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Abstract

Advanced Encryption Standard (AES) represents a fundamental building module of
many network security protocols to ensure data confidentiality in various applications
ranging from data servers to low-power hardware embedded systems. In order to opti-
mize such hardware implementations, High-Level Synthesis (HLS) provides flexibility in
designing and rapid optimization of dedicated hardware to meet the design constraints. In
this paper, we present the implementation of AES encryption processor on FPGA using
Xilinx Vivado HLS. The AES architecture was analyzed and designed by loop unrolling,
and inner-round and outer-round pipelining techniques to achieve a maximum throughput
of the AES algorithm up to 1290 Mbps (Mega bit per second) with very significant low
resources of 3.24% slices of the FPGA, achieving 3 Mbps per slice area.

keywords: Advanced Encryption Standard, AES, High Level Synthesis, HLS, Optimization,
High throughput, Low area resources, Zynq, FPGA.

1 Introduction

Advanced Encryption Standard (AES) is a standardized algorithm approved by the National
Institute of Standards and Technology (NIST) [16]. It has been adopted by numerous appli-
cations ranging from data servers to low-power hardware embedded systems to ensure data
secrecy and privacy. However, AES-based block cipher is computationally intensive and time
demanding for software implementation on general purpose processors, which leads to hardware
acceleration of the AES algorithm on application-specific integrated circuit (ASIC) or recon-
figurable hardware devices such as field programmable gate arrays (FPGAs). It is known that
current embedded systems may depend on dedicated hardware accelerators for data encryption
and decryption.

The AES encryption algorithm consists of several rounds of encryption and each round
is comprised of three main layers to apply data confusion through nonlinear transform and
data diffusion by mixing the data state. The algorithm for each round takes the state array
and, after applying a round encryption, returns an updated state array. The implementation

G. Lee and Y. Jin (eds.), CATA 2019 (EPiC Series in Computing, vol. 58), pp. 36–44



Optimization of AES using Vivado HLS Daoud, Hussein and Rafla

and optimization of such complex functions in Hardware Description Languages (HDL) is time
consuming and not easily optimized. In order to achieve an efficient design with less effort,
High-Level Synthesis (HLS) procedures are applied. HLS is an automated process that accepts
a system design created in a high level language, such as C or C++, and then generates a
Register Transfer Level (RTL) design describing the behavior of the system. HLS plays a vital
role in the design process by reducing the effort of HDL design and debugging, and providing
flexibility in the final hardware implementation to meet design constraints set by the developer.

In this paper, we present the implementation of AES using Vivado High Level Synthesis [19]
and evaluate the performance of the proposed architecture. The design is implemented on the
Xilinx Zynq-7000 SoC FPGA chip of the ZedBoard prototyping board [20]. The standard
AES-128 block cipher consists of a full 10 rounds of data permutation and mixing. Each
round was optimized and pipelined to achieve high throughput with minimum area cost. Our
proposed AES design was only implemented by look-up tables (LUTs) and flip flops (FFs)
without including any block RAM (BRAM) or DSP slices of the FPGA. Therefore, our design
may be appealing to low cost and high throughput applications. Additionally, our proposed
HLS implementation of the standard AES-128 is compared to previous implementations on
FPGAs. The rest of this paper is organized as follows: Background and the related works are
explored in Section 2, an overview of HLS and relevant techniques are represented in Section 3,
implementation of the AES block cipher algorithm and its optimization is described in Section
4 and compared to previous work as well. Finally, Section 5 concludes the work done and gives
suggestions for future work.

2 Background and Related Work

The AES is a symmetric block cipher [16] and its fundamental operations are performed on
byte-level field over the Galois Field GF(28) [15], where the input block is divided into a set of 8-
bit vectors. The algorithm encrypts and decrypts a 128-bit block of data by repeatedly applying
the same round transformation and using a secret key. The key size can be either 128, 192, or
256 bits and is chosen based on the preferred security level. The different versions of AES are
known as AES-128, AES-192, or AES-256, respectively with the key size and the corresponding
number of rounds, 10, 12, and 14, respectively. AES-128 is well known and supported by most
hardware implementations. So, in this paper, we present the implementation of the AES-128
on FPGA using HLS.

