
Maximum likelihood pedigree reconstruction

using integer programming

James Cussens
Dept of Computer Science & York Centre for Complex Systems Analysis

University of York, York, YO10 5DD, UK jc@cs.york.ac.uk

Abstract

Pedigrees are ‘family trees’ relating groups of individuals which can usefully be seen as
Bayesian networks. The problem of finding a maximum likelihood pedigree from genotypic
data is encoded as an integer linear programming problem. Two methods of ensuring that
pedigrees are acyclic are considered. Results on obtaining maximum likelihood pedigrees
relating 20, 46 and 59 individuals are presented. Running times for larger pedigrees depend
strongly on the data used but generally compare well with those in the literature. Solving
is particularly fast when allele frequency is uniform.

1 Introduction

The problem of finding the most probable pedigree (‘family tree’) for a group of related in-
dividuals, whether human or not, is often needed for paternity and family reunion cases [7].
Correctly specifying relationships is also needed for the proper application of genetic linkage
analysis. In the literature the problem is often called pedigree reconstruction and we will also
make use of this term.

A Bayesian approach is frequently taken where prior knowledge is combined with observed
data to define a posterior probability for any given pedigree. Prior knowledge can include
information such as known relationships, age and/or sex of some of the individuals and perhaps
limits on the number of generations in the pedigree. In addition, probabilistic prior knowledge
stating that, for example, very high levels of inbreeding are unlikely, can also be included [7, 13].

Data will be genotypic data for each individual under consideration. This data will be
defined via a set of marker loci each specifying a position on a particular chromosome. The
DNA sequence at such loci will vary between different individuals and so the marker can be
thought of as a variable. The possible values of this variable are known as alleles. Chromosomes
come in pairs, one inherited from the father and one from the mother, so there is a pair of allele
values, called the genotype, for each locus. See [9] for further information. Data for pedigree
reconstruction typically consists of genotypes for a number of marker loci: call this a multi-
locus genotype. In the interests of brevity multi-locus genotype will often be abbreviated to just
genotype in what follows.

As a result of its importance a number of computational techniques have been used for
pedigree reconstruction including simple enumeration [7], simulated annealing [2, 11], MCMC [3]
and dynamic programming [5]. However, it appears that constraint-based methods have yet to
be used for pedigree reconstruction although [12, 10] apply weighted CSP and SAT techniques,
respectively, to check the consistency of a given pedigree. Also a weighted MAX-SAT approach
has been used for the problem of Bayesian network learning [6]; pedigree reconstruction can be
seen as a special case of this (see Section 2).

In this paper pedigree reconstruction is cast as a instance of Bayesian network learning and
integer linear programming (IP) is used to search for maximum likelihood Bayesian networks.
The paper is structured as follows. In Section 2 a method for representing pedigrees as Bayesian
networks (BNs) is given and the likelihood function for such BNs is analysed. Section 3 dis-
cusses IP encodings for pedigree reconstruction. Section 4 shows results for the most successful

8 A. Dovier, A. Dal Palù, S. Will (eds.), WCB10 (EPiC Series, vol. 4), pp. 8–19

jc@cs.york.ac.uk

ML pedigree reconstruction using IP James Cussens

encoding found to date and the paper ends with conclusions and pointers to future work in
Section 5.

2 Pedigrees as Bayesian networks

A Bayesian network (BN) is an acyclic directed graph whose nodes (V) represent random
variables. (Such graphs are often called, somewhat imprecisely, directed acyclic graphs (DAGs).)
If there is an arrow from node u ∈ V to node v ∈ V in the graph then u is said to be a parent
of v. The parameters of a BN are conditional probability distributions for each node given its
parents in the graph. Since the graph is acyclic the product of these conditional probability
distributions defines a full joint probability distribution over all random variables represented
in the graph.

