we use the Inductive DCEC (IDCEC), which has been
modified to handle inductive arguments.

To meet desideratum p3, we employ “strength factors”, in a nascent system for formalizing
uncertainty in quantified modal logics, first presented in [9]. Strength factors can be viewed as
a formalization of part of Chisholm’s epistemology [3]. The current version, which the present
work is based on, has a 13-value spectrum of strength, with zero being counterbalanced (no

3For specification of the formal language & proof theory of a cognitive calculus we direct readers to e.g. [11].
4For more on proof-theoretic semantics see [4, 5, 7, 15].
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belief for or against some formula), increasing positive integers indicating stronger belief in
favor of some formula, and decreasing negative integers indicating stronger belief against some
formula. The relevant strength factors to this work (i.e. they are used in the arguments in the
section below) are likely (level 2) and more likely than not (level 1).

Finally, to meet p4, we need methods for adjudicating conflicting arguments with regard to
which action to take in response to disagreement between multiple automated systems. Prior
work in this area was presented in [10].

4 A Solution in IDCEC
Our proposed solution is to install into an autonomous car a set of automated reasoners
r1, . . . , rn, and an AI adjudicator a? that receives, analyzes, and weighs proofs/arguments gen-
erated by ri.

5 Each automated reasoner would receive input from various sensors and determine
what action it believes is appropriate at each timestep. They would each compute an argument
as justification for their conclusion in the form of a proof in IDCEC. When two (or more)
automated reasoners disagree, the adjudicator a? resolves the conflict.

For the purposes of the running example of this paper, denote two automated reasoners r1
and r2, and the adjudicator a?. r1 receives input from the ADS and computes arguments that
correspond with what the ADS did in the actual accident. r2 takes a different approach; it
retains trajectory information regardless of the classification of the object, and computes an
argument in favor of braking. Due to space constraints, only a sketch of each proof is provided
below. Denote the following time steps: t0 the moment when the radar first perceives the
pedestrian, t1 the moment when the lidar first perceives the pedestrian, and t2 a short moment
after that. Finally, denote c the car and o∗ the pedestrian. Also, while the necessary elements
are not yet implemented in an automated reasoner to generate such proofs, we created simplified
versions of the proofs to run in ShadowProver to show that this AI could have computed its
argument fast enough to prevent the accident. The proof provided by r1 was generated by
ShadowProver in 0.35 seconds and in 0.32 seconds for r2’s argument.

B1(r1, t0, Stationary(o∗)) B1(r2, t0, Stationary(o∗))
∴ B1(r1, t0,¬GoingToCollide(c, o∗)) ∴ B1(r2, t0,¬GoingToCollide(c, o∗))
B1(r1, t1, Stationary(o∗)) B2(r2, t1,¬Stationary(o∗))
. . . B2(r2, t1,¬P(o∗, t1, c))
∴ B1(r1, t1,¬GoingToCollide(c, o∗)) ∴ B2(r2, t1, GoingToCollide(c, o∗))
∴ B1(r1, t2,¬NeedToBrake(c)) ∴ B2(r2, t2, NeedToBrake(c))
Argument of r1 Argument of r2

Clearly, r1 and r2 directly contradict each other. Therefore, a? is called to adjudicate and
make the final decision. In this case, the adjudication is easy: r2’s belief that the car should
brake is stronger than r1’s belief that it doesn’t need to.6 Hence, r2’s argument defeats r1’s,
and the vehicle begins braking 0.35 seconds7 after the lidar first perceived the pedestrian. This
would’ve given the car approximately 4.85 seconds to prevent the collision. With this amount
of time, in the context of the conditions that framed the accident, it is reasonable to believe
that the car, through some combination of adjusting its course and braking, would’ve been able
to avoid hitting the pedestrian.

5The adjudicator’s formal properties include but exceed those given to the aggregation function shown to
be inadequate in Arrow’s Impossibility Theorem (AIT; a nice proof and discussion is provided in [14]). Space
constraints prevent coverage here of this dimension of our work, which is intended to surmount AIT.

6We justify assigning r2’s belief a higher strength factor because its belief is based on multiple observations,
whereas r1’s are based on single observations.

7Plus a negligible amount of time for the — in this case, rather simple — adjudication process.
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5 Conclusion

Combining symbolic and connectionist techniques can provide the best of both worlds. We
gain the abilities enabled by deep learning and are able to generate proofs/arguments using
symbolic techniques that afford transparency; in particular, when things go wrong, it will be
clearer why they went wrong, and what specific component of the system is to blame. Such
diagnoses should in turn make possible the engineering of safer AI systems, and save lives.
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