2.1 AES Structure

Figure 1 shows the different phases of the standard AES algorithm. It starts with an initial
round followed by a number of standard rounds and ends with a final round. Each standard
round, intermediate cipher, has four different operations to scramble and non-linearly transform
the data. The intermediate results is called a state and represented as a 2-D matrix notation
of 4 × 4 of bytes.
SubBytes: is an invertable non-linear transformation. It is a substitution process of each byte
of the input state by another one from a predefined table (S-box). The size of the table is 256
different elements of bytes. The design criteria of the S-box values is to be resistant against the
known differential and linear crypto-analysis. Each possible element of the S-box is generated
by computing the multiplicative inverse in GF(28) and then applying an affine transformation.
ShiftRows: is an operation of cyclically shifting (rotating) each row with a different offset.
MixColumns: is an operation on the different columns by performing a polynomial multipli-
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Figure 1: AES design block [15]

cation in GF(28)
AddRoundKey: is an operation of bit-wise XORing the round key (sub-key) with the cur-
rent state. Each round key is derived from the previous sub-key. This requires the encryption
algorithm to schedule the key for each round.

The key schedule takes the original input key and derives a sub-key for each round. For
AES-128, the number of rounds is 10, and 11 sub-keys are derived, each of 128 bits. The sub-
key derivation is computed recursively and the first sub-key is the original input key. The AES
key schedule is word-oriented of word size = 32 bits. Figure 2 shows the AES key schedule for
128-bit key size, where the purpose of the function g() is not only to add non-linearity to the
key schedule but also to remove symmetry in the AES, and RC[i] is the round coefficient that
varies from round to round.

In the standard AES-128, the initial round is done by applying AddRoundKey, i.e., XORing
the key with the input data. Then, it is followed with 10 repeated rounds and each round
performs SubBytes, ShiftRows, MixColumns and AddRoundKey. The final round is slightly
different by dropping the MixColumns function.

2.2 Related Work

A considerable amount of literature has been proposed and evaluated on the implementation
of the AES algorithm on FPGA [2, 4, 5, 7], and ASIC [13, 14, 17]. Most of the implementations
feature high speeds and high costs suitable for high-end applications only. Early AES designs
were mostly straightforward implementations of various loop unrolled and pipelined architec-
tures. Recent implementations of the AES on FPGA demonstrate better utilization of FPGA
resources using dedicated on-chip memories implementing S-boxes and DSP slices [6].

In [4], the authors studied and compared the performance of implementations of different
candidates of the AES encryption techniques on FPGA and evaluate their suitability for FPGA-
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Figure 2: Key expansion for each round [15]

based implementations. They focused on time performance and the encryption throughput.
Authors in [2] presented a hardware implementation of the AES algorithm developed for an
external data storage unit in a dependable application and optimization of the encryption
algorithm to meet the needs of the target application. In [7], authors focused in optimizing the
AES algorithm to suit small embedded applications or low power consumption devices. They
achieved a throughput of 121 Mbps at a maximum frequency of 153 MHz targeting small area
design and lower energy consumption per processed block.

However, HLS has been used to optimize implementations of the cryptography protocols
in hardware [8, 11]. There are few works that uses HLS to implement the AES algorithm on
FPGAs [1,9, 12,18].

In [1], authors investigated various optimizations of the C-based AES implementation into
hardware using C2R [3] methodology for co-processor synthesis. These implementations in-
cluded baseline hardware design, BRAM-based architecture, a pipelined scheme, and an op-
timized architecture for performance and area. In [12], the authors explored different hard-
ware implementations of the AES using HLS directives and memory partitioning optimizations.
In [18], authors explored four different implementation methods of the AES using Vivado HLS
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for different types of the substitution table.

3 Vivado High Level Synthesis

Systems and hardware architectures are generally designed using HDL which models the oper-
ation in RTL primitives. On the other hand, high-level languages can efficiently model systems
and applications with less effort and better ease of configurability. In order to reduce the amount
of design time necessary, high-level synthesis tools are used for transforming systems modeled
in a high-level language into a RTL implementation that can be synthesized into FPGAs [10].
HLS not only reduces the effort of HDL design and debugging but also provides flexibility in
the final hardware implementation to meet design constraints.

The Xilinx Vivado HLS tool [19] transforms a C specification design, such as C, C++, and
System-C, into a RTL design. The tool goes through several phases to achieve an optimized
design. The HLS tool schedules logic operations for each clock cycle and assigns hardware
resources for each scheduled operation. From the flow of the design, the control logic is extracted
create a finite state machine which sequences the operations in the RTL design.