There are a number of ways of representing pedigrees as BNs [9], but here, like [5], each node
in the BN represents a known individual, or more precisely the multi-locus genotype of that
individual. An arrow from u to v is a statement that u is the biological parent of v. It follows
that no node may have more than two parents. A node with no parents represents a founder :
an individual neither of whose parents are to be found amongst the individuals considered.
A node with one parent represents an individual with exactly one known parent and a node
with two parents represents an individual both of whose parents are known. Following [5]
Hardy-Weinberg equilibrium will be assumed which implies that the multi-locus genotypes for
founders will be probabilistically independent. In addition only complete genotypic data (for a
given collection of markers) will be considered.

Following [5] let α1(gv|gu) denote the probability that individual v has genotype gv given
that it has one known parent u with genotype gu. Let α2(gv|gu, gw) be the probability that
individual v has genotype gv given that its has two known parents u and w with genotypes gu
and gw. Let α0(gv) be the marginal probability that individual v has genotype gv. Since for
any particular pedigree reconstruction problem the observed genotype gv for each individual v
is fixed, the following notational abbreviation can be introduced.

α(v, {}) def
= α0(gv)

α(v, {u}) def
= α1(gv|gu)

α(v, {u,w}) def
= α2(gv|gu, gw)

As noted by [5] due to the assumption of a complete sample, the likelihood of any candidate
pedigree G decomposes into a product of conditional probabilities. (The likelihood of G is the
probability of the observed data conditional on G being the true pedigree.) Letting Pa(v,G)
denote the parents that v ∈ V has in a pedigree G, this product can be represented as in (1)
and so the log-likelihood, which is more convenient to work with, can be represented as in (2).

L(G) =
∏
v∈V

α(v,Pa(v,G)) (1)

l(G) = logL(G) =
∑
v∈V

logα(v,Pa(v,G)) (2)

The problem of maximum likelihood pedigree reconstruction is that of finding G such that l(G)
is maximised.

9

ML pedigree reconstruction using IP James Cussens

3 An integer programming encoding for ML pedigree re-
construction

In this section a method of encoding the maximum likelihood pedigree reconstruction problem
as an integer programming problem is presented. A first step towards the encoding is the
simple observation that a pedigree specifies the parents, if any, of each individual. So given an
individual v, a parent set W and a pedigree G it is determined whether v has parents W in G.
This is formalised using the functions I(W → v) defined in (3), where W is implicitly restricted
to be: W ⊆ V \ {v}, |W | ≤ 2. This restriction on W will be assumed throughout to simplify
the presentation.

I(W → v)(G) =

{
1 if v has parents W in G

0 otherwise.
(3)

The log-likelihood (2) of any pedigree can now be rewritten as in (4).

l(G) =
∑
v,W

logα(v,W)I(W → v)(G) (4)

Note that in (4), I(W → v)(G) only takes the value 1 when W = Pa(v,G). For any other
value of W , I(W → v)(G) = 0. The key to the integer programming encoding is to view the
I(W → v) as binary variables. Any particular pedigree G determines a joint instantiation of
these binary variables, setting exactly |V | = n of these binary variables to 1 and all others to 0.
However, most joint instantiations of the I(W → v) do not correspond to any pedigree. With
this in mind the maximum likelihood pedigree reconstruction problem can be reformulated as
in (5).

Find an instantiation of the I(W → v) which maximises:∑
v,W logα(v,W)I(W → v)

subject to the I(W → v) representing a valid pedigree.
(5)

Because the variables in (5) are integer-valued and the objective function∑
v,W

logα(v,W)I(W → v)

is linear in these variables this is an integer linear programming problem—as long as the neces-
sary constraints on the I(W → v) can be expressed as linear equations and inequalities. In the
following subsections it will be shown that this is indeed the case. (‘Integer linear programming’
will continue to be abbreviated to ‘integer programming’ throughout.)

