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Abstract

Timed transition systems are a widely studied model for real-time systems. The in-
tention of the paper is to show how several categorical (open maps, path-bisimilarity and
coalgebraic) approaches to an abstract characterization of bisimulation relate to each other
and to the numerous suggested behavioral equivalences of linear time – branching time
spectrum, in the setting of timed transition systems.

1 Introduction

For the purpose of specification and verification of the behavior of systems, it is necessary to pro-
vide a number of suitable equivalence notions in order to be able to choose the simplest possible
view of the system. Over the past several years, a variety of equivalences have been promoted,
and the relationships between them have been understood quite well (see, for example, [25, 6]).

In order to unify and clarify apparent differences between the extensive amount of research
within the field of behavioral equivalences, several category-theoretic approaches to the matter
have appeared. Two of them were initiated by Joyal, Nielsen, and Winskel in [14] where they
have proposed abstract ways of capturing the notion of behavioral equivalence through open
maps based bisimilarity and its logical counterpart — path bisimilarity. As shown in [5, 14,
20], bisimilarity induced by open maps makes possible a uniform definition of the numerous
suggested behavioral equivalences (e.g., trace and testing equivalences, bisimulation, barbed
and weak bisimulations, strong history preserving bisimulation, etc.) across a wide range of
models for concurrency (e.g., transition systems, event structures, Petri nets, higher dimensional
automata, etc.).

Another way to provide categorical characterizations is to adopt the coalgebraic approach
which has both a field of its own interest presenting a deep mathematical foundation and a
growing field of applications and interactions with various other approaches such as reactive
and interactive system theory, object-oriented and concurrent programming, formal system
specification, modal logic, etc. During the last years, it is becoming increasingly clear that
a great variety of state-based dynamical systems, like transition systems, automata, process
calculi and class-based systems can be captured uniformly as coalgebras. There is also a coal-
gebraic notion of bisimulation, the research in this area has been initiated by Aczel and Mendler
[1]. Since then several papers have emerged in the literature (see [12, 16, 22, 18, 21] among
others). One of the basic strands of the research is concerned with a coalgebraic rendering of
various behavioral equivalences in the linear time – branching time spectrum.
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Over the last two decades, much of the theory of observational equivalences of models has
been lifted to real-time settings (see [2, 3, 4, 26, 10, 24] among others). The situation is less
settled in the case of categorical unification of time-sensitive equivalences. In [11] and [27],
the open maps based approach has been applied to provide an abstract characterization of
bisimulation on timed transition systems and of partial order based equivalences on timed
event structures, respectively. The categorical framework of open maps has been used in [9]
to prove that timed delay equivalence is indeed an equivalence relation in the setting of timed
transition systems with invariants. The paper [15] has given a coalgebraic formulation of timed
processes and their operational semantics, where time is modelled by a monoid called a time
domain, and processes are modelled by timed transition systems, which amount to coalgebras
for an evolution comonad generated by the time domain.

The contribution of the paper is to show how several categorical (open maps, path-
bisimilarity and coalgebraic) approaches to an abstract characterization of bisimulation relate
to each other and to the numerous suggested behavioral equivalences in the setting of timed
transition systems. Such an approach makes it possible to develop a metatheory designed for
unified definition and study of behavioral equivalences in linear time – branching time spectrum
of timed semantics.

The rest of the paper is organized as follows. The basic notions and notations related to
timed transition systems and their behavior are introduced in section 2. In the next section, we
define a number of behavioral equivalences for timed transition systems. Different categories
of timed transition systems are introduced and open maps based characterizations of the be-
havioral equivalences are given in section 4. In section 5, we show how the equivalences under
consideration can be captured by another category-theoretic bisimulation — path-bisimulation.
In section 6, a coalgebraic formulation of the equivalences is treated.

2 Timed Transition Systems

In this section, we define some basic notions concerning the structure and behavior of timed
transition systems [11].

Before doing so, it will be convenient to introduce some auxiliary notions and notations.
Let R be the set of non-negative reals. Also, let Σ be a finite alphabet of actions without the
silent action τ , and Στ = Σ∪ {τ}. A timed word over Σ (resp. Στ ) is a finite sequence of pairs
α = (σ1, d1) . . . (σn, dn) such that σi ∈ Σ (resp. σi ∈ Στ ), di ∈ R, for all 1 ≤ i ≤ n, and
di < di+1 for all 1 ≤ i < n. A pair (σi, di) represents an occurrence of an action σi at time
di relative to the starting time (0) of the execution. Let ε denote the empty timed word. We
consider a finite set V of clock variables. A clock valuation over V is a mapping ν : V → R
which assigns time values to the clock variables of a system. Define (ν + c)(x) := ν(x) + c
for all clock variables x ∈ V and constants c ∈ R. For a subset λ of clock variables, we shall
write ν[λ → 0](x) := 0, if x ∈ λ, and ν[λ → 0](x) := ν(x), otherwise. Given a set V , we
define the set ∆(V ) of clock constraints by the following grammar: δ ::= c # x | x + c # y |
δ ∧ δ, where # ∈ {≤, <,≥, >,=}, c is a real valued constant and x, y are clock variables from
V . We shall say that a clock constraint δ is satisfied by a clock valuation ν if the expression
δ[ν(x)/x]1 evaluates to true. A clock constraint δ defines a subset of Rm (m is the number of
clock variables in V ). We call the subset as the meaning of δ and denote it as ‖δ‖V . A clock
valuation ν defines a point in Rm (denoted ‖ν‖V ). So, the clock constraint δ is satisfied by the
clock valuation ν iff ‖ν‖V ∈ ‖δ‖V .

1δ[y/x] is the substitution of y for x in δ.
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Figure 1: An example of a timed transition system over Στ

We are now prepared to consider the definition of timed transition systems.

Definition 1. A timed transition system T over an alphabet Σ (resp. Στ ) is a quintuple
(S, s0,Σ, V, T ) (resp. (S, s0,Στ , V, T )), where S is a set of states and s0 is the initial state, V
is a set of clock variables, T ⊆ S × Σ×∆(V )× 2V × S (resp. T ⊆ S × Στ ×∆(V )× 2V × S)

is a set of transitions. We shall write s
σ→
δ, λ

s′ to denote a transition (s, σ, δ, λ, s′).

