
EPiC Series in Computing
Volume 79, 2021, Pages 64–70

Proceedings of ISCA 34th International Conference on
Computer Applications in Industry and Engineering

A Chinese character hash function based on strokes
for fingerprinting

Antoine Bossard
Graduate School of Science

Kanagawa University
Tsuchiya 2946, Hiratsuka, Kanagawa, Japan 259-1293

0000-0001-9381-9346

Abstract
Character representation in computer systems is the main purpose of character encod-

ings, such as Unicode. The representation of Chinese characters in computer systems is
a long-standing issue. It is currently still not possible to easily represent, for instance to
input, some Chinese characters in computers. In this research, we especially consider the
issue of the Chinese characters that are not covered by the conventional encodings. In this
paper, in continuation of our previous works on a universal character encoding for such
characters, we describe a non-ambiguous hash function for any Chinese character. Unlike
conventional approaches, this function is solely based on the character strokes, thus elim-
inating any sort of ambiguity. Given its sparsity and low collision rate, the proposed hash
function can then be applied to fingerprinting, which can in turn be applied, for instance,
to information retrieval. Simplicity and unambiguity are keys to our proposal. This work
is then formally evaluated and compared to previous works so as to show its applicability,
contribution and to measure its limits.

1 Introduction
Given the large number of glyphs involved, the representation of Chinese characters in computer
systems has never been an easy task. Over the years, several solutions have been proposed,
starting with characters hard-coded into ROM (still in use today, for instance with some LCD
panels [6]) and later with logical encodings, for instance those proposed by the Japanese Indus-
trial Standards Committee (JISC).

Conventional character encodings either follow the unifying approach, such as Unicode [13],
or the non-unifying approach, such as encodings that are local to one writing system (e.g. Shift-
JIS for the Japanese writing system). Both approaches suffering from limitations, mainly
incapacity to include every known Chinese character, we introduced a few years ago a universal
character encoding for Japanese (UCEJ) [4]. UCEJ relies on a three-dimensional structure to
encode characters: to each character is assigned a coordinate on three dimensions. Simply
stated, the first coordinate identifies the character radical, the second coordinate represents the
number of strokes of the character, and the third coordinate is used to distinguish character
variants.

Y. Shi, G. Hu, Q. Yuan and T. Goto (eds.), CAINE 2021 (EPiC Series in Computing, vol. 79), pp. 64–70



A Chinese character hash function based on strokes for fingerprinting A. Bossard

In addition, the character decomposition operations as presented in [1, 2] are not directly
applicable to character strokes given that strokes are not arranged according to easily identifiable
patterns like characters.

Now, it needs to be clear that a conventional character encoding, such as Unicode and
unlike UCEJ, cannot be used as a hashing function since it only supports a restricted number
of characters (i.e. all the Chinese characters are not encoded – we say “covered” – such as many
rather infrequent Japanese local characters, the kokuji characters [1]). Then, although UCEJ
could be used for hashing and fingerprinting, the hash value that corresponds to a character
cannot be easily calculated: in fact, the lookup function of UCEJ does not take into account
the character variants.

In this paper and in continuation of our previous works on a universal character encoding for
such characters, we describe a non-ambiguous hash function that is applicable to any Chinese
character. Regarding the envisioned applications of this research, universal identification, that
is in a unique, unambiguous manner for any Chinese character comes first. This issue is not
trivial considering the numerous variants for one same character, variants which are often ex-
cluded from the conventional character encodings. So, fingerprinting a Chinese character is very
interesting to refer to a character that is not covered by such a conventional encoding. Another
fingerprinting method would be to rely on UCEJ [4] or decomposition operations [1], but these
are not currently accepted standards, and a method based on decomposition operations can
rapidly become ambiguous (e.g. the definition of the support set R̃ of [1]). Hence, the proposed
fingerprinting method: simple and unambiguous, so that even if it is not a standard it can be
easily applied.

The rest of this paper is organised as follows: several recalls are made in Section 2, then
the proposal is detailed in Section 3 and evaluated in Section 4, and the paper is concluded in
Section 5.

2 Preliminaries
First, a short recall regarding hashing is made. Well-known to computer scientists, a hash
function is used to calculate an index from a datum so that this datum can be used directly
to refer to, for instance, the corresponding entry in a table. In the case of table indices,
the calculated values are expected to fall within a range so that the table entries tend to be
consecutive in memory, and this without any assumption on the sizes of the original data.
Besides, it is highly desirable that the calculated indices for distinct data are distinct too,
otherwise we say that collisions occur [10].

Figure 1: otodo.