The Vivado HLS tool synthesizes the C functions into blocks within the RTL hierarchy.
The top-level function arguments are synthesized, as appropriate, into I/O ports accompanied
by appropriate hand-shaking signals. The HLS tool allows the hardware developers to analyze
and optimize the design. Based on default behavior, constraints, and any optimization direc-
tives; the tool creates an optimal RTL implementation of the high-level design. The tool then
generates a set of synthesis reports which are used to analyze the implementation and, hence,
several optimizations are applied to meet the design constraints.

In this work, the AES encryption algorithm was implemented in C-language. The algorithm
was synthesized and co-simulated by the Vivado HLS tool to check the functionality of the RTL
design. Then, the design was analyzed and optimized to achieve higher throughput.
The throughput, Tp, in this paper is calculated as:

Tp =
Block Size

NC ∗ TCLK
(1)

, and the throughput to area ratio is calculated as:

K =
Tp

A
(2)

where Block Size is the size of a block in bits, i.e., 128 bits, NC is the number of clock cycles
necessary to encrypt a single block, TCLK is the maximum delay path, and A, area, is the
number of slices from the Vivado utilization report.

4 AES Implementation Optimization

In this section, we will explain our implementation and optimization of the AES using Vivado
HLS. We will explore different HLS optimizations: SW-based baseline implementation, Key
Expansion-based implementation, and High throughput-based optimization.

The AES-128 encryption algorithm is composed of 10 rounds and the round is a set of
functions as described in Section II. The HLS tool synthesized the AES-128 top function into
a RTL block and each sub-function into a sub-block instantiated into the top-level design. On
the other hand, the top-function arguments are synthesized into input/output (I/O) ports. The
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tool allows us to choose the handshaking protocol to be implemented onto the I/O ports of the
designed block(s). I/O ports can be implemented as streaming data to/from a FIFO, or as
reading/writing data to/from a memory. There are other handshaking protocols which can be
implemented, as necessitated by the design. In our implementation, the design was synthesized
to accommodate receiving a stream of data. The output data is synthesized to allow commu-
nication with a dual-port memory.
SW-based Implementation: This scheme is the baseline AES algorithm designed for soft-
ware implementation, where the key extension is executed first before starting the encryption
process. The purpose of the key expansion module is to generate the 11 different extended keys
each is 128-bit size. In this version, all loops are rolled and no optimization is applied. This im-
plementation led to an encryption of one block in 2556 clock cycles using 154 slices of the FPGA.

// SW−based Encryption Function
void AES Encrypt ( unsigned char s t a t e [ 1 6 ] , unsigned char msg [ 1 6 ] , unsigned char

key [ 1 6 ] ) {

f o r ( i n t i = 0 ; i < 16 ; i++)
s t a t e [ i ] = msg [ i ] ;

// Rounded key Generation
unsigned char expanded key [ 1 7 6 ] ;
key expans ion ( key , expanded key ) ;

add round key ( s tate , key ) ;

f o r ( i n t j = 0 ; j < round cnt ; j++) {
sub bytes ( s t a t e ) ;
s h i f t r o w s ( s t a t e ) ;
mix columns ( s t a t e ) ;
add round key ( s tate , ( expanded key + (16 ∗ ( j + 1) ) ) ) ;

}

// Fina l round
sub bytes ( s t a t e ) ;
s h i f t r o w s ( s t a t e ) ;
add round key ( s tate , ( expanded key + 160) ) ;
}

Key Expansion-based Implementation: We modified the C-based code of the AES to
merge the key expansion with the encryption round. So, the algorithm starts the encryption
process and the extended key is generated in parallel while execution each round. The modified
code was synthesized with the default set of the HLS tool. This implementation led to an
encryption of one block in 2176 clock cycles using 165 slices of the FPGA.
High Throughput-based Optimization: We applied our optimization directives to the key
Expansion-based design to achieve high performance encryption.

The aim of the design is to obtain maximum throughput by unrolling loops and applying
pipeline with initiation interval = 1. For achieving high throughput, some arrays were fully
partitioned and dependence directives were applied to overcome loop-carry dependencies. The
most effective optimization is merging the key expansion with the encryption round. In this
case, some Pragrmas were applied to clear dependency between the expanded keys and the
encryption round. For comparison purposes, we constrained the HLS tool to synthesize the
embedded memory blocks into FPGA slices. The following code shows some of the applied
Pragmas to achieve high throughput.
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// Throughput−based Encryption Function
void AES Encrypt ( unsigned char s t a t e [ 1 6 ] , unsigned char msg [ 1 6 ] , unsigned char

key [ 1 6 ] ) {

unsigned char ExtendedKey [ 1 6 ] ;
#pragma HLS ARRAY PARTITION v a r i a b l e=ExtendedKey complete dim=1

f o r ( i n t i = 0 ; i < 16 ; i++){
#pragma HLS UNROLL

s t a t e [ i ] = msg [ i ] ;
ExtendedKey [ i ] = key [ i ] ;