An example of a timed transition system over Στ is depicted in Fig.1.
Define the behavior of timed transition systems.

Definition 2. Let T be a timed transition system over Σ (Στ ).
A configuration of T is a pair 〈s, ν〉, where s is a state and ν is a clock valuation. A

configuration 〈s, ν〉 of T is called initial iff s is the initial state and ν is the constant 0 function.

A run of T is a sequence γ = 〈s0, ν0〉
σ1→
d1
〈s1, ν1〉 . . . 〈sn−1, νn−1〉

σn→
dn
〈sn, νn〉 such that for

all 0 < i ≤ n there is a transition si−1
σi→

δi, λi
si such that ‖νi−1 + (di − di−1)‖V ∈ ‖δi‖V and

νi = (νi−1 + (di − di−1))[λi → 0]. Here, 〈s0, ν0〉 is the initial configuration and d0 is defined to
be 0. We will use Runs(T ) to denote the set of runs of T . A run γ as above is said to generate
the timed word α = (σ1, d1) . . . (σn, dn). A configuration 〈s, ν〉 of T is called reachable iff T
has a run with an occurrence of 〈s, ν〉. The set of all reachable configurations of T is denoted
as Conf (T ).

3 Behavioral Equivalences

In this section, we define a number of behavioral equivalences for timed transition systems.

Timed Trace Equivalence. Timed trace equivalence [2] is perhaps the first and simplest
equivalence between timed transition systems that one can think of.

Definition 3. The language of a timed transition system T over Σ is the set L(T ) = {α =

(σ1, d1) . . . (σn, dn) | 〈s0, ν0〉
σ1→
d1
〈s1, ν1〉 . . . 〈sn−1, νn−1〉

σn→
dn
〈sn, νn〉 ∈ Runs(T )}.

Timed transition systems T and T ′ over Σ are called timed trace equivalent (or trace-
equivalent) iff L(T ) = L(T ′).
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Figure 2: Examples of non-trace-equivalent (a), trace- and non-test-equivalent (b), test- and
non-bis-equivalent (c), bis-equivalent (d) timed transition systems

Example 1. Consider the timed transition systems T ? and T ∗ shown in Fig. 2(a). It is
easy to see that L(T ?) = {α | αβ = (a, d1)(b, d2)(a, d3)(b, d4) . . . (a, d2n−1)(b, d2n)(n ≥ 0),
d2j+1 ≤ 3 (0 ≤ j ≤ n − 1), d2j − d2j−1 ≤ 2 (1 ≤ j ≤ n), d0 = 0}, and L(T ∗) = {α |
αβ = (a, d1)(b, d2)(a, d3)(b, d4) . . . (a, d2n−1)(b, d2n)(n ≥ 0), d2j+1 − d2j ≤ 3 (0 ≤ j ≤ n − 1),
d2j − d2j−1 ≤ 2 (1 ≤ j ≤ n), d0 = 0}. Then, we have L(T ?) ⊂ L(T ∗). This means that the
systems T ? and T ∗ are not trace-equivalent. Indeed, for example, the timed word (a, 3)(b, 4)(a, 5)
belongs to L(T ∗) but does not to L(T ?). On the other hand, the timed transition systems T ′
and T ′′ shown in Fig. 2(b) are trace-equivalent because their languages are equal to the set {α
| αβ = (a, d1) (b, d2) . . . (a, d2k+1) (b, d2k+2) (k ≥ 0), d2i+1 − d2i ≤ 3, d2i+2 − d2i+1 ≤ 2
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(i = 0, . . . , k), d0 = 0}.

Timed Testing. Testing equivalences [19] are defined in terms of tests which processes
may and must satisfy. Two processes are considered testing equivalent if there is no test that
can distinguish them. A test is usually itself a process applied to a process by computing
both together in parallel. A particular computation is assumed to be successful if the test
reaches a designated successful state, and the process guarantees the test if every computation
is successful. However, following the paper [8], we use an alternative characterization of the
testing concept. In timed interleaving semantics, a test consists of a timed word and a set of
actions with times at which the actions occur. A process passes this test if after every execution
of the timed word, an occurrence of at least one action at time from the set is inevitably next.

Definition 4. Let T and T ′ be timed transition systems over Σ. Then,

• for a timed word α = (σ1, d1) . . . (σn, dn) over Σ and for a subset L ⊆ (Σ×R), T after
α MUST L iff for all 〈s, ν〉 ∈ Conf (T ) reachable by a run of α, there exists (σ, d) ∈ L
such that 〈s, ν〉 σ→

d
〈s′, ν′〉, for some 〈s′, ν′〉 ∈ Conf (T ),

• T and T ′ are timed testing equivalent (or test-equivalent) iff for all timed words α =
(σ1, d1) . . . (σn, dn) over Σ and for all sets L ⊆ (Σ × R), T after α MUST L ⇐⇒
T ′ after α MUST L.

Example 2. First, contemplate the timed transition systems T ′ and T ′′ shown in Fig. 2(b)
which are not test-equivalent because T ′′ after (a, 3)(b, 5) MUST {(a, 6)} but it is not the case
for T ′.

Second, consider the timed transition systems T̂ and Ť shown in Fig. 2(c). Notice, they have
the same language {α | αβ = (a, d1)(b, d2)(c, d3), d1 ≤ 1, 1 < d2 − d1 < 4, 0 ≤ d3 − d2 ≤ 3}.
It is easy to see that in both the systems there is a unique run of the empty timed word which
can be extended only by an occurrence of an action a at time d, where d ≤ 1. Then, we have
that T̂ after ε MUST L ⇐⇒ Ť after ε MUST L, only for all sets L ⊆ (Σ×R) containing
a pair (a, d), where d ≤ 1. Moreover, in both the systems for any non-empty timed word from
their languages there is the run of the timed word, which cannot be extended. This implies that
¬(T̂ after α MUST L) ⇐⇒ ¬(Ť after α MUST L), for all timed words ε 6= α ∈ L(T̂ ) and

for all sets L ⊆ (Σ×R). Thus, T̂ and Ť are test-equivalent.