3.1 Constraints

The most basic constraint on the I(W → v) is that each individual v has exactly one parentset.
This can be expressed by n linear equations:

∀v :
∑
W

I(W → v) = 1 (6)

Any instantiation of the I(W → v) satisfying the equations given by (6) will represent a
graph, but the graph may contain directed cycles. To rule out cycles auxiliary variables are
required. There are many ways of ruling out cycles. The following sections present two possible
approaches.

10

ML pedigree reconstruction using IP James Cussens

3.1.1 Ruling out cycles with a total order

For each distinct pair of individuals u, v a binary variable I(u < v) is created. I(u < v) = 1
indicates that u is older than v (u’s birth was before that of v). Without loss of generality it
can be assumed that no two distinct individuals are of exactly the same age, so that exactly
one is older than the other which makes the order on the ages of the individuals a total order.
This is expressed using the following n(n− 1)/2 equations:

∀u, v : I(u < v) + I(v < u) = 1 (7)

Note that (7) means that half of the I(u < v) variables are effectively redundant. However,
it is more convenient to work with the full complement of I(u < v) variables. This does
not introduce inefficiency since the IP solver will detect this redundancy and simplify the
representation of constraints internally. Note also that in (7) the obvious requirement that
u 6= v has not been explicitly stated. This notational convenience will be used throughout:
whenever a constraint depends on more than one individual these individuals will be distinct,
but this will not be made explicit.

The total order must be transitive (if u < v, v < w then u < w). This can be represented
by the following n(n− 1)(n− 2)/3 constraints:

∀u, v, w : 1 ≤ I(u < v) + I(v < w) + I(w < u) ≤ 2 (8)

Finally, the constraint that parents are older than their children needs to be expressed:

∀u, v : I(u < v) ≥
∑

W :u∈W

I(W → v) (9)

To see that (9) expresses this relation, suppose that u is a parent of v. In that case exactly
one of the I(W → v) on the RHS of (9) is 1 and thus the RHS is 1. To satisfy the inequality
I(u < v) must also be 1.

3.1.2 Ruling out cycles with generation variables

An alternative approach associates a generation number with each individual in a pedigree. For
a founder this number is zero. For any other individual the generation number is the length
of the longest path from a founder to the individual. Let m denote the maximum generation
number which is a value set by the user to reflect any prior knowledge. In the absence of such
knowledge m takes its maximal value n− 1.

Let gen(v) denote the generation number of individual v. It is not difficult to see that if u is
a parent of v then gen(v) ≥ gen(u) + 1. This leads to the following set of n(n− 1) constraints:

∀u, v : gen(v)− gen(u) ≥ −m+ (m+ 1)
∑

W :u∈W

I(W → v) (10)

To understand (10) observe that if u is not a parent of v then the sum on the RHS is zero and
the constraint becomes vacuous. If u is a parent of v then the sum is 1 and so the entire RHS
becomes 1, effecting the desired constraint. To see that (10) suffices to rule out cycles note that
if w is an ancestor of v then gen(w) < gen(v). If a cycle obtains, at least two individuals are
their own ancestors and the obvious inconsistency arises. Thus as long as (10) is respected no
cycles are possible.

Note that (10) does not fix the values of the gen(v) variables to their correct values. To see
this, suppose that n were, say, 10 and m set to 9, reflecting an absence of domain knowledge.

11

ML pedigree reconstruction using IP James Cussens

u1 u2 u3

v1 v2v3

Figure 1: A sex-inconsistent pedigree. It is not possible to consistently assign a sex to each
individual.

Suppose that an optimal pedigree were found with the highest valued generation variable having
value 5. It would be possible to increase each generation variable by one without violating (10).
If our only concern is to rule out cycles this is not a problem, but if it is necessary to ensure
that the gen(v) variables take on their correct values then additional constraints placing upper
bounds on gen(v) are required.

3.1.3 Ensuring sex-consistency

Any instantiation of the I(W → v) variables satisfying constraints (6–9) or alternatively (10)
will specify an acyclic directed graph where each vertex has at most two parents, but not all
such graphs represent pedigrees. It is also necessary to ensure that a sex can be assigned to
each individual in a consistent manner. An example of an acyclic directed graph where this
is not the case can be seen in Fig 1. Note that this example was also given by [5]. Call such
pedigrees sex-inconsistent.

