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Abstract

Software vulnerabilities in organizational computer networks can be leveraged by an attacker to
gain access to sensitive information. As fixing all vulnerabilities requires much effort, it is critical
to rank the possible fixes by their importance. Centrality measures over logical attack graphs, or
over the network connectivity graph, often provide a scalable method for finding the most critical
vulnerabilities.

In this paper we suggest an analysis of the planning graph, originating in classical planning, as an
alternative for the logical attack graph, to improve the ranking produced by centrality measures. The
planning graph also allows us to enumerate the set of possible attack plans, and hence, directly count
the number of attacks that use a given vulnerability. We evaluate a set of centrality-based ranking
measures over the logical attack graph and the planning graph, showing that metrics computed over
the planning graph reduce more rapidly the set of shortest attack plans.

1 Introduction
Large organizations use a vast and diverse set of software [17]. As such, ensuring that all installed
software are completely safe is an impossible task. The computer networks of large organizations can
hence be penetrated by exploiting vulnerabilities in the installed software, operating system, or their
combinations. Indeed, research has shown that even organizations whose core business is developing
security software have many vulnerabilities in their networks [28].

When a vulnerability in some application is identified, its vendor may issue a patch fixing the vulner-
ability. Alternatively, if a software is found to be too vulnerable, the security administrator can recom-
mend an alternative, more secure, software. Of course, replacing the software often involves a significant
cost [24]. Thus, the system administrators must prioritize the fixes such that the more important vulner-
abilities will be fixed first [7].

Most research on assessing the importance of particular vulnerabilities to an organization focuses on
mapping and analyzing the possible attacks on the organizational network. A common data structure for
conducting such analysis is the logical attack graph (LAG), whose nodes represent assets or vulnerability
exploits. Edges in LAG connect exploits to assets that an attacker must obtain before the exploit can be
used and assets that can be obtained by using the exploit [20]. One can analyze the attack graph [1]
to understanding which vulnerabilities can be exploited to gain a specific sensitive information from a
given starting point of the attacker (e.g. when controlling only machines outside the organization).
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One can compute an attack plan, a sequence of actions (e.g. exploits) that allow attackers to achieve
their goals, such as access to specific sensitive information [13]. The system administrator can use these
attack plans to decide which vulnerabilities to patch. Some suggest patching the vulnerabilities exploited
in the shortest attack plans [3], others propose combinatorial optimization for eliminating all possible
attack plans with minimal number of vulnerability fixes [1]. In this paper we investigate techniques that
fall between these two extremes. Assuming that it is not feasible to cut all paths toward the critical assets
we strive to eliminate as many shortest paths as possible and eventually increase the cost of the cheapest
attack plan with least vulnerability fixes.

Previous research has suggested to analyze the LAG or the connectivity graph, using various node
centrality measures, such as betweenness [14], and PageRank [22], for prioritizing the vulnerabilities to
be fixed. In this paper we suggest inferring the vulnerabilities’ importance from the (relaxed) planning
graph — a data structure often used in the classical planning community, mainly to compute forward
search heuristics [12]. Centrality measures computed over the planning graph are shown to be superior
to centrality measures computed over the LAG and the connectivity graph for prioritizing vulnerabilities
which are important for many attack plans.

We demonstrate here that over a range of benchmarks including a scan of an organization network,
metrics computed over the planning graph provide in many cases a better ranking compared to metrics
computed over the LAG or the connectivity graph. We evaluate the vulnerability ranking techniques by
enumerating all possible shortest attack plans based on the planning graph. Vulnerability fixing strategies
which are based on centrality measures computed on the planning graph cut more shortest attack plans
and eventually increase the minimal attack cost faster compared to those computed directly on the other
representations of the attack graph.

The main contribution of this paper is in suggesting the planning graph as a useful alternative to
logical attack graphs which are common in pentesting literature. A second important contribution is in
providing experiments over real world networks. All previous literature on attack graphs, to the best of
our knowledge, have been evaluated over artificial simulated networks only. We experiment with both
real and artificial networks, demonstrating that results over the artificial networks do not apply to the
real world networks.

2 Background
We now briefly review relevant background, starting with attack graphs and their use in ranking vulner-
ability fixes. We then discuss graph centrality measures, and finally the planning graph data structure.