Timed Bisimulation. One of the main advantages of Park-Milner’s notion of bisimulation
for untimed transition systems, is the fact that the property of being bisimilar may be expressed
in terms of presenting an explicit bisimulation between two systems, i.e. a relation on the states
of the systems. A timed extension of bisimulation has been extensively studied for timed models
(see [26, 28] among others).

Definition 5. Timed transition systems T and T ′ over Σ are called timed bisimilar equivalent
(or bis-equivalent) iff there is a relation B ⊆ Conf (T )×Conf (T ) such that (〈s0, ν0〉, 〈s′0, ν′0〉) ∈ B
and for all (〈s, ν〉, 〈s′, ν′〉) ∈ B the following holds:

• whenever 〈s, ν〉 σ−→
d
〈s1, ν1〉 in T , then 〈s′, ν′〉 σ−→

d
〈s′1, ν′1〉 in T ′ and (〈s1, ν1〉, 〈s′1, ν′1〉) ∈ B,

for some 〈s′1, ν′1〉,

• whenever 〈s′, ν′〉 σ−→
d
〈s′1, ν′1〉 in T ′, then 〈s, ν〉 σ−→

d
〈s1, ν1〉 in T and (〈s1, ν1〉, 〈s′1, ν′1〉) ∈ B,

for some 〈s1, ν1〉.
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Example 3. To illustrate the concept, consider the timed transition systems shown in
Fig. 2(c),(d). The systems T̂ and Ť are not bis-equivalent because, for example, in Ť there
exists a run of (a, 0) which can be extended by occurrences of both actions b and c at time 1.2

but it is not the case in T̂ . On the other hand, the timed transition systems T̃ and T are bis-
equivalent because their configurations reachable by runs of same timed words can be extended
by occurrences of same actions at same times. For example, in both the systems, the configu-
rations reachable by the runs of the timed word (a, 2)(b, 3) can be extended by an occurrence of
an action c at time 5.

Timed Barbed Bisimulation. Barbed bisimilarity [17] is a widely used concurrency
semantics for process algebras that include the silent step (‘invisible’ action) τ . Barbed bisim-
ulation differs from (strong) bisimulation in the following: ‘visible’ and ‘invisible’ actions are
distinguished; transitions labelled by ‘invisible’ actions are required to be bisimulated; only the
existence of a transition labelled by a ‘visible’ action has to be matched. An important feature
of barbed bisimulation is that it can be successfully employed when the operational semantics
of a process algebra is defined by a reduction relation (i.e., no labels over transitions). It allows
one to recover from such a formulation the well-known bisimulation-based equivalences which
are defined on labelled transition systems. Another advantage of barbed bisimulation seman-
tics is that it can be described uniformally in different processes calculi (e.g., CCS, π-calculus,
higher order π-calculus). Recently, the paper [7] has treated timed barbed bisimulation in the
context of a timed extension of the π-calculus.

Introduce auxiliary notions and notations. Given a timed transition system T =
(S, s0,Στ , V, T ), a state s ∈ S is called τ -accessible iff s0

τ→
δ1,λ1

s1 . . . sn−1
τ→

δn,λn
sn = s (n ≥ 0).

Define the set Sτ (T ) = {s ∈ S | s is a τ -accessible state}. A configuration 〈s, ν〉 of T is called

τ -reachable if there is a run 〈s0, ν0〉
τ→
d1
〈s1, ν1〉 . . . 〈sn−1, νn−1〉

τ→
dn
〈sn, νn〉 = 〈s, ν〉 of the timed

word (τ, d1) . . . (τ, dn). We shall use Conf τ (T ) to denote the set of τ -reachable configurations.

From now on, for a configuration 〈s, ν〉 ∈ Conf τ (T ), we shall write 〈s, ν〉 σ−→
d

iff there is a

configuration 〈s′, ν′〉 ∈ Conf (T ) such that 〈s, ν〉 σ−→
d
〈s′, ν′〉, for some σ ∈ Σ and d ∈ R.

Definition 6. Timed transition systems T and T ′ over Στ are timed barbed bisimilar
equivalent (or bbis-equivalent) iff there is a relation B ⊆ Conf τ (T ) × Conf τ (T ′) such that
(〈s0, ν0〉, 〈s′0, ν′0〉) ∈ B and for all (〈s, ν〉, 〈s′, ν′〉) ∈ B the following holds:

• – if 〈s, ν〉 τ−→
d
〈s1, ν1〉 in T , then 〈s′, ν′〉 τ−→

d
〈s′1, ν′1〉 in T ′ and (〈s1, ν1〉, 〈s′1, ν′1〉) ∈ B,

for some 〈s′1, ν′1〉,
– if 〈s′, ν′〉 τ−→

d
〈s′1, ν′1〉 in T ′, then 〈s, ν〉 τ−→

d
〈s1, ν1〉 in T and (〈s1, ν1〉, 〈s′1, ν′1〉) ∈ B,

for some 〈s1, ν1〉,

• – if 〈s, ν〉 σ−→
d

(σ ∈ Σ) in T , then 〈s′, ν′〉 σ′−→
d

(σ′ ∈ Σ) in T ′,

– if 〈s′, ν′〉 σ−→
d

(σ ∈ Σ) in T ′, then 〈s, ν〉 σ′−→
d

(σ′ ∈ Σ) in T .

Example 4. The timed transition system T depicted in Fig. 1 and the timed transition system
Ṫ depicted at the left side of Fig. 3 are not bbis-equivalent because, for example, in Ṫ there
exists the run of the empty timed word which can be extended by an occurrence of an action
τ at time 0 but it is not the case in T . On the other hand, Fig. 3 shows the bbis-equivalent
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Figure 3: An example of bbis-equivalent timed transition systems

timed transition systems Ṫ and T̈ . The configurations of these systems, reachable by the runs
of (τ, d1) . . . (τ, dn) (n ≥ 0), can be extended by an occurrence of an action τ at same time, and
by an occurrence of a non-τ -action at same time, if n = 2i (i ≥ 0). For example, in both the
timed transition systems, the configurations reachable by the runs of (τ, 1)(τ, 2) can be extended
by an occurrence of an action τ at time 4 and by an occurrence of some σ ∈ {a, b} at time 3.