To rule out sex-inconsistent pedigrees another n auxiliary binary variables If (v) are created.
If (v) = 1 states that individual v is a female. Constraint (11) states that if an individual v has
two parents at most one is female and constraint (12) states that at least one is female. Note
that in both cases, if I({u,w} → v) = 0 then the constraints are vacuously satisfied.

∀u, v, w : I({u,w} → v) + If (u) + If (w) ≤ 2 (11)

∀u, v, w : I({u,w} → v)− If (u)− If (w) ≤ 0 (12)

With all these constraints in place, the maximum likelihood pedigree reconstruction problem
can be restated as follows:

Maximise:
∑

v,W logα(v,W)I(W → v)

subject either to (6–9,11,12) or (6,10,11,12).
(13)

4 Results

All results shown here were produced using a 3GHz dual-core Linux machine with the Gurobi
IP solver [8]. A number of tests (not reported here) have also been done with SCIP [1] which
produced respectable running times which were nonetheless clearly longer than those produced
by Gurobi (which automatically parallelises solving on multi-core machines).

12

ML pedigree reconstruction using IP James Cussens

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 2: Pedigree of 20 individuals. This pedigree is [5, Fig 3].

Only synthetic genotype data sampled from test pedigrees has been used. This sampling
process mimics the inheritance of genotypes from parent to offspring, which is probabilistic,
and thus different datasets will be sampled from a given pedigree depending on which random
seed is being used. Data was created in this way using the the C++ program pedsim used to
produce the results in [5]. pedsim was also used to compute the log conditional probabilities
logα(v,W) from each of these synthetic datasets, and then to remove logα(v,W) scores where
there exists a higher logα(v,W ′) score with W ′ ⊂ W . Such scores and their accompanying
I(W → v) variables are not needed since in such a case v would never have parents W in the
maximum likelihood pedigree. A Python script (available on request from the author) was used
to read in the (filtered) logα(v,W) scores from pedsim. Gurobi’s Python interface was then
used to define and solve the optimisation problem (13). The following sections present results
for a number of synthetic pedigree reconstruction problems.

4.1 Pedigree reconstruction for 20 individuals using a total order

The data for this experiment was chosen to be the same (modulo sampling variation) as that of
one of Cowell’s [5]. The same software (pedsim) was used to generate genotypic data from one
of Cowell’s test pedigrees (Fig 2). Ten marker loci were used. Although the data is synthetic,
the markers correspond to real ones. Allele values and founder allele frequencies were taken
from [4].

A thousand datasets were sampled and the time taken to find a maximum likelihood sex-
consistent pedigree in each case was recorded. Total order constraints were used in each case.
The mean solving time was 0.65 seconds with the slowest run taking 17.3 seconds. Only 8 runs
took longer than 4 seconds.

4.2 Pedigree reconstruction for 46 individuals using a total order

An experiment identical to that described in Section 4.1 except using a test pedigree of 46
individuals was then carried out. This pedigree was created by editing the source of Cowell’s
pedsim program and is displayed in Fig 3. Only 10 runs were attempted since solving time is

13

ML pedigree reconstruction using IP James Cussens

m1 f2 m3 f4

f9

m6

m30

m34

f41

f6 m5 m8f7

m22f23m9

m10

f19m20 f21f11 m24

f12 m13 f14 m32 f33m19 f20 f31

m42

f43

f45

f47m15m17 m44 m46f16f18

m54 f55m56f57 m58f59

Figure 3: Test pedigree of 46 individuals.

substantially higher than for the 20 individuals case. The solving times for the first 9 runs were,
in decreasing order: 20,566s, 7,470s, 4,266s, 1,175s, 722s, 669s, 115s, 59s and 51s. The 10th run
was abandoned after failing to identify the maximum likelihood pedigree after 44,135s. The
very high variation in solving times is notable. Most datasets produced optimisation problems
which could be solved in a reasonable time, but in some cases solving was unacceptably lengthy.
Problems of this size are too large for the approach of [5].