A fingerprint is another usage of such a function which realises a mapping
between data and identifiers, such as indices. Applications of fingerprinting
differ from those of conventional hashing functions as just recalled though:
rather than calculating consecutive or near consecutive table indices, a fin-
gerprint is typically used to identify with a more or less short value a datum
of arbitrary size, which is thus comparable to the scientific applications of
human fingerprints. Rabin’s fingerprinting algorithm is a classic example [5].

Second, essential properties of Chinese characters are recalled. A Chinese
character has one radical, although there is sometimes a lack of consensus
regarding the radical of particular characters (especially because of character
simplifications [1]). It has at least one reading, but usually several espe-

cially when considering the various languages that involve Chinese characters. It is made of
strokes, at least one, and there is a consensus that the highest number of strokes in a Chinese

65



A Chinese character hash function based on strokes for fingerprinting A. Bossard

character, at least in Japanese, is 84: this is the otodo character (a.k.a. taito, daito), shown
in Figure 1 [7]. Strokes are drawn in a certain order, which can fluctuate depending on the
language considered [1]. And a character can have several, sometimes numerous variants [11].
Additional details can be found for instance in [12].

3 Methodology
The proposed hash function is based solely on character strokes, precisely, on the stroke number,
the stroke types and the stroke writing order. It is essential to note that this approach induces
no ambiguity at all in the definition of the function. For comparison, in previous researches we
relied on the character radical property, and also on character decompositions, for character
processing, which is more (the latter) or less (the former) ambiguous. Indeed, given any Chinese
character, its number of strokes, the types of its strokes, and the writing order of its strokes is
unambiguously defined. Even if the stroke order may differ in some cases from one language
to another, for instance between Chinese and Japanese, it is well defined when considering one
language. For instance, the Japanese government has formally established the stroke order of
the Chinese characters used in Japanese [9].

In order to achieve a low collision rate, we rely on all the three aforementioned stroke
properties: number, type and order. The Unicode consortium has defined 36 strokes for Chinese
characters (code block 31C0–31EF) [13]; they are reproduced in Table 1, and to each is assigned
a (unique) identifier. In this table, the columns are labelled “Id.” and “Str.” for “Identifier”
and “Stroke”, respectively.

Table 1: The 36 strokes for Chinese characters (Unicode block 31C0–31EF). They are each
assigned a unique identifier.

Id. Str. Id. Str. Id. Str. Id. Str. Id. Str. Id. Str.

0 ㇀ 6 ㇆ 12 ㇌ 18 ㇒ 24 ㇘ 30 ㇞
1 ㇁ 7 ㇇ 13 ㇍ 19 ㇓ 25 ㇙ 31 ㇟
2 ㇂ 8 ㇈ 14 ㇎ 20 ㇔ 26 ㇚ 32 ㇠
3 ㇃ 9 ㇉ 15 ㇏ 21 ㇕ 27 ㇛ 33 ㇡
4 ㇄ 10 ㇊ 16 ㇐ 22 ㇖ 28 ㇜ 34 ㇢
5 ㇅ 11 ㇋ 17 ㇑ 23 ㇗ 29 ㇝ 35 ㇣

Define S the set of these 36 character strokes, and k : S → {0, 1, . . . , 35} the bijection
between a stroke and its identifier. Let C be the set of Chinese characters; it is recalled that
its cardinality is unknown. For a character c ∈ C of n ∈ N∗ strokes si ∈ S (0 ≤ i ≤ n− 1) and
of stroke order that induced by the relation i < j ⇒ si written before sj (0 ≤ i, j ≤ n− 1), we
define the hash function h as follows:

h : C → N

c 7→
n−1∑
i=0

26i k(si)

In other words, stroke identifiers are each represented with six bits, and the stroke number as
well as the stroke order are directly induced by the concatenation of 6-bit sequences. The fin-
gerprint can thus be conveniently represented with the octal notation: each stroke corresponds

66



A Chinese character hash function based on strokes for fingerprinting A. Bossard

to two octal digits. Examples of fingerprint calculations are given in Table 2; in this table, the
stroke order is indicated from left to right and fingerprints are given in the octal notation, with
the most significant digit on the left.

Table 2: Fingerprint calculation for sample Chinese characters.
Character Stroke number Stroke types & stroke order Fingerprint (octal notation)

大 “large” 3 ㇐,㇒,㇏ 17 22 20
水 “water” 4 ㇚,㇇,㇒,㇏ 17 22 07 32
凧 “kite” 5 ㇒,㇈,㇑,㇆,㇑ 21 06 21 10 22
迄 “until” 7 ㇒,㇐,㇠,㇔,㇔,㇋,㇏ 17 13 24 24 40 20 22

Once a fingerprint has been obtained, it can then be adjusted for hashing purposes (e.g. hash
table), that is, to reduce the sparsity of the obtained fingerprints. This would be at the cost of
an increased collision rate though. For example, hashing with folding by summing each stroke
value, or division hashing by applying a modulo function to the obtained fingerprints.

