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Abstract

Reasoning in a saturation-based first-order theorem prover is generally expensive, involving complex

term-indexing data structures and inferences such as subsumption resolution whose (worst case) running

time is exponential in the length of the clause. In contrast, SAT solvers are very cheap, being able

to solve large problems quickly and with relatively little memory overhead. Consequently, utilising

this cheap power within Vampire to carry out certain tasks has proven highly successful. We give an

overview of the different ways in which SAT solvers are utilised within Vampire and discuss ways in

which this usage could be extended.

1 Introduction

Vampire has been shown to be very fast (see the CASC competition at http://pages.cs.

miami.edu/~tptp/CASC) and part of this success is due to powerful techniques that rely on the
power provided by ‘cheap’ SAT solvers. For example, the AVATAR splitting approach has been
shown [8, 9] to prove many new problems in TPTP, and the Global Subsumption reduction
technique led to many new problems being solved when it was introduced.

Therefore, the aim of this paper is to give some insight into the ways that SAT solvers are
used within Vampire and to discuss how this use could be extended and improved. The paper
reviews each Vampire technique utilising SAT solvers before discussing possible future usage.

2 AVATAR

AVATAR [8, 9] (standing for Advanced Vampire Architecture for Theories And Resolution) is
an architecture that tightly integrates a SAT solver for making splitting decisions.

The notion of splitting is motivated by the observation that the search space of saturation
solvers often becomes full of heavy and long clauses that are undesirable for the inferences
commonly used in solvers such as Vampire. The idea behind splitting is that given a set of
clauses S ∪{C1 ∨C2} where the clause C1 ∨C2 consists of two variable-disjoint components C1

and C2, the set S ∪ {C1 ∨ C2} is unsatisifiable if and only if both S ∪ {C1} and S ∪ {C2} are
unsatisfiable. This suggests that the search space can be split into two search spaces containing
smaller clauses. In practice [4] this involves splitting each new clause into components (minimal
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L.Kovács and A.Voronkov (eds.), Vampire 2014 and 2015 (EPiC Series in Computing, vol. 38), pp. 63–69

http://pages.cs.miami.edu/~tptp/CASC
http://pages.cs.miami.edu/~tptp/CASC


The Uses of SAT Solvers in Vampire Giles Reger and Martin Suda

variable-disjoint sub-clauses) then making a splitting decision as to which component to include
in the search space and organising proof search so that such decisions can be backtracked.

AVATAR achieves this by using a SAT solver to make splitting decisions. First-order clauses
are split into components and then consistently (i.e. up to variable renaming) mapped to SAT
variables to produce a SAT clause. These SAT clauses representing the first-order clause space
are fed to a SAT solver which produces a model that must select a component from each clause,
therefore the model gives splitting decisions. These selected components are added to the first-
order solver, labelled with their assumptions i.e. the SAT variable corresponding to the asserted
component. First-order proof search maintains these labels, ensuring that all clauses derived
from a conditional clause are appropriately labelled.

At some point the first-order prover may produce a refutation of a labelled clause, demon-
strating that the assumptions made in the derivation of this clause are inconsistent. The labels
of this refuted clause are used to add a clause to the SAT solver that prunes part of the splitting
decision space and a new model is produced. Whenever the SAT solver model changes it is
necessary to remove components no longer in the model, as well as adding new components.
The mechanisms for this are beyond the scope of this description and we refer to [8, 9].

It seems likely that an important aspect of the SAT solver usage for AVATAR is incremental
usage of the solver and the ability to produce similar models i.e. those with minimal change.
This is interesting as these are not common properties that the developers of SAT solvers are
interested in - incrementalality has been studied but it does not appear that this notion of
similar models has been explored.

3 Global Subsumption

This is a very effective simplification technique based on the notion of global propositional
subsumption and originally explored in [5, 6]. Let D ∨D′ be a ground clause (for non-empty
D′) in a set of clauses S. Let Sgr be a set of ground clauses implied by S. The ground clause
D ∨D′ can be replaced by D in S if Sgr |= D as D follows from S and subsumes D ∨D′. This
entailment can be checked by a SAT solver. Note that if D is empty then we have established
a contradiction i.e. Sgr is unsatisfiable and therefore so is S. Furthermore, note that whilst
there are an exponential number of subclauses D, one only needs a linear number of calls to
the SAT solver to find a minimal D or show that one does not exist.

The notion can be lifted to a non-ground clause C∨C ′ using an injective substitution γ from
variables in C ∨ C ′ to a set of fresh constants ΣC . The injectivity of γ is important. Consider
the clause p(x, y) ∨ r(x) for S = {p(x, y) ∨ r(x), p(x, x)} and Sgr = {p(a, a) ∨ r(a), p(a, a)}, we
have Sgr |= p(a, a) but p(x, y) does not follow from S.