Two further experiments were conducted for the 46-individual pedigree. In the first an extra

14

ML pedigree reconstruction using IP James Cussens

constraint specifying that there must be at least 20 founders in the pedigree was added. 80
runs were done with this extra constraint. The mean solving time was 18 seconds with 75% of
runs below 20 seconds and the slowest taking 128 seconds. In the second experiment a more
reasonable constraint on founders was used: that the number of founders was between 10 and
20. 100 runs were done with this constraint. The mean solving time was 34s, with 75% within
30s and the slowest taking 613 seconds.

4.3 Pedigree reconstruction for 46 individuals using generation vari-
ables

Although using a total order to rule out cycles in pedigrees produced acceptable results for
small numbers of individuals, it is clear that for bigger problems finding a maximum likelihood
pedigree is unacceptably slow. Fortunately, switching to using generation variables to rule out
cycles as described in Section 3.1.2 results in a significant speed up.

In an initial experiment 100 synthetic datasets were generated from the 46-individual pedi-
gree shown in Fig 3. 19 runs completed successfully, taking a mean time of 432 seconds, but a
median time of only 2.2 seconds. The distribution of solving times for these 19 runs was thus
highly skewed with the five longest runs taking 7349, 810, 20, 9 and 4 seconds and each of the
6 quickest taking less than a second. However, on the 20th run, Gurobi ran out of memory.

This problem could probably be addressed by instructing Gurobi to use the hard disk
when (RAM) memory is exhausted, but this would lead to much slower solving. Instead an
extra constraint was added in the hope of both speeding up solving and reducing memory
consumption. This constraint stated that in each pedigree there is at least one founder. Since
this is always true (due to the acyclicity of pedigrees) a maximum likelihood pedigree will
still be returned, but hopefully more quickly. This founder constraint is formally expressed as
follows: ∑

v

I({} → v) ≥ 1 (14)

With the founder constraint added 100 runs were attempted (i.e. 100 datasets were simulated
and maximum likelihood pedigrees were found for each) and all completed successfully. The
mean solving time was 195 seconds and the median was 3.8 seconds. As usual there was
therefore a highly skewed distribution of solving times with the ten slowest runs taking the
following number of seconds: 8181, 7361, 1638, 830, 309, 249, 127, 118, 110 and 45.

To investigate the effect of increasing the lower bound on the number of founders above one,
a particular dataset simulated from the pedigree in Fig 3 was used. This dataset was chosen
since it is one of the ‘harder’ ones resulting in reasonably long solving times. A maximum
likelihood pedigree for this data is shown in Fig 4.

As Table 1 makes clear, increasing the lower bound on the number of founders makes a big
difference in the time it takes to find a maximum likelihood pedigree. Note, from Fig 4, that at
least one maximum likelihood pedigree has 8 founders (m1, f2, m3, f4, f9, m6, f41 and m30).
Using 8 as a lower bound on the number of founders solving takes only 3 seconds. Higher lower
bounds reduce the solving time further but the pedigree returned is no longer of maximum
likelihood as shown by the third column in Table 1. Importantly, raising the lower bound from
0 (which amounts to removing the constraint) to 1 reduces the solving time drastically. Also,
interestingly, using lower bounds of 2, 3 or 4 actually increases the solving time compared to a
lower bound of 1, but all are still quicker than using no lower bound.