2.1 Logical Attack Graphs
Logical attack graphs (LAGs) represent the possible actions and outcomes of actions applied by an
attacker trying to gain a goal asset in a system [19]. An example of an attack graph can be seen in
Figure 1.

The graph contains 3 types of nodes: Primitive fact nodes represent facts about the system. For
example, they can represent network connectivity, firewall rules, user accounts on various computer and
more. In the example graph (Figure 1) primitive fact nodes are represented by rectangular nodes.

Derivation nodes (or action nodes) represent an action the attacker can take in order to gain a new
capability in the system. Action nodes are represented in figure 1 by ovals.

Derived fact nodes (or privilege nodes) represent a capability an attacker gains after performing an
action (derivation phase). For example, a node stating that the attacker can execute arbitrary code on
a specific machine with administrator privileges. Derived fact nodes are represented by diamonds in
Figure 1.
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Figure 1: Example of an attack graph with an attack plan (grayed nodes)

Edges in the LAG from a fact node to an action node represent the dependency of the action on the
facts, and edges from an action to fact represent the derivation of that fact following the action.

Definition 2.1. Logical attack graph. Formally, a logical attack graph is a tuple:

G = (Np, Ne, Nc, E, L, g)

Where Np, Ne and Nc are three sets of disjoint nodes in the graph, E is a set of directed edges in the
graph where

E ⊆ (Ne ×Np) ∪ ((Np ∪Nc)× (Ne))

L is a mapping from a node to its label, and g ∈ Np is the attacker’s goal (multiple goals can be
transformed into a single goal using an action with preconditions as the multiple goals). Np, Ne and Nc

are the sets of privilege nodes, action nodes and primitive fact nodes, respectively.

The edges in an LAG are directed. There are two types of edges in attack graph: (a, p) an edge from
an action node to a derived fact node, stating that by applying a an attacker can gain privilege p. (p, a) is
an edge from a fact (either primitive or derived) node to an action node, stating that p is a precondition
to action a. For example, in order to apply exploit e on machine m2 from machine m1, there must be
a connection from m1 to m2 (represented by a primitive fact node p), and the user must have already
gained access to code execution on m1 (represented by a derived fact node d). Hence, there will be
edges from p to e and from d to e. In addition, if using exploits e results in obtaining code execution
privileges on m2, represented by a derived fact node c, then there will be an edge from e to c.

The labeling function maps a fact node to the fact it represents, and an action node to a rule that
defines the derivation of new facts. Formally, for every action node a, let C be a‘s child node and P be
the set of a‘s parent nodes, then

(∧L(P )⇒ L(C))

is an instantiation of interaction rule L(a). LAGs are a special case of And/Or Graphs [8] where each
action can instantiate only one fact (or derived fact). We will use this notation from [11]

• pre(a) = {v ∈ Np ∪Nc : (v, a) ∈ E}

• add(a) = {v ∈ Np : (a, v) ∈ E}

• ach(v) = {a ∈ Ne : v ∈ add(a)}

Where pre(a) is the set of facts which are preconditions to the action a. add(a) is the set of facts
gained by applying the action a (in LAGs this set contains only one node). ach(v) is set of actions which
can achieve derived fact node v.

An attack plan G′ is a subgraph of G. The attack plan must hold the following:
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• g ∈ G′

• ∀a ∈ Ne : preG(a) ⊆ G′

• ∀v ∈ Np : ∃a ∈ achG(v) s.t. a ∈ G′ ∧ |achG′(v)| = 1

That is, an attack plan is a sub-graph of G’ that contains the goal node of graph G. Each action a in
G’ is fulfilled by all of the preconditions of a in G. Each fact is achieved by exactly one action. Attack
plan represents a scenario in which an attacker infiltrates the organization and achieves his goals.

2.2 Graph Centrality Measures
Centrality measures attempt to estimate the importance of a node within a graph [10]. This is useful in
many domains, such as in finding prominent members in social networks, identifying bottlenecks routes
in traffic networks, and many more. Previous research on ranking vulnerability fixes has used several
centrality measures in order to identify which vulnerabilities should be fixed [14].