This leads to the following non-ground global subsumption rule:

C ∨ C ′

C

where Sgr |= Cγ for non-empty C ′ and injective substitution γ. We use an injective substitu-
tion that orders variables and maps the ith variable to fresh constant ci. Sgr is constructed
using these injective substitutions. We choose not to add further groundings as we want to
restrict the size of the SAT clause set. Additionally, as it is important for simplifications to
be inexpensive, SAT solvers are run in propagation-only mode. For these two reasons, some
possible simplifications may be missed but we believe this to be a necessary trade-off.

As the SAT solver is only used with propagation we do not require a full SAT solver. Further
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work may investigate whether it would be more efficient to implement a dedicated propagation-
only solver.

4 Instance Generation

This is a saturation-based technique based on the instantiation calculus [3, 5]. The basic idea
is as follows. Given a set of first-order clauses S, we produce a ground abstraction S⊥ by
mapping all variables to a fresh constant ⊥. If S⊥ is unsatisfiable then S is unsatisfiable,
note that this is a SAT problem. Otherwise the abstraction may need to be refined by adding
clauses to S. As an example of this refinement consider S = {p(f(x, a)),¬p(f(b, y))}, giving
S⊥ = {p(f(⊥, a)),¬p(f(b,⊥))}. The set S⊥ is SAT satisfiable, whilst the set S is unsatisfiable.
The abstraction does not capture all necessary instances of clauses in S. If we add p(f(b, a))
and ¬p(f(b, a)) to S then S⊥ becomes SAT unsatisfiable. This is an instance of the Inst-Gen
rule:

C ∨ L D ∨K
(C ∨ L)σ (D ∨K)σ

where σ = mgu(L,K) and σ is a proper instantiator of L or K (see [3]). Note that in the example
the conflicting literals would both be true in the SAT model, this leads to the observation that
it is only necessary to apply the Inst-Gen rule to literals that appear in the SAT model, this
means that the SAT model can be used as a selection function [3, 5].

Instance generation is applied in a saturation loop. All clauses are added to a passive set
and their groundings are added to a SAT solver; it is sound for the grounding to use a prolific
constant from the problem, or a fresh constant, but a single constant should be used. The
saturation loop then iterates as follows. The SAT solver is asked for a model, if there is none
then the problem is unsatisfiable. Then a clause is activated by selecting its literals using the
SAT model, performing all Inst-Gen inferences between it and clauses in the active set, and
finally adding the clause itself to the active set. Generated clauses are added to the passive set
with their groundings being added to the SAT solver. This is repeated until the passive set is
empty. Note that if the model changes a clause may need to be moved from the active set to
the passive set. As the instantiation calculus is complete saturation (up to redundancy) implies
satisfiability.

The implementation in Vampire is slightly more complex than this as it incorporates the
notions of restarts and dismatching constraints.

As in AVATAR, the SAT solver is being used incrementally. It is not clear whether similar
models are desirable as whilst it would reduce the number of clauses ‘deselected’ it would also
reduce the rate at which ‘conflicts’ with the grounding were found.

5 Finite Model Building

Whilst there is much of Vampire focussed on theorem proving we are also interested in establish-
ing non-theorems. A useful tool for this is finite model building where we attempt to construct
a finite model of the problem.

Vampire implements a MACE-style finite model builder [7] based heavily on the Paradox
prover [2]. This is a recent addition to Vampire and has proved effective in proving non-theorems
that other techniques within Vampire are not well suited for.

The idea behind this approach is to introduce a growing set of fresh constants representing a
finite domain of the finite model we are searching for. For a finite domain of size i we represent
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the constraints on the corresponding finite model in a SAT solver and then check if there is a
SAT model. If there is then this gives us the finite model, otherwise we add a new constant to
the domain and repeat.

The constraints on the finite model are given by the input clauses S and the signature of
the problem. For each clause C in S we ground C with the domain constants c1, . . . , ci in all
possible ways. We consistently translate each ground literal into a SAT literal to give a set of
SAT clauses. Then, for each function symbol f of arity n in the signature it is necessary to add
functional and totality constraints. In the first case we add a translation of the ground clause
f(d1, . . . , dn) 6= d∨ f(d1, . . . , dn) 6= d′ for all d1, . . . dn, d and d′ in the finite domain for distinct
d and d′; this captures the fact that f is a function. In the second case we add a translation
of the ground clause f(d1, . . . , dn) = c1 ∨ . . . f(d1, . . . , dn) = ci for all d1, . . . dn in the finite
domain and the full finite domain c1, . . . ci; this captures the fact that f must be total.