4 Open Maps Bisimulation

4.1 Preliminaries

The concept of open map (open morphism) appears in work of Joyal and Moerdijk [13] where a
notion of a subcategory of open maps of a (pre)topos is defined. As reported in [14], the open
map approach provides general concepts of bisimilarity for any categorical model of computa-
tions.

First, a category M whose objects represent models has to be identified. A morphism
m : X −→ Y in M should intuitively be thought of as a simulation of the object X in the
object Y . Then, inside the category M, a subcategory P of ‘path objects’ and ‘path extension’
morphisms between these objects is to be chosen. Given a path object P in P and a model
object X in M, a path is a morphism p : P −→ X in M. We think of p as representing a
particular way of realizing P in X.

Second, we have to identify morphisms m : X −→ Y which have the property that whenever
a computation of X can be extended via m in Y then that extension can be matched by an
extension of the computation in X. A morphism m : X → Y in M is called P-open iff whenever
f : P1 → P2 in P, p : P1 → X and q : P2 → Y in M, and m ◦ p = q ◦ f , then there exists a
morphism h : P2 → X in M such that p = h ◦ f and q = m ◦ h.

Third, an abstract notion of bisimilarity has to be introduced. The definition is given in
terms of spans of open maps. Two objects X and Y in M are said to be P-bisimilar if there

exists a span X
m←− Z m′−→ Y with a common object Z of P-open morphisms.

In the following we will reformulate the behavioral equivalences on timed transition systems
by varying categories and subcategories of the model.
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4.2 Open Maps Characterizations

In this subsection, different categories of timed transition systems are introduced and open
maps based characterizations of the behavioral equivalences are given.

We start with introducing some auxiliary notations. For a timed transition system T over
Σ, define the following:

• for γ = 〈s0, ν0〉
σ1→
d1
. . .

σn→
dn
〈sn, νn〉 ∈ Runs(T ), tw(γ) = (σ1, d1) . . . (σn, dn) and AT (γ) =

{(σn+1, dn+1) | ∃〈sn+1, νn+1〉 s.t. 〈sn, νn〉
σn+1→
dn+1

〈sn+1, νn+1〉},

• SR(T ) is the least subset of (2Runs(T ) \ {∅}) such that ∀γ ∈ Runs(T ) ∃X ∈ SR(T ) �
γ ∈ X, and ∀X ∈ SR(T ) ∀γ, γ′ ∈ X � tw(γ) = tw(γ′),

• for X ∈ SR(T ), AT (X) = {AT (γ) | γ ∈ X}, tw(X) = tw(γ) for some γ ∈ X, and
AT (α) = AT (X), if tw(X) = α.

We are ready to define a number of categories of timed transition systems.

Category TTStrace. The objects of this category are the timed transition systems over
Σ (see Definition 1). Guided by our intuitive understanding how the timed words generated
by the runs of a system can be simulated, we define the morphisms between timed transition
systems as follows.

Definition 7. Given timed transition systems T and T ′ over Σ, the ttrace-morphism between T
and T ′ is a mapping µ : SR(T )→ SR(T ′) such that tw(X) = tw(µ(X)), for all X ∈ SR(T ).

Example 5. Consider T ? and T ∗ depicted in Fig. 2(a). From Example 1, we know that
L(T ?) ⊂ L(T ∗). Then, for each set X? ∈ SR(T ?) with tw(X?) = α ∈ L(T ?), we can
find the set X∗ ∈ SR(T ∗) with tw(X∗) = α ∈ L(T ∗). For example, the set X? ∈ SR(T ?)
with tw(X?) = (a, 1)(b, 1)(a, 1) can be connected to the set X∗ ∈ SR(T ∗) with tw(X∗) =
(a, 1)(b, 1)(a, 1). Hence, we can easily specify a ttrace-morphism, say, µ? from T ? to T ∗.

Timed transition systems over an alphabet Σ and ttrace-morphisms between them form
a category TTStrace in which the composition of two ttrace-morphisms µ1 : T0 −→ T1 and
µ2 : T1 −→ T2 is defined as (µ2 ◦ µ1) : T0 −→ T2, and the identity ttrace-morphism is the
identity function.

Next step is to choose a subcategory Ptrace with path objects — timed transition systems
corresponding to timed words, and with paths — morphisms of the category TTStrace.

Definition 8. The full subcategory Ptrace of the category TTStrace contains objects T α =
(Sα, 0,Σ, V α, Tα) corresponding to timed words α = (σ1, d1) . . . (σn, dn) (n ≥ 0) over Σ, where

Sα = {0, 1.., (n− 1), n} with the initial state 0, V α = {u}, Tα = {(i− 1)
σi−→

u=di,∅
i | i = 1 . . . n},

and ttrace-morphisms between the objects.

The following auxiliary facts will be helpful to establish some results.

Lemma 1. Given an object T α in Ptrace and an object T in TTStrace,

(i) there exists X ∈ SR(T α) with tw(X) = α,

(ii) there is a bijection between the timed words β ∈ L(T ) and the sets X ∈ SR(T ) with
tw(X) = β,
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(iii) there is a bijection between the ttrace-morphisms µ : T α → T and the sets X ∈ SR(T )
with tw(X) = α.

Consider a behavioral characterization of the notion of open maps corresponding to the
subcategory Ptrace.

Proposition 1. Let T , T ′ be objects in TTStrace. Then, a morphism µ : T → T ′ in TTStrace
is Ptrace-open iff ∀Y ∈ SR(T ′) � ∃X ∈ SR(T ) : µ(X) = Y .