The most obvious centrality measure is degree centrality, CD(v) = degree(v), mainly because it
is easy to compute. Although it is easy to compute, degree centrality often poorly represents the true
importance of a node in a graph.

Betweenness centrality captures a more delicate aspect of the importance of the node in a given
graph. This measure represents for each node, the number of shortest paths between any two nodes that
passes through that node:

CB(v) =
∑

s6=v 6=t

σst(v)

σst

where σst is the number of shortest paths between nodes s and t, and σst(v) is the number of short-
est paths between nodes s and t that pass through node v. Betweenness was previously used to find
important nodes in attack graphs [14].

Below, we also use a modification of betweenness, in which we consider only shortest paths between
a set of source nodes (the initial facts nodes in the LAG, or the first layer of the planning graph) to the
goal node [5]. We denote this betweenness s-t betweenness, and the original betweenness is denoted
all-pairs betweenness.

Another commonly used graph centrality measure is Closeness Centrality. This measure captures
how close a certain node to the rest of the nodes in the graph.

CC(v) =
1∑

u d(u, v)

where d(u, v) is the shortest distance between u and v. In this centrality method, nodes on the fringe of
the graph have lower scores than nodes in the center of the graph.

Google’s PageRank has also been used to rank important nodes in a graph. PageRank is measuring
the likelihood for a web-surfer to be at page i [21], for estimating the importance of web pages. The
metric is given by:

CPR =
1− d
N

+ d
∑

j∈In(j)

πj
|Out(j)|

where N is the number of nodes in the graph, Out(j) are the outgoing neighbors of j, In(j) are the
ingoing neighbors of j, and πj is the probability that the web-surfer will be at nodes j. 0 < d < 1 is
a damping factor, representing how likely a web surfer will get bored and move to another web page
which is not directly linked to the current node.
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Figure 2: Planning graph of Graph G from Figure.1

2.3 Planning Graphs
Planning graph [4] is a data structure originating in the automated planning community. A planning
graph is a directed, layered graph with two types of nodes and two types of edges. The layers alternate
between fact layers, containing only fact nodes,and action layers containing action nodes. Edges from
fact to action nodes denote action preconditions, while edges from action to fact nodes denote action
outcomes.

In classical planning problems, already obtained facts can be removed by other actions. Planning
graphs hence include additional information, such as which facts cannot be achieved at the same time
(mutexes) [6]. However, in pentesting, once a fact, such as access to a given machine, is obtained, it is
never lost, resulting in simpler graphs that are easier to represent and reason about. We also note that the
number of nodes in such delete-free planning graphs is O(n2) in the worst case, where n is the number
of nodes in the respective LAG.

The planning graph is constructed incrementally. The first layer of the relaxed planning graph is a
fact layer, and contains one node fact that it true initially. The next layer is an action layer, containing all
actions that can be executed using the facts at the previous layer. That is, all actions whose preconditions
appear in the previous layer. The third layer contains all the effects of the actions at the second layer.

When no new facts appear in a fact layer, the graph expansion can be stopped. In our case, as we
care only about shortest attack plans, we can stop once the goal fact appears in the graph.

In addition, we add for each fact p a special no-op action, that takes p as precondition, and generates
p as output. Hence, each fact layer is a superset of the preceding fact layer. Once no new facts have been
obtained in a fact layer, we can stop the expansion of the planning graph.

Facts often appear in multiple layers in the planning graph — once a fact has appeared at layer i, it
will appear in all fact layers j > i, through the no-op actions. We denote each fact by its layer, that is,
for fact p at layer i, we write pi.

As in each fact layer at least one new fact must be added, the number of fact layers cannot exceed
the number of facts. Typically, several new facts are added at each layer, and the depth of the planning
graph is in many practical problems much lower than the number of facts. Symmetrically, the depth
cannot exceed the number of actions

Figure 2 shows a planning graph for the graph G presented in Figure 1. We omit some of the edges
between the facts and no-op actions for ease of presentation.

In this paper, we suggest analyzing the planning graph, replacing the standard centrality measures
applied on the computer connectivity graph or on the attack graph with a similar analysis of the planning
graph.
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3 Related Work
Attack graphs have been used to depict possible ways for an attacker to compromise a computer net-
work. Initially, attack graphs were used to better visualize the paths an attacker can take in the network.
DARPA created attack graph manually as part of a red-team analysis [26], but once attack graphs could
be generated automatically, they were also used to improve the security of the networks.