4 Evaluation
4.1 Memory size requirements
First, let us compare the size of fingerprints versus the size of a character coordinate in UCEJ.
To this end, we first recall that each character stroke is represented on 6 bits, and that the
highest number of strokes in a Chinese character, at least in Japanese, is 84 is a consensus. So,
a character of n strokes requires at most 6n bits (“at most” because the last stroke may not
require all the six bits, thus resulting in a few zeros at the MSB, in other words digits that can
be discarded). So, an n-stroke character is expressed on at most 6n/8 = 0.75n bytes. On the
other hand, the coordinate of any character in UCEJ takes 10 bytes [4]: the required memory
size does not depend on the character. And in the case of the refinement of UCEJ which
takes into account stroke types and the stroke order, each character coordinate takes 38 bytes,
again no matter the character [3]. This memory size requirement comparison is illustrated
in Figure 2; because a conventional encoding such as Shift-JIS or Unicode only supports a
fraction of the Chinese characters, it is not included in this comparison as it would be obviously
largely unfair. Given that the vast majority of Chinese characters have at most 30 strokes
(this is further detailed in Section 4.2 below), the memory size taken by a fingerprint remains
reasonable compared to a UCEJ coordinate.

It is however critical to note that a UCEJ coordinate cannot be completely calculated from
a character: as recalled in introduction, the UCEJ lookup function calculates from a character
its X and Y coordinates only, thus not involving Z. This is a major drawback compared to the
fingerprint calculation method proposed herein, and one reason for that lookup function not
being a suitable hashing function.

4.2 Hash function sparsity
Next, we analyse the projected sparsity of the calculated fingerprints. Directly from above, we
have that the fingerprint of a 1-stroke character is in the interval [0, 26 − 1] (since six bits per
stroke), that of a 2-stroke character in the interval [26, 212 − 1] (since twelve bits for the two

67



A Chinese character hash function based on strokes for fingerprinting A. Bossard

0 10 20 30 40 50 60 70 80 90

0

20

40

60

number of strokes

by
te

s
Fingerprint UCEJ Refined UCEJ

Figure 2: Memory size requirement of a fingerprint versus a UCEJ coordinate.

strokes) and so on. Because a character includes at most 84 strokes as recalled, a fingerprint
consists in at most 84× 6 = 504 bits. Therefore, there are a total of 2504 distinct fingerprints,
which is of course significantly larger than the number of Chinese characters (even if only an
estimation, several tens of thousands, of this character grand total is known). So, the character
density in the range of the possible fingerprint values is globally low.

The distribution of the stroke number of the Chinese characters used in Japanese is illus-
trated in Figure 3. For reference, we have represented in the same plot the maximum number of
bits required to represent the fingerprint of a character depending on the stroke number. These
data have been extracted from the List of MJ Characters provided by the Japanese Character
Information Technology Promotion Council [8]. This database includes in total 58 862 charac-
ters. Note that 84 has been considered as the highest stroke number as explained, but since
the otodo character does not appear in the database, the number of occurrences therein is 0.
Hence, although this database is rather exhaustive, the zero number of occurrences as soon as
stroke number 65 is yet another indicator of the lacking support of the Chinese characters by
computer systems.

It should be noted that the proposed fingerprinting algorithm is not perfect in the sense
that it is possible – although rather rare – to find two distinct characters that induce the
same fingerprint, for example 引 hiku and 弔 tomurau, both of fingerprint 21 11 20 25 (octal
notation). In other words, the described hashing function is not injective. In an attempt to
further reduce the collision rate, additional character properties could be considered. Nonethe-
less, this would be at the cost of increased ambiguity in the function definition – it is recalled
that we have completely eliminated such ambiguity with the approach proposed in this paper.
Besides, in this search for a perfect hashing function, it will become clear that the successively
established functions, defined at the beginning in a discrete manner, will inevitably evolve to-
wards a continuous (i.e. non-discrete) function, which is problematic considering the hashing
applications.

68



A Chinese character hash function based on strokes for fingerprinting A. Bossard

0 10 20 30 40 50 60 70 80 90

0

1,000

2,000

3,000

4,000

5,000

number of strokes

Maximum number of bits Character occurrences

Figure 3: Distribution of the stroke number of the Chinese characters used in Japanese.