}

f o r ( i n t j = 0 ; j <= round cnt ; j++) {
#pragma HLS PIPELINE

add round key ( s tate , ExtendedKey ) ;

// c r e a t e a r eg i on to s e t f a l s e dependence o f the extended key
{

key expans ion ( ExtendedKey , j ) ;
#pragma HLS UNROLL
#pragma HLS DEPENDENCE v a r i a b l e=Extendedkey i n t e r f a l s e

}

sub bytes ( s t a t e ) ;
s h i f t r o w s ( s t a t e ) ;

i f ( j != round cnt )
mix columns ( s t a t e ) ;

e l s e
add round key ( s tate , ExtendedKey ) ;

}
}

This solution is able to execute the encryption of one block within 19 clock cycles using 431
slices (3.24%) of the FPGA. This optimized solution is at the expense of the FPGA’s resources.

It can be noted that the throughput difference between the throughput-based implemenation
and the other two implementations are so vast. This indicates that by simply implementing
high-level code into a HLS tool and then optimizing in a way which is beneficial for design
constraints can speed up development time. Thus, by using HLS, rapid optimization can be
accomplished with results similar to dedicated HDL designs.

The proposed optimization was compared to previous HLS implementations in the liter-
ature. The area utilization, in slices, maximum achieved frequency, in Mhz, throughput, in
Mbps, and throughput to area ratio, in Mbps/slice, are shown in Table 1 for the Throughput-
based implementation and the previous works. Our proposed optimization in HLS achieved
higher throughput per area and less number of slices is required to implement the proposed
architecture.

Table 1: AES hardware implementation comparison.

Implementation
Area Max Freq

MHz
Mbps

Mbps

sliceLUT FF BRAM SLICE
[1] 14588 5328 80 7670 144 1530 0.2
[12] - - - 646 - 1393 2.2
Ours 1417 830 0 431 192 1290 3
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The synthesized RTL design of the throughput-based optimization was exported to Vivado
and design implementation was completed for further analysis. The experiments were conducted
using Xilinx Zynq-7000 SoC, Zedboard, XC7Z020-1CLG484C [20] along with the Xilinx Vivado
Design suite and SDK 17.4. The FPGA fabric runs normally on 100 MHz (used in this context),
but can be configured up to 192 MHz, the maximum frequency of the encryption module.

5 Conclusion

In this work, we explored the standard AES encryption and its implementation into a Xilinx
ZedBoard with the Zynq-7000 SoPC. This work focused on the encryption aspect of AES-
128, but the decryption part could easily be implemented and tested as well. The AES was
initially coded in a high-level language and was then implemented with Xilinx Vivado High Level
Synthesis. The Xilinx HLS tool enabled us to quickly realize our design and make optimizations
which greatly increased throughput of the AES algorithm. HLS also offers the potential to allow
for hardware benchmarking in early design stages and for in-depth analysis of a design’s resource
usage versus high-level code placement.

The most successful optimization implemented in our design was the pipelining of the func-
tion’s for-loops besides unrolling loops and computing the extended key on the fly during the
encryption process, which reduced the initiation interval and allowed for concurrent execution
of operations within loops and functions.

The encryption throughput of the proposed AES in HLS observed to be 1.26 Gbps. This
rapid development and optimization of HLS-ready code shows that HLS can be used to increase
a designer’s productivity by applying directives such as pipelining, array shaping, and port map-
ping to their new and existing designs. A designer is thus able to see a moderate improvement
without the need to design RTL with traditional, and time consuming, HDL languages.

Some future work would include further optimization of the AES algorithm. Adaptation for
HLS can be achieved through writing optimized code; both with standard HDL and manual
implementation of a pipelined structure. The future work would also be implemented into
the same prototyping board for fair comparison. Additional future work may also include the
utilization of the AXI interface currently existing within the Xilinx Zynq-7000 series of FPGAs.
The on-board processor is able to use the FPGA for hardware acceleration, as opposed to
complete implementation of the AES algorithm in the FPGA.

As a future work, different modes of encryption for AES to encrypt successive blocks of
data including counter (CTR), cipher block chaining (CBC), cipher feedback (CFB), and out-
put feedback (OFB) can be implemented and optimized using HLS and compared to their
counterpart RTL implementations on FPGA.
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