To use clauses to constrain the finite model in this way it is necessary to first flatten clauses to
ensure that there are no nested-terms. Additionally we perform two preprocessing steps aimed
at reducing the number of variables in each clause as the number of groundings of a clause
is exponential in this value. Prior to flattening we perform definition introduction where the
clause p(f(a, b), f(a, b)) would be transformed into the pair of clauses p(t1, t1) and t1 = f(a, b)
for fresh constant t1. Post flattening we perform splitting where a clause p(x, y) ∨ q(x, z) can
be split into the clauses p(x, y) ∨ s(x) and ¬s(x) ∨ q(x, z) for fresh split predicate symbol s.

Finally, we have implemented a variation of the sort inference and symmetry breaking tech-
niques described in [2]. These are necessary when searching for larger domain sizes as they
(partially) limit the exponential effects of grounding.

Note that this technique can establish unsatisfiability in certain cases i.e. when the size of
the domain has been restricted by the input problem. For this reason it is a complete procedure
for effectively propositional (EPR) problems.

The SAT solver is used in a non-incremental setting. This allows us to make use of variable
elimination techniques in the SAT solver, which prove highly effective and are not available in
an incremental setting. As the majority of the time is spent in the SAT solver any improve-
ments in SAT solving on problems of these kind can improve the effectiveness of the technique.
Additionally, any methods that reduce the size or complexity of the problem passed to the SAT
solver (such as symmetry breaking mentioned above) can have a large impact.

6 Future Usage of SAT Solvers

In this section we consider ways in which the current usage of SAT Solvers could be extended
and improved. Note that most of the ideas described in this section are either currently under
development or not yet under development.

6.1 Tuning the SAT Solver

This is an area that has already received some attention [8, 1]. It is unlikely that the workloads
presented to the SAT solver are the same as those often inspected when ‘tuning’ the SAT solver.
Therefore, it is a good idea to consider how different parameters of the SAT solver could be
set to improve performance on these workloads. An example of such a parameter is the default
value given to a SAT variable. In addition to altering the SAT solver or (trying different SAT
solvers) we have also looked at ways of manipulating a model produced by the SAT solver to
make it more useful for the intended purpose. For example, [8] describes model minimisation
in the AVATAR setting. This is an area of ongoing work.
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6.2 AVATAR + Instance Generation

Instance generation can already be combined with resolution. Currently this combination con-
sists of two parts. Firstly, if Global Subsumption is being used the related SAT solver is shared
so that clauses can be simplified using a larger set of ground clauses. Secondly, all clauses
derived (unconditionally) by the resolution proof attempt are grounded and added to the SAT
solver used for Instance Generation. This second step ensures that the model used for Instance
Generation also satisfies clauses produced by resolution. Note that clauses conditionally as-
serted by AVATAR will not be shared in this way so there is no cooperation between AVATAR
and Instance Generation .

One approach to combining AVATAR and Instance Generation would be to share the SAT
solvers used by each technique. This would allow the models produced in either case to be
restricted by information from the other technique. In the case of AVATAR, this could prune
areas of the search space shown to be inconsistent by Instance Generation. In the case of In-
stance Generation the model determines the selection function and captures conflicts, therefore
restricting this model using information from AVATAR would avoid deriving additional clauses
that represent those conflicts. In both cases this would be sound as only clauses derived from
the input clauses are added to the SAT solver.

It is important to note that the SAT literals in the solver used for AVATAR represent
components whilst the SAT literals in the solver used for Instance Generation represent ground
literals. Of course, in the AVATAR setting all ground literals are components so there is an
overlap in this case if these sets of ground literals can overlap. This will only be the case if a
constant from the problem is used for grounding in Instance Generation.

In the above approach only derived ground literals from AVATAR contribute to the coopera-
tion. However, we could attempt to relate non-ground components from AVATAR with ground
literals from Instance Generation in the following way. First we introduce some terminology:
let D[X] be a clause component over variables X and let [D[X]] be the SAT literal representing
that component. Whenever, [D[X]] is added to the SAT solver we can also add [D[X]]→ [D[C]]
for the vector C of constants used for grounding in Instance Generation. This will have the
effect of (weakly) connecting the models at the non-ground level. If AVATAR shows that the
non-ground component D[X] must be true in all models then Instance Generation must choose
a literal in [D[C]] to be true in its model. If [D[C]] is shown to be inconsistent then AVATAR
cannot select [D[X]] in its model. It is not yet clear if this approach will beneficial and there
may be alternative methods for connecting the contents of the SAT solvers in either case.