15

ML pedigree reconstruction using IP James Cussens

m1 f2 m3 f4

f9

m6

m30

m34

f41

f6 m5 m8f7

m22f23m9

m10

f19m20 f21f11 m24

f12 m13 f14 m32 f33m19 f20 f31

m42

f43

f45

f47m15m17 m44 m46f16f18

m54 f55m56f57 m58f59

Figure 4: A maximum likelihood pedigree of 46 individuals for a particular dataset simulated
from the pedigree in Fig 3

16

ML pedigree reconstruction using IP James Cussens

LB Time in seconds Likelihood
0 3189.75858617 -6.3680054000e+02
1 1050.95497108 -6.3680054000e+02
2 1695.93844795 -6.3680054000e+02
3 2350.830338 -6.3680054000e+02
4 1220.98797202 -6.3680054000e+02
5 431.202931166 -6.3680054000e+02
6 246.708929062 -6.3680054000e+02
7 63.2229361534 -6.3680054000e+02
8 3.00327396393 -6.3680054000e+02
9 0.523219823837 -6.3933824000e+02

10 0.293282032013 -6.5144025000e+02

Table 1: Solving times for different lower bounds on the number of founders. ‘Likelihood’ is
the likelihood of a maximum likelihood pedigree with the given bound.

4.4 Pedigree reconstruction for 59 individuals using generation vari-
ables

An experiment was done to provide as direct a comparison as possible with Almudevar’s simu-
lated annealing approach [2]. Datasets were simulated from Almudevar’s 59 individual pedigree
[2, Fig 2] and as in that paper ten marker loci were used each with 8 equally frequent alleles.
Generation variables were used to rule out cycles and the (always admissible) constraint that
there is at least one founder was used.

Maximum likelihood pedigrees were obtained from 1000 simulated datasets. The mean solv-
ing time was 0.44846 seconds, the median 0.2350 and 75% of runs completed within 0.43860
seconds. A few much longer runs occurred, with one of length 15.26 seconds. The distribution
of the 1000 solving times is shown as a box plot in Fig 5 It is notable that solving times are
substantially faster on this 59 individual pedigree than for the 46 individual pedigree previ-
ously discussed. This is most probably due to the assumption of equally frequent (i.e. equally
probable) alleles for each of the ten marker loci. This means that genotypic data is more in-
formative than is the case where the distribution is (realistically) skewed as is the case with
Cowell’s ten marker loci data (Markus Riester, personal communication). Comparing running
times to Almudevar [2], there it is stated that for the quickest configuration the time taken for
the simulated annealing algorithm to converge “was approximately 6.6 min using a standard
personal computer”. Note also that simulated annealing does not guarantee that the pedigree
found has maximal likelihood.

5 Conclusions and future work

Results on finding pedigrees which are guaranteed to have maximal likelihood using IP have
been presented in this paper. The results compare favourably with others in the literature as
regards scalability, speed and ensuring sex-consistency (however Riester et al [11] report on
reconstructing pedigrees from thousands of individuals using simulated annealing).

In this paper the focus is on how best to do maximum likelihood pedigree reconstruction,
but there is also the entirely distinct question of whether maximising likelihood is the best way
to reconstruct pedigrees. With large amounts of data maximum likelihood usually provides

17

ML pedigree reconstruction using IP James Cussens

● ●●● ● ●●● ●●●● ● ● ●●● ●● ●● ●● ● ● ●●●●● ●●● ●●● ●● ●● ●● ●●●● ●●● ●●●● ●● ●●● ● ●● ●● ●● ● ●● ●●● ●●● ●●● ● ● ● ●●●● ●● ● ●● ●● ● ●● ●● ● ● ●●● ●●● ● ●●● ●● ●●● ● ● ●● ● ●●● ●

0 5 10 15

Solving time (seconds)

Figure 5: Boxplot representation of the distribution of 1000 maximum likelihood pedigree
reconstruction solving times for datasets simulated from Almudevar’s 59 individual pedigree.

a reasonable estimate of the true pedigree. So, for example, comparing the 1000 maximum
likelihood pedigrees discussed in Section 4.4 to the true data-generating pedigree [2, Fig 2] we
find that 533 of them are exactly equal to the true pedigree. The full distribution of parent
assignment errors is shown in Fig 6.