Example 6. As shown in Example 5, there is a ttrace-morphism µ? from T ? to T ∗ depicted
in Fig. 2(a). However, for the set X∗ ∈ SR(T ∗) with tw(X∗) = (a, 3)(b, 4)(a, 5), we cannot
find any set X? ∈ SR(T ?) with tw(X?) = (a, 3)(b, 4)(a, 5). Hence, µ? is not a Ptrace-open
morphism, by Proposition 1. From example 1, we know that the languages of the systems T ′
and T ′′ shown in Fig. 2(b) coincide. Then, due to Lemma 1(ii), for any set X ′ ∈ SR(T ′) with
tw(X ′) = α ∈ L(T ′), there is a set X ′′ ∈ SR(T ′′) with tw(X ′′) = α ∈ L(T ′′), and vice versa.
For example, for the set X ′ with tw(X ′) = (a, 1)(b, 3) we can find the set X ′′ ∈ SR(T ′′) such
that tw(X ′′) = (a, 1)(b, 3) and for the set Y ′′ ∈ SR(T ′′) with tw(Y ) = (a, 2) we have the set
Y ′ ∈ SR(T ′) such that tw(Y ′) = (a, 2). Hence, we can easily specify a ttrace-morphism µ′ from
T ′ to T ′′. Moreover, we may conclude that µ′ is a Ptrace-open morphism, by Proposition 1.

Category TTStest. We modify the category TTStrace only with respect to the morphisms.
The morphisms of the category TTStest reflect not only correspondences between the timed
words of systems but also matches of the sets of actions with times at which the actions occur
after executions of the timed words.

Definition 9. Given timed transition systems T and T ′ over Σ, the ttest-morphism between
T and T ′ is a mapping µ : SR(T )→ SR(T ′) such that for all X ∈ SR(T ) the following holds
tw(X) = tw(µ(X)) and ∀A′ ∈ AT ′(µ(X)) ∃A ∈ AT (X) � A ⊆ A′.

Example 7. Investigate T ′ and T ′′ depicted in Fig. 2(b). From examples 1 and 6, we know
that the languages of the systems coincide and there is a ttrace-morphism µ′ from T ′ to T ′′.
The latter means that for any set X ′ ∈ SR(T ′) it holds that tw(X ′) = tw(µ′(X ′)). Take an
arbitrary α ∈ L(T ′′). It is easy to see that for all runs γ′′ of α in T ′′, there is a run γ′ of

α in T ′ such that AT ′(γ′) = AT ′′(γ′′). For example, for the run γ′′ = 〈s′′0 , ν′′0 〉
a→
2
〈s′′1 , ν′′1 〉

b→
2
〈s′′2 , ν′′0 〉 in T ′′ with AT ′′(γ′′) = {(a, d) | 2 ≤ d ≤ 5} we can find the run γ′ = 〈s′0, ν′0〉

a→
2

〈s′1, ν′1〉
b→
2
〈s′0, ν′0〉 in T ′ such that AT ′(γ′) = {(a, d) | 2 ≤ d ≤ 5}. Then, we can say that for all

A′′ ∈ AT ′′(µ(X ′)) there exists A′ ∈ AT ′(X ′) such that A′ = A′′. Hence, one can easily specify
a ttest-morphism µ′′ from T ′ to T ′′.

Timed transition systems over an alphabet Σ and ttest-morphisms between them form a
category TTStest, in which the composition of two ttest-morphisms µ : T → T ′ and µ′ : T ′ →
T ′′ is µ′ ◦ µ : T → T ′′, and the identity ttest-morphism is the identity function.

Next, we define a subcategory of path objects which are trees consisting of a trunk and
branches of length one, corresponding to a timed word, and a more general branching structure,
corresponding a set of actions with times at which the actions occur after an execution of the
timed word.

Definition 10. The full subcategory Ptest of the category TTStest contains objects T α,L corre-
sponding to a timed word α = (σ1, d1) . . . (σn, dn) over Σ and a set L = {(a1, d

′
1), . . ., (ak, d

′
k),

. . .} ⊆ (Σ×R) of the form

394



Unifying Equivalences Virbitskaite, Gribovskaya, and Best

-

-
-

-

a

a k

k

0

1'

1

(n-1)' n'

n-2 n-1

n
k

(n+1)
k

2

2

2

2

n-2

n-2

2'

a
n1

(n+1)

a
k

k

1

(n+1)'
1

(n+1)'
k

d d d d

d

dd d

d

d

d'

d'

d'

d'

and ttest-morphisms between the objects.

The following facts will allow us to provide a behavioral characterization of open maps
corresponding the subcategory Ptest.

Lemma 2. Given an object T α,L in Ptest and an object T in TTStest,

(i) there exists X ∈ SR(T α,L) with tw(X) = α and Y ∈ SR(T α,L) with tw(Y ) = α(a, d),
for all (a, d) ∈ L,

(ii) there exists a bijection between the timed words β ∈ L(T ) and the sets X ∈ SR(T ) with
tw(X) = β,

(iii) there exists a bijection between the ttest-morphisms µ : T α,L → T and the pairs (Y,L)
such that Y ∈ SR(T ), tw(Y ) = α, and L ⊆

⋃
A∈AT (Y )A, for all A ∈ AT (Y ) A ∩ L 6= ∅,

if L 6= ∅.

Our next aim is to characterize Ptest-open morphisms.

Proposition 2. Let T , T ′ be objects in TTStest. Then, a morphism µ : T → T ′ in TTStest
is Ptest-open iff for all Y ∈ SR(T ′) there exists X ∈ SR(T ) such that µ(X) = Y and for all
A ∈ AT (X) there exists A′ ∈ AT ′(Y ) such that A′ ⊆ A.