A common use of attack graphs is to find a set of vulnerabilities to patch which will prevent the
attacker from reaching the goal. Work in this area uses various methods such as minimum-cost SAT
solving [16] and specialized methods [1]. In practice, even after finding such a minimal set of vulnera-
bilities, the cost of patching them may still be prohibitively high given limited IT resources. Our goal in
this project is to identify methods to rapidly reduce the number of possible attack plans, when it is not
possible to completely prevent the attacker from reaching the goal.

Many researches also assume some cost metric on actions in the attack graph [18], corresponding
to the time it takes to launch an exploit, or to the risk of detection. It is also common to measure the
probability of success when performing an exploit action [27]. Researchers then try to find attack plans
which minimize/maximize the suggested metric, assuming that a rational attacker will first try to launch
attacks that minimize cost [25].

For example, researchers have suggested to use classical planning, MDPs, and POMDPs to create
good or optimal attack plans [13, 23]. Assuming that the attacker optimizes the attack plans, in this
paper, we focus on shortest attacks only, in an attempt to cut as many of them as possible and eventually
increase the cost of an attack.

Similar to current study, some researchers propose to use network centrality measures to find the
vulnerabilities to patch first. Some of these measures are applied on a two-layered attack graph model
[14, 22, 15]. The nodes in the first layer, the connectivity graph, represent the hosts in the system. A di-
rected edge between two nodes (a, b) means that when controlling node a, an attacker is able to subvert
the node b using some exploit. The second layer is an AND-OR tree containing all the ways to com-
promise a machine from an arbitrary other machine. The authors compute different network centrality
measures on the connectivity graph to find the computer to patch. The authors also proposed using a
measure called Attacker victim centrality (AVC) [14], based on betweenness centrality, considering only
host pairs near the attacker and the target.

As we show in this paper, disregarding the vulnerabilities and the within-computer attack graph
(which is described in the second layer) when computing centrality measures does not accurately esti-
mate the importance of patches in reducing the number of possible attack plans and thus may result in a
sub-optimal fixing strategy.

4 Enumerating All Attack Plans
In this paper we focus on the task of ranking vulnerability fixes in order to rapidly reduce the number
of shortest attack plans in an any-time approach where patches are applied one at a time. In order to
evaluate the patching strategies we first identify all the available shortest attack plans.

We now explain how one can use the planning graph in order to enumerate all possible shortest
attack plans. This process is exponential, and cannot be applied to larger planning graphs. It is useful,
however, in order to evaluate the performance of the various centrality measures.

We analyze the planning graph, rather than the LAG, because LAGs contain cycles, which are
avoided in the planning graph due to no-op actions and fact duplication. We use a BFS-style algorithm,
moving backward from the goal node gn at the last fact layer n, described in Algorithm 14.

When traversing backwards, we maintain a set of plans. For each plan there is a set of unsatisfied
facts, initialized with the goal. To expand a plan backwards from layer i, for each unsatisfied fact pi+2,
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Algorithm 1: Enumerating All Attack Plans
1 EnumeratePlans(PG, t) :

Input: Planning graph PG, target node t
Output: Set of all the attack plans in the graph

2 i← lastLayer(PG)
3 Pi ← {〈〉} // Solution plans
4 pre(〈〉)← t //precondition of the empty plan
5 while i > 0 do
6 Pi−2 ← ∅
7 foreach plan p = 〈a1, ..., ak〉 ∈ Pi do
8 unsat(p)← unsatisfied f ∈ pre(p)
9 foreach minimal action set A at layer i− 1 s.t. unsat(p) ⊆ eff(A) do

10 p′ ← A · p
11 pre(p′)← pre(p) ∪ pre(A)
12 add p′ to Pi−2

13 i← i− 2

14 return P0

we identify an action a (possibly a no-op) that has p in its effects. We remove pi from the list of
unsatisfied facts, and for each fact q in the preconditions of a we add qi to the set of unsatisfied facts. If
a provides an additional unsatisfied fact ri, it is also removed from the list of unsatisfied facts. That is,
we will not search for another action a′ to satisfy ri.