Nonetheless the alternative Bayesian approach allows the incorporation of domain knowledge
and allows a principled way of quantifying the uncertainty inherent in pedigree reconstruction
(model uncertainty). In an IP formulation the prior distribution is represented by incorporating
extra terms in the objective function. Model uncertainty is addressed by finding many distinct
high probability pedigrees rather than returning a single one. Work is currently underway on
such a Bayesian approach.

Acknowledgements

Thanks to Robert Cowell, Nuala Sheehan and Markus Riester for useful expertise on pedi-
grees. Many thanks to Robert Cowell for supplying the pedsim software. Thanks also to the
anonymous reviewers for their comments and suggestions.

References

[1] Tobias Achterberg. Constraint Integer Programming. PhD thesis, TU Berlin, July 2007.

[2] Anthony Almudevar. A simulated annealing algorithm for maximum likelihood pedigree recon-
struction. Theoretical Population Biology, 63:63–75, 2003.

[3] Anthony Almudevar. A graphical approach to relatedness inference. Theoretical Population Biol-
ogy, 71:213–229, 2007.

18

ML pedigree reconstruction using IP James Cussens

Error

F
re

qu
en

cy

0 2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0

533

191

122

87

41

7 6 6 5 0 1

Figure 6: Distribution of parent assignment errors for 1000 pedigrees constructed from data
generated from the ‘true’ pedigree [2, Fig 2]

[4] J.M. Butler, R. Schoske, P.M. Vallone, J.W. Redman, and M.C. Kline. Allele frequencies for 15
autosomal STR loci on U.S. Caucasian, African American and Hispanic populations. Journal of
Forensic Sciences, 48(4), 2003.

[5] Robert G. Cowell. Efficient maximum likelihood pedigree reconstruction. Theoretical Popluation
Biology, 76(4):285–291, December 2009.

[6] James Cussens. Bayesian network learning by compiling to weighted MAX-SAT. In Proceedings of
the 24th Conference on Uncertainty in Artificial Intelligence (UAI 2008), pages 105–112, Helsinki,
2008. AUAI Press.

[7] T. Egeland, P. F. Mostad, B. Mev̊ag, and M. Stenersen. Beyond traditional paternity and iden-
tification cases: Selecting the most probable pedigree. Forensic Science International, 110:47–59,
2000.

[8] Gurobi Optimization Inc. Gurobi Optimizer Reference Manual, 2010. Version 3.0.

[9] Steffen L. Lauritzen and Nuala A. Sheehan. Graphical models for genetic analyses. Statistical
Science, 18(4):489–514, 2003.

[10] Panagiotis Manolios, Marc Galceran Oms, and Sergi Oliva Valls. Checking pedigree consistency
with PCS. In Thirteenth International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2007), number 4424 in LNCS, pages 339–342. Springer, 2007.

[11] Markus Riester, Peter F. Stadler, and Konstantin Klemm. FRANz: reconstruction of wild multi-
generation pedigrees. Bioinformatics, 25(16):2134–2139, 2009.

[12] Marti Sanchez, Simon de Givry, and Thomas Schiex. Mendelian error detection in complex pedi-
grees using weighted constraint satisfaction techniques. Constraints, 13:130–154, 2008.

[13] N A Sheehan and T Egeland. Structured incorporation of prior information in relationship inden-
tification problems. Annals of Human Genetics, 71:501–518, 2007.

19

	Introduction
	Pedigrees as Bayesian networks
	An integer programming encoding for ML pedigree reconstruction
	Constraints
	Ruling out cycles with a total order
	Ruling out cycles with generation variables
	Ensuring sex-consistency

	Results
	Pedigree reconstruction for 20 individuals using a total order
	Pedigree reconstruction for 46 individuals using a total order
	Pedigree reconstruction for 46 individuals using generation variables
	Pedigree reconstruction for 59 individuals using generation variables

	Conclusions and future work