Example 8. As shown in Examples 2 and 7, the timed transition systems T ′ and T ′′ depicted in
Fig. 2(b) have the same languages and there is a ttest-morphism µ′′ from T ′ to T ′′. Contemplate

the run γ′ = 〈s′0, ν′0〉
a→
0
〈s′1, ν′0〉

b→
2
〈s′2, ν′0〉 with AT ′(γ′) = ∅ in T ′. It is easy to see that in

T ′′ there is no run γ′′ of (a, 0)(b, 2) with AT ′′(γ′′) = ∅. The above saying implies that for
X ′′ ∈ SR(T ′′) with tw(X ′′) = (a, 0)(b, 2) we can find X ′ ∈ SR(T ′) with tw(X ′) = (a, 0)(b, 2),
however, there is ∅ = A′ ∈ AT ′(X ′) such that ¬(A′′ ⊆ A′) for all A′′ ∈ AT ′′(X ′′). Using
Proposition 2, we may conclude that µ′′ is not a Ptest-open morphism. Next, treat the systems
T̂ and Ť drawn in Fig. 2(c). From Example 2, we know that they have the same languages.

Then, by Lemma 2(ii), for any set X̂ ∈ SR(T̂ ) with tw(X̂) = α ∈ L(T̂ ), there is a set

X̌ ∈ SR(Ť ) with tw(X̌) = α ∈ L(Ť ), and vice versa. For example, for the set X̂ ∈ SR(T̂ )

with tw(X̂) = (a, 1) we can find the set X̌ ∈ SR(Ť ) consisting of three runs of (a, 1), and for

the set Y̌ ∈ SR(Ť ) with (a, 0)(b, 2) there is the set Ŷ ∈ SR(T̂ ) including exactly two runs of
(a, 0)(b, 2). Also, it is easy to see that AŤ (〈š0, ν̌0〉) = AT̂ (〈ŝ0, ν̂0〉). Moreover, for all non-empty

timed words α in L(T̂ ), in Ť we can find a run ř of α such that AŤ (ř) = ∅, and vice versa.

For example, for the timed word (a, 0) ∈ L(T̂ ), in Ť there is the run γ̌ = 〈š0, ν̌0〉
a→
0
〈š3, ν̌1〉
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such that AŤ (γ̌) = ∅. Further, for the timed word (a, 1)(b, 3) ∈ L(Ť ), in T̂ we have the run

γ̂ = 〈ŝ0, ν̂0〉
a→
1
〈ŝ1, ν̂1〉

b→
3
〈ŝ4, ν̂0〉 such that AT̂ (γ̂) = ∅. Thus, we can easily specify a Ptest-open

morphism µ̂ from T̂ to Ť , due to Proposition 2.

Category TTSbis. This category contains objects which are timed transition systems over
an alphabet Σ and morphisms which represent some notions of simulation of the behavior of
one system by the other. This leads to the following definition of a morphism consisting of two
functions, one mapping states of the simulated system to simulating states of the other, and
one mapping clocks of the simulating system to simulated clocks.

Definition 11. Given timed transition systems T = (S, s0, Σ, V, T ) and T ′ = (S′, s′0,
Σ, V ′, T ′) over Σ, a pair (µ, η) is a tbis-morphism between T and T ′, if µ : S → S′ is a
mapping between the states, and η : V ′ → V is a mapping between the clock variables, satisfying
the following condition: for any run γ = 〈s0, ν0〉

σ1→
d1
〈s1, ν1〉 . . . 〈sn−1, νn−1〉

σn→
dn
〈sn, νn〉 in T ,

〈µ(s0), η−1(ν0)〉 σ1→
d1
〈µ(s1), η−1(ν1)〉 . . . 〈µ(sn−1), η−1(νn−1)〉 σn→

dn
〈µ(sn), η−1(νn)〉 is a run in T ′.

Example 9. Consider the systems T̃ and T shown in Fig. 2(d). Construct a mapping µ̃ :
ST̃ → ST as follows: µ̃(s̃j) = sj (0 ≤ j ≤ 4), µ̃(s̃5) = s0, µ̃(s̃6) = s2, and take the identical
mapping η̃ : VT → VT̃ . Clearly, µ̃ and η̃ are indeed mappings. Also, it is easy to see that the

(µ̃, η̃)-image of each run in T̃ is a run in T . For example, the (µ̃, η̃)-image of the run 〈s̃0, ν̃0〉
a→
1
〈s̃1, ν̃1〉

b→
2
〈s̃6, ν̃0〉 in T̃ is the run 〈s0, ν0〉

a→
1
〈s1, ν1〉

b→
2
〈s2, ν0〉 in T . Then, the pair (µ̃, η̃)

is a tbis-morphism.

Timed transition systems over an alphabet Σ and tbis-morphisms between them form a
category of timed transition systems, TTSbis, in which the composition of two morphisms
(µ, η) : T → T ′ and (µ′, η′) : T ′ → T ′′ is defined as (µ′, η′) ◦ (µ, η) := (µ′ ◦ µ, η ◦ η′), and the
identity tbis-morphism is a pair of the identity functions.

We would like to choose timed words over Σ with word extensions as path objects with
morphisms between them so as to form a subcategory of the category TTSbis.

Definition 12. The full subcategory Pbis of the category TTSbis contains objects T α =
(Sα, 0,Σ, V α, Tα)2 corresponding to timed words α = (σ1, d1) . . . (σn, dn) over Σ, where Sα =
{0, 1, . . . , (n−1), n} with the initial state 0, V α consists of the 2n subsets of states {1, 2, . . . , n},
Tα = {(i − 1)

σi→
δi,λi

i | i = 1 . . . n, λi = {x ∈ V α | i ∈ x}, δi = ∧
x∈V α

(x = di − dI(i,x))}, where

I(i, x) := max{k ∈ x ∪ {0} | k < i}3 and d0 := 0, and tbis-morphisms between the objects.

Consider important properties of the objects and morphisms of the category and subcategory
under consideration.

Lemma 3. Given an object T α in Pbis and an object T in TTSbis,

(i) there is a unique run of α in T α,

(ii) there is a bijection between the runs γ of α in T and the tbis-morphisms (µ, η) : T α → T
such that the runs γ are the (µ, η)-images of the run of α in T α.

2The construction of T α has been developed in [11].
3The number returned by I(i, x) is the last state before i, at which x was reset.
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Figure 4: An example of a vertex of span between timed transition systems

Next, we provide a behavioral characterization of Pbis-open morphisms.