There can be many potential actions that satisfy a needed fact p, each corresponding to a different
plan. Thus, for each action a that satisfy p we create a copy of the plan and add a to the copy. Thus, the
expanded plan is split into multiple similar plans, with a single different action.

More precisely, let Pi be the set of unsatisfied facts of the expanded plan at layer i, andAP
i−1 = {a :

∃p ∈ Pi, p ∈ effects(a)} be the set of actions at layer i − 1 that satisfy at least one fact in Pi. We
create a copy of the plan for each minimal subset AP

i−1 ⊆ AP
i−1 such that Pi =

⋃
a∈AP

i−1
effects(a),

and add AP
i−1 to the copy.

Once we have reached the initial layer we have enumerated all possible shortest plans, but pos-
sibly also some longer plans. Let Π be the set of all such plans. Π may contain some redundancies,
due to the use of no-ops. More specifically, given Pi = {pi, qi}, and two actions, ap and aq , that pro-
duce p, q, respectively, we may have 4 different alternatives — 〈ap, aq〉, 〈ap, noopq〉, 〈noopp, aq〉, and
〈noopp, noopq〉 for expanding the plan backwards. Then, at layer i− 2, we can choose ap where noopp
was selected and aq where noopq was selected. Ignoring the no-ops, which are not real actions to be
executed, we obtain 4 identical plans. To remove such duplicates, once we have obtained the set of all
plans, we remove no-ops from all plans, and then remove duplicate plans, ignoring the action order
within a plan. We now remove all plans which are longer than the shortest plan.

Using the above planning graph construction and plan enumeration method only yields plans with a
finite number of actions (which is the number of action layers in the planning graph). In order to allow
plans with various lengths, additional edges should be added to the planning graph between the final
fact layer and the final actions layer. In this paper we focus only on shortest plans, and ignore longer
plans.

This process is obviously np hard, but in the real world graph that we have obtained, it runs suf-
ficiently fast to be useful. We use the resulting set of shortest plans to evaluate the usefulness of the
various centrality metrics.However, one may use a set of shortest plans also to, rank vulnerabilities ac-
cording to the number of shortest plans. The more attack plans require a vulnerability or an action the
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more important it is. To do so we can count for each action a the number of plans in which a participates:

CΠ(a) = |{π : π ∈ Π, a ∈ π}|

In the future, we will explore sampling techniques, originating from research in AND-OR graphs, to
rapidly provide a sample of shortest plans.

5 Network Data Acquisition
All evaluation in previous research in pentesting via attack graphs is limited, as far as we know, to
artificial simulated networks. It is obviously desirable to evaluate new approaches over real networks.
We hence created realistic models using data obtained from scanning the computer networks of two
organizations, each containing a few subnets. Using the machine configurations and existing exploits
discovered during the scan, we can create real world models that allow an empirical evaluation of our
approach and comparison to state-of-the-art. We now provide some explanations of the model and the
networks, unfortunately omitting many details due to confidentiality restrictions.

To collect the information required to build the attack graphs, we began with scanning the various
subnets using the Nessus scanner [2] in each organization. Nessus starts its scan from some source host.
It identifies all machines reachable from the source host (where the scan is running) including desktops,
gateways, switches, and more, possibly through several switches and routers. We hence executed several
such scans, each from a different subnet within the organization, as well as one scan from outside the
organization network.

The resulting scans contain the set of machines that are visible from a representative host in each
subnet. Naturally, machines inside a subnet are all visible to each other. We assume that all machines
within a subnet can directly access the machines that are visible from the representative host (the one
with the Nessus scanner) in that subnet. This assumption may not be true when firewall rules allow or
deny communication between specific IP addresses. In general, only a part of the machines outside the
subnet are visible from within the subnet, due to, e.g., firewall restrictions. We model the accessibility
of machines identified through the scans as direct edges in the connectivity graph. That is, machine m1

is connected to machine m2, if m2 was revealed by a scan performed from the subnet containing m1.
In addition, Nessus reveals for each identified host its operating system. Both scanned organizations

contained hosts running Windows and Linux (with a few versions of each operating system). Nessus also
identifies software with potential vulnerabilities that run on the scanned machines. The attack graph we
created contains approximately 50 types of such software, including well known applications such as
openssh, tomcat, pcanywhere, ftp services, and many more.