6.3 AVATAR + Global Subsumption

Currently when Global Subsumption and AVATAR are used together the Global Subsumption
method only considers unconditional clauses i.e. those with an empty assertion set. This is
sound but is weak as it is usually the case that the majority of clauses have non-empty assertion
sets with using AVATAR.

A first proposal for combining the techniques is to update the Global Subsumption part
only. The idea is that for clauses with a non-empty assertion set we ground the first-order part
as usual (giving a SAT clause), but also add SAT literals corresponding to the assertions. Now
when a clause is tested for Global Subsumption, we can either assume literals corresponding
to its assertions or even corresponding to all components currently active in the first-order
solver i.e. true in the AVATAR model. The former corresponds to looking for unconditional
reductions and the latter for conditional ones.
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The above combination has been implemented but not yet experimented with. This im-
plementation does not look for Global Subsumption inferences which are proper only on the
assumption side i.e. it does not attempt to reduce a clauses assertion set. This is because this
does not reduce the clause from the perspective of the first-order solver. It is not clear if this
would have added benefit.

An extension of this idea would be to allow AVATAR and Global Subsumption to share a
SAT solver. However, the benefits to AVATAR are not clear, especially if Global Subsumption
checks have the potential to change the AVATAR model. Additionally, as mentioned earlier,
Global Subsumption is used in propagation-only mode so sharing the SAT solvers may have no
benefit if the current AVATAR model is being asserted.

6.4 All Three Together?

Once we have combined AVATAR with Instance Generation and Global Subsumption separately
a natural extension is to combine all three. However, as mentioned above, it may be beneficial
to keep a separate SAT solver for Global Subsumption. Experiments are required to explore
the potential benefits and costs to the AVATAR or Instance Generation techniques.

6.5 Guiding Literal Selection

In both AVATAR and Instance Generation the model produced by the SAT solver determines
how first-order inferences will be performed; in the case of AVATAR it gives the clauses that
will be considered and in Instance Generation it gives the selected literals. In both settings
there are notions of ‘nice’ inputs to inferences and it may be possible to guide literal selection
in the SAT solver to prefer including these ‘nice’ components or literals in the SAT model. We
consider what this might mean for each setting.

AVATAR. As described above, the SAT model determines the splitting branch being ex-
plored. The question is, are all splitting branches equal? Perhaps some splitting branches are
easier to refute than others. By selecting components that are cheaper to apply inferences to
(typically short components with small weight i.e. ground components) we might encourage
these ‘easier’ branches to be explored first. If these contain an unconditional contradiction then
this could lead to the problem being solved faster or at all (under limited resources). It is
also possible that these ‘cheaper’ branches can lead to clauses being derived that prune more
‘expensive’ branches later. There are other ways that literal selection could be used to effect
AVATAR usage. Firstly, AVATAR deals with partial models produced by minimising a model
and literal selection could aim to produce a ‘small’ model to begin with. Secondly, in AVATAR
there is a desire for similar models. Phase-saving is a current passive technique for producing
similar models but more active approaches could be considered i.e. selecting ‘older’ literals first.

Instance Generation. As described above, the SAT model is used to select literals for
applications of the InstGen rule. There are two notions of niceness we can consider. Firstly, we
could attempt to reduce the number of clauses derived (this is the usual aim of selection). To
do this we would prefer ground literals that are groundings of certain kinds of literals; we can
use common selection techniques for these literals i.e. fewest variables, deepest variables. Note
that this may require us to store some additional information about how these grounded literals
were created. Secondly, note that we can apply the InstGen rule between clause ¬A(x) ∨C(x)
and both A(f(y)) ∨ D1 and A(f(f(y))) ∨ D2 but the first application makes the second one
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redundant [5]. This is a property taken advantage of by dismatching constraints, which prevent
the second application after the first has been performed. We could also control literal selection
to ensure that the most general application is performed first. In combination with dismatching
constraints this could significantly reduce the number of applications of the InstGen rule. We
note that these two notions of niceness are directly in conflict with each other and it is not yet
clear if either would be preferable, or perhaps if one is more favourable in certain settings, or if
neither has any effect on proof search.

Completeness. Note that both in both AVATAR and Instance Generation it is necessary
to consider all models to establish satisfiability. Therefore, the idea behind this preferred
literal selection is not to restrict the models considered but change the order in which they are
considered with the aim of putting ‘nicer’ models first.

7 Conclusions

This paper has highlighted and (briefly) described the different techniques that make use of
SAT solvers in Vampire. We have also discussed possible extensions to this usage which could
increase the impact of these techniques even further. We hope that we will be able to report
on the outcome of these ideas in future work.
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