Proposition 3. Let T , T ′ be objects in TTSbis. A morphism (µ, η) : T −→ T ′ in TTSbis
is Pbis-open iff for any run γ = 〈s0, ν0〉

σ1→
d1
〈s1, ν1〉 . . . 〈sn−1, νn−1〉

σn→
dn
〈sn, νn〉 in T , whenever

〈µ(sn), η−1(νn)〉 σ→
d
〈s2, ν2〉 in T ′, then 〈sn, νn〉

σ→
d
〈s1, ν1〉 in T and 〈µ(s1), η−1(ν1)〉 = 〈s2, ν2〉.

Example 10. Consider the tbis-morphism (µ̃, η̃) : T̃ → T specified in Example 9. Clearly, the

run γ = 〈s0, ν0〉 in T is the (µ̃, η̃)-image of the run γ̃ = 〈s̃0, ν̃0〉 in T̃ . It is easy to see that γ

can be extended by an occurrence of an action d at time 0 up to the run γ1 = 〈s0, ν0〉
d→
0
〈s4, ν0〉,

but in T̃ there is no timed configuration 〈s, ν〉 such that 〈s̃0, ν̃0〉
d→
0
〈s, ν〉 and 〈µ̃(s), η̃−1(ν)〉 =

〈s4, ν0〉. Then, (µ̃, η̃) is not a Pbis-open morphism, by Proposition 3. On the other hand,

contemplate the timed transition system
−→
T shown in Fig. 4 and timed transition system T̃

shown in Fig. 2(d). Define a mapping −→µ 1 : S−→T → ST̃ as follows: −→µ 1(−→si,j) = s̃i (0 ≤ i ≤ 6,

0 ≤ j ≤ 4), and take the identity mapping −→η 1 : VT̃ → V−→T . It is easy to see that (−→µ 1,
−→η 1)

is a tbis-morphism from
−→
T to T̃ because −→µ 1 and −→η 1 are indeed mappings and the (−→µ l,−→η l)-

image of any run in
−→
T is a run in T̃ . Moreover, using Proposition 3, we can conclude that

(−→µ 1,
−→η 1) is a Pbis-open morphism, because for any run in

−→
T , whenever its (−→µ 1,

−→η 1)-image

can be extended by an occurrence of some action at some time in T̃ , then the run can also be

extended by an occurrence of the same action at same time in
−→
T , and the extension in T̃ is the

(−→µ 1,
−→η 1)-image of the extension in

−→
T . For example, treat the run γ = 〈−→s0,0,

−→ν0〉
a→
0
〈−→s1,1,

−→ν1〉
b→
1

〈−→s6,2,
−→ν0〉 in

−→
T . It is not difficult to see that the (−→µ 1,

−→η 1)-image of the run γ can be extended

by an occurrence of an action c at time 4 up to the run, say, γ̃ in T̃ , the run γ can also be

extended by an occurrence of an action c at time 4 up to the run, say, −→γ in
−→
T , and γ̃ is the

(−→µ 1,
−→η 1)-image of the run −→γ .

Category TTSbbis. This category contains objects which are timed transition systems over
an alphabet Στ (see Definition 1) and morphisms which represent some notions of simulation of
the behavior of one system by the other with an accuracy of τ -actions and with account of only
the existence of visible actions. This leads to the following definition of a morphism consisting
of two functions, one mapping τ -accessible states of the simulated system to simulating τ -
accessible states of the other, and one mapping clocks of the simulating system to simulated
clocks.
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Definition 13. Given timed transition systems T = (S, s0, Στ , V, T ) and T ′ =
(S′, s′0, Στ , V ′, T ′), over Στ , a pair (µ, η) is a tbbis-morphism between T and T ′, if
µ : Sτ (T ) → Sτ (T ′) is a mapping between the τ -accessible states and η : V ′ → V is a
mapping between clock variables, which must satisfy the following condition: for any run
〈s0, ν0〉

τ→
d1
〈s1, ν1〉 . . . 〈sn−1, νn−1〉

τ→
dn
〈sn, νn〉 in T , 〈µ(s0), η−1(ν0)〉 τ→

d1
〈µ(s1), η−1(ν1)〉 . . .

〈µ(sn−1), η−1(νn−1)〉 τ→
dn
〈µ(sn), η−1(νn)〉 is a run in T ′, and whenever 〈sn, νn〉

σ→
d

(σ ∈ Σ) in

T , then 〈µ(sn), η−1(νn)〉 σ
′

→
d

(σ′ ∈ Σ) in T ′.

Example 11. Treat the timed transition systems Ṫ and T̈ shown in Fig. 3. Define a mapping
µ̇ : SṪ → ST̈ as follows: µ̇( ˙s2j) = s̈0, µ̇( ˙s2j+1) = s̈1 (0 ≤ j ≤ 1), and a mapping η̇ : VT̈ → VṪ
as follows: η̇(x) = η̇(y) = x. Obviously, µ̇ and η̇ are indeed mappings. Also, it is easy to see
that the (µ̇, η̇)-images of the runs of (τ, d1) . . . (τ, dn) (n ≥ 0) in Ṫ are runs of the same timed
word in T̈ , and, moreover, whenever in Ṫ the runs can be extended by an occurrence of some
action σ ∈ {a, b} at some time, then in T̈ their (µ̇, η̇)-images can be extended by an occurrence

of an action b at same time. For example, the (µ̇, η̇)-image of the run ṙ = 〈ṡ0, ν̇0〉
τ→
1
〈ṡ1, ν̇0〉

τ→
2
〈ṡ2, ν̇0〉 in Ṫ is the run r̈ = 〈s̈0, ν̈0〉

τ→
1
〈s̈1, ν̈0〉

τ→
2
〈s̈0, ν̈0〉 in T̈ . Furthermore, in Ṫ ṙ can be

extended by an occurrence of the action a at time 2, and in T̈ r̈ can be extended by an occurrence
of the action b at same time. Hence, we may conclude that (µ̇, η̇) is a tbbis-morphism.