Finally, it is interesting to remark the following paradox regarding character density: the
characters that have the greatest stroke number are those whose fingerprint occupies the greatest
number of bits but which are the least “dense” characters. That is, when considering characters
of at most n strokes, the number of representable such characters is 26n, but at the same time
as n increases, the number of n-stroke characters (i.e. character occurrences) decreases. This is
clearly visible in Figure 3.

5 Conclusions
The representation of Chinese characters in computer systems is a long-standing issue: for in-
stance, it is still not possible to represent some characters, albeit rather infrequent ones. We
have been considering this problem for several years and recently defined a universal char-
acter encoding for Japanese (UCEJ) to address these issues. UCEJ still has some room for
improvement, especially in the automatic calculation of a code point from a character. Directly
related to this issue, we have proposed in this paper a non-ambiguous Chinese character hash-
ing function for fingerprinting in order to facilitate the identification and processing in general
in a computer system of these characters. The evaluation results show the applicability and
contribution of the proposal.

Regarding future works, we are planning to realise a character fingerprint database in order
to further experimentally evaluate the proposed hashing function and quantitatively measure
its collision rate. It would also be interesting to try to further reduce the collision probability of
the calculated fingerprints by refining the hashing function definition. As mentioned earlier, this
involves several issues, such as the sparsity of the hash values, the collision rate, the simplicity
and discreteness of the established function, issues which absolutely need to be considered
simultaneously.

69



A Chinese character hash function based on strokes for fingerprinting A. Bossard

Acknowledgements
The author is sincerely grateful to the three reviewers for their comments.

References
[1] Antoine Bossard. Chinese Characters, Deciphered. Kanagawa University Press, Yokohama, Japan,

March 2018.
[2] Antoine Bossard and Keiichi Kaneko. Chinese characters ontology and induced distance metrics.

International Journal of Computers and Their Applications, 23(4):223–231, 2016.
[3] Antoine Bossard and Keiichi Kaneko. Refining the unrestricted character encoding for Japanese.

In Proceedings of 34th International Conference on Computers and Their Applications (CATA;
18–20 March, Honolulu, HI, USA), volume 58 of EPiC Series in Computing, pages 292–300, 2019.

[4] Antoine Bossard and Keiichi Kaneko. Unrestricted character encoding for Japanese. In Databases
and Information Systems X, volume 315 of Frontiers in Artificial Intelligence and Applications,
pages 161–175, January 2019.

[5] Andrei Z. Broder. Some applications of Rabin’s fingerprinting method. In Sequences II, pages
143–152, 1993.

[6] Hitachi, Tokyo, Japan. HD44780U (LCD-II) (Dot Matrix Liquid Crystal Display Controller-
/Driver), 1998. ADE-207-272(Z), ’99.9, Rev. 0.0.

[7] Takehiro Ito. 辞書になかった最多画数の漢字「幽霊文字」の怪⋯「タイト」さんをご存じないで
すか？ The Yomiuri Shimbun (online), November 2020. https://www.yomiuri.co.jp/life/
20201030-OYT8T50053/ (last accessed June 2021). In Japanese.

[8] Japanese Character Information Technology Promotion Council (一般社団法人文字情報技術促進
協議会). List of MJ characters (MJ文字情報一覧表). https://moji.or.jp/mojikiban/mjlist/
(last accessed June 2021), May 2019. Version 006.01. In Japanese.

[9] Japanese Ministry of Education, Science, Sports and Culture (文部省). 筆順指導の手びき, March
1958. First edition. In Japanese.

[10] Donald E. Knuth. The Art of Computer Science – Volume 3. Addison-Wesley, Boston, MA, USA,
second edition, 1998.

[11] Kyoo-Kap Lee. Causes of variant forms as a result of structural changes to character components.
Journal of Chinese Writing Systems, 1(1):29–35, 2017.

[12] Ken Lunde. CJKV Information Processing. O’Reilly Media, Sebastopol, CA, USA, second edition,
2009.

[13] The Unicode Consortium. The Unicode Standard 5.0. Addison-Wesley, Boston, MA, USA, 2007.
More recent versions accessible online at http://www.unicode.org/versions/latest/ (last ac-
cessed June 2021).

70

https://www.yomiuri.co.jp/life/20201030-OYT8T50053/
https://www.yomiuri.co.jp/life/20201030-OYT8T50053/
https://moji.or.jp/mojikiban/mjlist/
http://www.unicode.org/versions/latest/

	Introduction
	Preliminaries
	Methodology
	Evaluation
	Memory size requirements
	Hash function sparsity

	Conclusions

