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Abstract 

Machine learning is an attractive tool to make use of in various areas of computer science. It allows 

us to take a hands-off approach in various situations where previously manual work was required. One 

such area machine learning has not yet been applied entirely successfully is cybersecurity. The issue 

here is that most classical machine learning models do not consider the possibility of an adversary 

purposely attempting to mislead the machine learning system. If the possibility that incoming data will 

be deliberately crafted to mislead and break the machine learning system, these systems are useless in 

a cybersecurity setting. Taking this into account may allow us to modify existing security systems and 

introduce the power of machine learning to them. 

1. Introduction 

Machine learning (ML) allows us to create models that will automatically recognize patterns, 

classify input data into several categories, and make predictions. In this investigation, we refer broadly 

to ML models. These could be ML techniques such as, Perceptrons, Support Vector Machine (SVM) 

[1], and many more [2]. In this research, we comment on ML algorithms as a whole, rather than referring 

to a specific one each time. ML is a powerful tool, which is why we can find it in nearly all aspects of 

life these days. It has, however, limited exposure to the area of cybersecurity for a variety of reasons in 

which we will explore. Adversarial machine learning, (AML), is a relatively new field of research in 

this area. The aim is to find safe ways to integrate machine learning to computer security without 

opening avenues of attack from malicious parties [3]. 

2. Learning From Data 
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To understand why research into AML is necessary, we need to comprehend why cybersecurity is 

fundamentally different than other areas where ML has been successfully utilized. Later we will discuss 

specific settings where ML is capable to be applied, but first we need a broader understanding of the 

problem. To be considered capable of “learning”, an ML model needs to successfully perform two 

factors [4, 5]. We need to be able to minimize in-sample error (often seen shortened as Ein) and then if 

that can be done, then, we need to minimize out-of- sample error (Eout). Ein is the error we obtain from 

our ML model being applied to our training data. In ML, we typically separate data into two sets: the 

training set and the test set. Our training set/data is data that is already known. That is the stage where 

our ML models learn to perform classification or clustering. We can only advance to the next stage of 

learning if this can be accomplished accurately. The attained Ein should have the smallest possible error 

margin, given that we have full knowledge of the data coming in. Eout is where we actually start 

learning from the system. Eout comes from the error we get from a ML model being applied to new 

incoming data that we have no knowledge on, the testing data. With this data, we do not necessarily 

know what the outcome should be, we are just interested in what our system believes it is. If our system 

can get a low error at this point, then we can consider it capable of learning. 

3.  Data Distribution 

One important note with this process is to understand the importance of data distribution as this is 

a main factor on how precise our ML can be applied. Although we may not know what exactly our test 

data will be, we expect it to have a similar statistical distribution as our training data. Within 

cybersecurity domain though that is not guaranteed. In fact, we should be assuming the opposite. In 

cybersecurity, we need to design our systems with the possibility that there is a malicious party, an 

adversary, trying to exploit the system. The same holds for ML models being used in cybersecurity. We 

cannot assume that any testing data coming in will be similar in distribution to the training data. There 

are a number of ways an adversary can deceive our ML models and perform all manner of mischief. 

This means that our testing data’s distribution can change at any time, because there is an intelligence 

actively manipulating it, attempting to make an attack. And this brings us back to the definition of 

Adversarial Machine Learning (AML). Analyzing these types of attacks from an adversary on ML 

models will allow us to safely integrate ML into security systems without allowing the adversary the 

ability to get past our systems [6]. But the question is, why exactly do we want ML in our security 

systems? 

4. An Arms Race 

We find that in many security systems we are in a reactive arms race with the adversary. Essentially, 

we find ourselves designing our systems based on the previous discovered attack. This creates a big 

problem. Our systems are on trained to block the suspicions. To give an example which will be 

expanded later. Most Intrusion Detection Systems (specifically referring to Network Intrusion Detection 

Systems) like Snort or Suricata rely on catching adversarial activity to be trained against that activity 

[7, 8]. What happens if the activity is not caught though? In a worst-case scenario, the system could be 

trained to think the adversarial activity is legitimate. Even in a best-case scenario, where the IDS catches 

adversarial network activity, we need to manually train the IDS against that activity in the future. What 

we would like to do is automatically train our system against possible threats before they happen. That 

way, we are no longer being reactive, but proactive. That is the aim of AML, integrating ML to 

cybersecurity while allowing us to stay in a proactive cycle against adversarial threats rather than  

Adversarial Machine Learning: Difficulties in Applying Machine Learning ... N. Rahimi et al.