Nessus identifies vulnerabilities of varying importance. For the purpose of this study we ignored all
the lesser vulnerabilities, which do not allow an attacker control of the system. For example, the vulner-
ability identified as CVE-2014-6271 (dubbed ShellShock) allows unauthenticated remote attackers to
execute arbitrary code on a vulnerable server by sending a specially crafted packet. On the other hand,
the vulnerability identified as CVE-2014-4238 allows remote authenticated users to affect availability
of the system (Denial of service). We identified about 60 types of important vulnerabilities that exist
in the scanned networks. We ignored all hosts that do not run any software for which an important
vulnerability exists.

Next we marked a few random hosts in the innermost subnet, as the target hosts. The assumed attack
goal is to gain control over at least one of these target hosts.

Sadly, we are currently unable to publish the network data. Understandably, modern organizations
are concerned about revealing information concerning their network configuration, which might be use-
ful for malicious hackers. It is not surprising, thus, that there is currently no publicly available network
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Figure 3: Connectivity graph of a network. Each node is a host computer, a directed edge between two
hosts (u, v) means host u can initiate a connection to node v

data containing all the required information, including network connectivity, machine configurations
and relevant software. We are negotiating with the network administrator the publication of some of the
data that we have collected, and hope that it would be useful for other researchers in the future .

6 Empirical Evaluation
We now compare the utility of various graph centrality measures in prioritizing the vulnerabilities to be
fixed. We focus on fixing vulnerabilities to eliminate minimal attack plans.

That is, we use the various metrics computed over the different graphs to rank the vulnerabilities to
be fixed, and check which ranking identifies vulnerabilities that are exploited by more attack plans and
induces an increase in the minimal attack plan cost using less fixes.

6.1 Domains
Attack graphs available for research, such as data published in [13, 9], contain artificially created ex-
amples or simulated computer networks. We also explored a number of simulated attack graphs, but all
of them are either too symmetric or too shallow (e.g. a single vulnerability per machine) to represent
a real organization. As an example, we use the LocalPlus-20 dataset [9] to demonstrate that conclu-
sions derived from it are very different from the conclusions derived from an attack graph of a real
organization.

To collect data we scanned the networks of two real organization as described in Section 5. The
details of the networks are presented in Table 1. The hosts had a total of 144 important vulnerabilities
which an attacker could leverage.

6.2 Methods
Our goal is to identify centrality measures which most accurately estimate the number of attack plans
that include exploitation of the various vulnerabilities. Given an attack graph we apply the centrality
measures described in Section 2.2 on three representations of the network information: the connectivity
graph, the logical attack graph, and the planning graph.
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Table 1: Network statistics

Shortest plans max
Domain Count Hosts Nodes |V | |E| d(v)

Org1 1032 5 29 CG 24 236 21
LAG 1013 1604 102
PG 8439 9030 74

Org2 960 5 29 CG 95 7222 92
LAG 17523 25940 105
PG 158322 166740 106

Local 48 4 23 CG 25 74 20
+20 LAG 394 560 22

PG 2754 2920 21

Table 2: Spearman correlation between a centrality measure and the number of plans containing a vul-
nerability. * denotes p-value > 0.05.

Graph Centrality Org1 Org2 Local+20
PG All s-t 0.94/3.61 0.93/4310.0 1/0.44

Betweenness
PG PageRank 0.51/0.87 -0.027*/13.1 0.17/0.21
PG Closeness 0.44/0.66 0.63/34.1 0.26*/0.11
CG AVC 0.29/0.05 0.96/2.01 0.67/0.03
CG All pairs 0.28/0.03 0.96/2.12 0.39/0.01

Betweenness
LAG Closeness 0.27/0.47 0.024*/200.4 0.14*/0.03

Random -0.10*/0.06 0.006*/1.61 -0.17*/0.02

In the network connectivity graph (denoted CG below) nodes are computers, and vulnerabilities
are not explicitly represented. Hence, for the connectivity graph we choose a computer based on the
centrality measure, and fix all its vulnerabilities before moving to the next computer. In the logical
attack graph (denoted LAG) and the planning graph (denoted PG), where vulnerabilities are explicitly
represented as nodes, we directly rank the vulnerabilities to be fixed using the centrality measures.
Hence, the fixing strategies often interleave vulnerability fixes over different computers.