41



playing a never-ending game of catch-up with them [9]. Tables 1 and 2 are presenting the sequence 

of reactive and proactive measurements in arms race between an adversary and a classifier designer.    

Sequence Party involved Activity 

1 Adversary Examine Classifier 

2 Adversary Create and launch attack 

3 Classifier Designer Examine attack’s outcome 

4 Classifier Designer Implement Countermeasures 
Table 1: Conceptual sequence of the reactive arm race 

Sequence  Party involved Activity 

1 Classifier Designer Possible adversary scenarios 

2 Classifier Designer Practice attack  

3 Classifier Designer Examine attack’s outcome 

4 Classifier Designer 
Implement Countermeasures if the impact of attack is  

high  
Table 2: Conceptual sequence of the proactive arms race 

5. Spam Filtering 

To give a quick and clear example of what a simple adversarial attack is let us discuss spam. One 

area of cybersecurity that may often go unnoticed ironically due to its universal presence is spam 

filtering. We are able to block spam in a few ways such as blacklists, or rule-based filters, but the one 

we want to focus on is content filters. Content filters typically work by analyzing what words are present 

in an email and how likely those words are to be found in a spam email. To greatly simplify, often these 

filters will measure the number of “bad words” to “good words” and judge whether an email is likely 

to be spam. An adversary can have their spam avoid detection by adding more “good words” to the 

email or purposely misspelling the “bad words” (Figure 1). Doing so causes the spam filter to more 

likely classify the spam into the legitimate category. This is also dangerous because if an adversary can 

successfully avoid a spam filter, they make the filter less able to determine what spam is and what is 

not. Classifying a spam email as legitimate will train the system to think other spam email may be 

legitimate. Given that on the internet there is no such thing as distance, security systems not only need 

to guard against an adversary, they also need to guard against all adversaries everywhere. It may seem 

obvious, but it’s very easy to get caught up in the idea that there is a single intelligent adversary we are 

fighting against. In reality, there is an arbitrarily large number of adversaries to fight against [10, 11]. 
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6. Optical Character Recognition 

Optical Character Recognition (OCR) is the process of converting written text into electronic text 

without a human in the process [12]. The technique is widely used in offices and academia as the need 

to convert paper documents to electronic is ever-present. Evaluating what character a written character 

is requires recognizing and matching patterns. So, ML models are used to perform this process. An 

attack on this model can be easily done by an adversary with interesting results. The images appear 

identical to a human observer but one has been specifically designed to fool a neural net classifier. But 

why might an attack on this sort of software be done? There might not be much advantage to attacking 

simple text OCR, but this sort of technology is the base for much more powerful software. Self-driving 

cars, for example, rely on input from a camera to determine what is in front of the car. Any sort of 

computer vision relies on the computer being able to see and classify what the objects are that it sees. 

If the classifiers that create computer vision are attacked, a great deal of damage could be done, certainly 

in the case of the self-driving car scenario. Imagine a situation where a car is unable to tell what a one 

way sign is (Figure 2). Accidents could easily occur. Any number of situations could be thought of in 

this area. 

  

 

 
Figure 2: Image on the left was designed to 

 fool an image classifier, note that to  

the human eye they are identical. 

Feature weights: 

Hurry=1.2 

Free=0.9 

Threshold: 

1 
Total score 

> Threshold 

 2.1 > 1 

email is 

From:spammer@spam

.com 

Hurry! 

 Free Tickets! 

From:spammer@spam

.com 

Hurry! Free 

Tickets!  

Computer Science 

Department 

Total score 

< Threshold 

 0.1 < 1 

NOT SPAM! 

Threshold: 1 

Feature weights:  

Hurry=1.2                               

Free=0.9 

Computer = -1 

Department = -1 

Figure 1: (a) Spam filtering demonstration – (b) Spammer adapts to the filter 

a: 

b: 
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7. Envision Attacks And Intrusion Detection Systems 

Adversarial attacks are not usually so clear in their intent, and certainly not so easily remedied. 

Given that we are discussing cybersecurity, networks are bound to come up. One of the most common 

attacks on a network is the evasion attack. They take many forms, but the point of the attack is simply 

finding a way to bypass a security system in place to deliver some sort of malware, spam, or exploit. 

We often use IDS software to detect any intrusion into our network and report that activity to an 

administrator. IDS systems use a few different methods to detect a possible intrusion. They are capable 

of pattern matching with known malware signatures protocol decoding, and detecting anomalies. Now 

obviously, a system that attempts to match an input to some pattern that is already known would seem 

well-suited to having ML incorporated. However, doing so opens us up to some nasty attacks from 

adversaries [9]. 

8. Poisoning Attacks 

Using machine learning in this context presents an extremely dangerous opportunity to adversaries. 

To know what an attack is, an ML algorithm needs to be trained on normal network activity. Not only 

that, but this process is often repeated to take the ever-changing network structure into account. That 

means, whatever network activity looks like during this training or re-training period will be considered 

normal by the detection software in the future. This is when a poisoning attack can take place. If the 

adversary injects malicious activity during this period, they may be able to repeat the same attack later 

with the detection system only displaying a false negative. Essentially, a poisoning attack is a method 

of contaminating training data with malicious activity so that activity may easily be repeated in the 

future. In researchers were able to produce a large classification error in a support vector machine by 

injecting additional mislabeled points into an image. The attack demonstrates that with enough 

mislabeled points, the SVM was unable to properly classify further images introduced to it. One such 

solution to guarding against poisoning attacks specifically comes from. The idea is to use the process 

of bootstrap aggregating, “bagging” [10]. We can create a number of copies of our training data and use 

each on a different classifier. At the end we aggregate their predictions. From their results we can see 

that such a process does generally prove to be a viable solution to poisoning attacks. 

9. Fighting The Adversary 

It should be clear that it is not possible to simply plug ML models into cybersecurity systems in 

their classical forms. Doing so opens too many routes of attack for an adversary to take advantage of, 

which would make the system functionally useless. There are several methods we can employ to make 

these algorithms more intelligent, by anticipating an adversarial influence on our training data. Again, 

we want to create a scenario where, instead of reacting to an attack and developing a countermeasure, 

we want to create a proactive environment [13]. Methods we can use are: 

 Build a More Robust Classifier 

 Implement Several Classifiers 

 Make Use of Random Data 
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This area is an active area of research so expect to see many possibilities being presented in the 

coming years. For the purpose of this paper, only these few general strategies to implement will be 

discussed. 

10. A Robust Classifier 

Creating a more robust classifier gets to the heart of the proactive approach that must be taken 

with AML. Instead of waiting for an attack to learn how to update our classifier, we will instead take a 

different approach. We can instead simulate an attack. At testing time, what we need to do is model 

possible attacks and see how they would affect our system. If there is an effect, if an attack can 

successfully fool our classifier, we take that into account and update our classifier to guard against it 

accordingly [14]. 

Also important is the process of identifying vulnerabilities that allow these attacks to happen. This 

should be self-evident, but fixing vulnerabilities in software is a constant battle that very much applies 

here. 

10.1 Multiple Classifiers 

As discussed earlier in the example of poisoning attacks, bagging is a potential solution here. 

10.2 Random Data 

The primary purpose of introducing random data to our classification system is to make it 

impossible for the adversary to completely understand our system. Obviously, when we talk about 

introducing random data to a ML classification system, we need to consider what the trade-offs are. If 

too many aspects of a classifier’s decision process are random we can certainly expect there to be a drop 

in performance, compared to a classical ML model. 

11. Clustering 

An area of AML that will not be covered in-depth here is clustering and whether it can be safely 

applied to cybersecurity. We and other researchers are actively conducting research in this are; and 

still there are no definite answers. However, to speak on it briefly, clustering is the process of taking a 

number of ungrouped data points and finding groups they can belong to. Visually, each group is a set 

of data points that are generally close together (Figure 3). If an adversary has knowledge of the state 

of the clusters, it is relatively easy for them to create a new data point near one of the groups that the 

classifier might mistakenly classify as that group [6]. 

For the time being, it does not seem safe to incorporate clustering in an adversarial setting, but again, 

this is a current area of research that hopefully yield improvements to existing algorithms that make this 

doable. 
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Figure 3: An example of K-Means clustering where the set of all data  

points have been divided into 3 distinct groups. 

12. Conclusion 

With the constant advances made in the world of machine learning, it is hard not to want to use it 

in any applicable computer science setting. A well-trained classifier can make short work of a task that 

would take an enormous amount of time if done by hand. Cybersecurity, however presents a uniquely 

dangerous setting for machine learning. Only in this area we do have to deal with a potentially malicious 

adversary. We must face the fact that some of the data we use to train our ML models is made to break 

or deceive those systems. For ML to be able to be applied safely in these adversarial settings, a new set 

of classifiers need to be created. That or we need to pre-emptively fool the adversary with random data 

and multiple classifiers. The important takeaway is that whatever we do, it must be proactive. Playing 

the never-ending game of catch-up with an adversary puts us at the disadvantage at every stage. 

Adversarial machine learning is an important emerging field, one that will no doubt bring a great deal 

of advancements to the general field of machine learning [15]. 
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