A vulnerability appears only once in the LAG, but numerous times on different layers of the plan-
ning graph. We thus rank the vulnerabilities in the planning graph by aggregating the centralities of all
replicas of the vulnerabilities.

We compute the ground truth plan count by enumerating all attack plans as described in Section 4.
As we have explained above, this process is computationally intensive for large networks, but for the
real networks explored in this study we managed to enumerate the set of all shortest plans, and we use
this set to evaluate how many plans are removed with each vulnerability that is fixed.

6.3 Results

The use of graph centrality measures is based on the assumption that there is a strong correlation be-
tween the centrality score and the number of attack plans in which a vulnerability is used. We begin
with evaluating this assumption. We hence computed the Spearman correlation between each centrality
measure and number of shortest plans containing the vulnerability.

The results of the correlation analysis are presented in Table 2. We choose Spearman correlation
for this analysis because (1) the scales of the different centrality measures vary and (2) the measures
are used to choose the vulnerabilities to patch first and thus, ranking is more important than the actual
values. The entries are sorted by the correlation significance and measures that perform worse than (or
as good as) random were omitted for better clarity. All-sources single target Betweenness centrality
computed on the planning graph has the strongest correlation with the number of attack plans (0.92)
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(a) Org1

(b) Org2

(c) Local+20

Figure 4: Number of shortest attack plans (y axis) available after applying k patches (x axis) to the most
central nodes, according to the different centrality methods.

followed by Closeness and PageRank. State-of-the-art technique that achieves the closest performance
is the AVC computed on the Connectivity Graph with p = 0.025. We can clearly see from Table 2
that the planning graph provides more useful information for estimating the number of plans in which
vulnerabilities appear.

Next, we simulated the process of applying patches to vulnerabilities using the ranking of each
centrality measure, estimating the reduction in the number of shortest attack plans following the policy
dictated by the centrality measure.

Figure 4 presents the reduction in the number of attack plans as a function of the number of applied
patches (removal of vulnerabilities) on the various domains. On all domains, the state-of-the-art AVC
metric over the CG provides good results. It is interesting to see, though, that most metrics computed
over the planning graph preform badly over the simulated Local+20 network, while providing the best
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results over the two real networks. On Org1 the best metric is PageRank over the planning graph, while
on Org2 the best metric is Betweenness over the planning graph.

Over the 3 domains, no centrality measure applied on LAG produced competitive results. This is
surprising given the popularity of LAGs in attack analysis research.

Org2 seems to be the most difficult network. On this domain most metrics failed to decrease the
number of plans faster than a random selection. Looking at Table 1 we can see that this is also the
network with the most complicated graphs in all representations, even though it has a similar number of
shortest plans to Org1.

The artificial Local+20 network produces the lowest number of plans, as well as the simplest graphs.
This further shows that artificial networks provide poor simulation of real world networks. The differ-
ence between the performance of the metrics over the real network and the simulated benchmark clearly
present the urgent need for experiments with real world data. Simulated networks in this case may not
model properly the real world, and benchmarks based on them may be misleading.

7 Conclusion and Future Work
We discuss centrality metrics for ranking vulnerabilities to be fixed in a computer network. We focus on
the problem of eliminating shortest attack plans. We show that the planning graph, a data structure from
automated planning, provides better information than the traditional LAG.

We experiment with two real world attack graph, obtained by scanning the computer networks of
two organizations. As such, this is one of the first papers to report results over an attack graph of a real
network. We also experimented with a standard simulated benchmark. It is interesting to see that the
results over the simulated network are very different from the results over the real network, emphasizing
the need for additional real world networks for experiments.

In the future we intend to experiment with additional real world networks. In absence of publicly
available real world attack graphs, future research may focus on methods for generation of random attack
graphs which resemble real world samples. We would also explore additional optimization problems,
such as removing all identified attack plans. Enumeration of shortest plans using the planning graph
defines a new vulnerability ranking metric based on the count of plans which require the vulnerability.
The exact plan enumeration procedure has an exponential complexity. Thus, we will explore sampling
methods for rapid estimation of the set of shortest plans.
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