Timed transition systems over Στ and tbbis-morphisms between them form a category of
timed transition systems, TTSbbis, in which the composition of two morphisms (µ, η) : T → T ′
and (µ′, η′) : T ′ → T ′′ is defined as (µ′, η′) ◦ (µ, η) := (µ′ ◦ µ, η ◦ η′), and the tbbis-morphism is
a pair of identity functions.

Following the standards of timed transition systems over Στ , we construct a subcategory of
path objects as follows.

Definition 14. The full subcategory Pbbis of the category TTSbbis contains objects T α,− =
(Sα,−, 0, Στ , V α,−, Tα,−) corresponding to a timed word α = (τ, d1) . . . (τ, dn) over Στ and
a symbol − ∈ {·, (σ, d) | σ ∈ Σ, d ∈ R} (the symbol ”·” denotes ”nothing”), where T α,· is
defined as T α in Definition 12, and T α,(σ,d) is defined as follows: Sα,(σ,d) = Sα,· ∪ {(n + 1)}
with the initial state 0, V α,(σ,d) = V α,·, Tα,(σ,d) = Tα,· ∪ {n σ→

δ,∅
(n + 1) | δ = ∧

x∈V α,(σ,d)
(x =

d− dI((n+1),x))}, and tbbis-morphisms between the objects.

Lemma 4. Given an object T α,− in Pbbis and an object T in TTSbbis,

(i) there is a unique run of α in T α,− which can be extended by an occurrence of an action
σ at time d, if − = (σ, d).

(ii) there is a bijection between the runs γ of α in T , which can be extended by an occurrence
of an action σ′ ∈ Σ at time d, if − = (σ, d), and the tbbis-morphisms (µ, η) : T α,− → T
such that the runs γ are the (µ, η)-images of the run of α in T α,−.

Proposition 4. Given objects T , T ′ in TTSbbis, a morphism (µ, η) : T −→ T ′ in TTSbbis is

Pbbis-open iff for any run 〈s0, ν0〉
τ→
d1
〈s1, ν1〉 . . . 〈sn−1, νn−1〉

τ→
dn
〈sn, νn〉 in T ,

• whenever 〈µ(sn), η−1(νn)〉 τ→
d
〈s′, ν′〉 in T ′, then 〈sn, νn〉

τ→
d
〈s, ν〉 in T and 〈µ(s), η−1(ν)〉

= 〈s′, ν′〉,
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Figure 5: An example of a vertex of span between timed transition systems

• whenever 〈µ(sn), η−1(νn)〉 σ→
d

(σ ∈ Σ) in T ′, then 〈sn, νn〉
σ′→
d

(σ′ ∈ Σ) in T .

Example 12. Consider the systems Ṫ and T̈ shown in Fig. 3, and the tbbis-morphism (µ̇, η̇)
from Ṫ to T̈ , specified in Example 11. Clearly, the run γ̈ = 〈s̈0, ν̈0〉 in T̈ is the (µ̇, η̇)-image
of γ̇ = 〈ṡ0, ν̇0〉 in Ṫ . Moreover, γ̈ can be extended by an occurrence of an action τ at time 0

up to the run γ̈1 = 〈s̈0, ν̈0〉
τ→
0
〈s̈2, ν̈0〉 but in Ṫ there is no timed configuration 〈s, ν〉 such that

〈µ̇(s), η̇−1(ν)〉 = 〈s̈2, ν̈0〉. Hence, the tbbis-morphism (µ̇, η̇) is not Pbbis-open, by Proposition 4.

Further, contemplate the system T × shown in Fig. 5. Define a mapping µ×1 : ST
×

τ → SṪτ as
follows: µ×1 (s×i,j) = ṡi (0 ≤ i ≤ 3, 0 ≤ j ≤ 2), and take the identity function η×1 : VṪ → VT × .

Clearly, µ×1 and η×1 are indeed mappings. Moreover, it is easy to see that the (µ×1 , η
×
1 )-images

of the runs of (τ, d1) . . . (τ, dn) (n ≥ 0) in T × are also runs of the same timed word in Ṫ ,
and whenever in T × a run of (τ, d1) . . . (τ, dn) (n ≥ 0) can be extended by an occurrence of a
non-τ -action at some time, then in Ṫ its (µ×1 , η

×
1 )-image can also be extended by an occurrence

of a non-τ -action at same time. This means that (µ×1 , η
×
1 ) is a tbbis-morphism. Furthermore,

using Proposition 4, we can say that (µ×1 , η
×
1 ) is a Pbbis-open morphism, because for any run

of (τ, d1) . . . (τ, dn) (n ≥ 0) in T ×, whenever in Ṫ its (µ×1 , η
×
1 )-image can be extended by an

occurrence of some action at some time, then in T × the run can be extended by an occurrence
of the same action at same time. For instance, treat the run γ× = 〈s×0,0, ν

×
0,0〉

τ→
1
〈s×3,0, ν

×
0,0〉

τ→
2

〈s×2,0, ν
×
0,0〉 in T ×. It is not difficult to see that in Ṫ the (µ×1 , η

×
1 )-image of the run γ× can be

extended by an occurrence of the action a at time 3, and in T × the run γ× can also be extended
by an occurrence of the action a at time 3.

Finally, for ∗ ∈ {trace, test, bis, bbis}, the coincidence of P∗-bisimilarity and ∗-equivalence
is established.

Theorem 1. Let ∗ ∈ {trace, test, bis, bbis}. Timed transition systems from TTS∗ are P∗-
bisimilar iff they are ∗-equivalent.

Example 13. First, contemplate the systems T ′ and T ′′ depicted in Fig. 2(b). From Example 1,
we know that T ′ and T ′′ are trace-equivalent. Hence, they are Ptrace-bisimilar, by Theorem 1.
Indeed, using the Ptrace-open morphism µ′ from T ′ to T ′′ (see Example 6) and the identity
ttrace-morphism which is Ptrace-open morphism, we get a span with the common object T ′ of
the Ptrace-open morphisms.

Second, examine the systems T̂ and Ť depicted in Fig. 2(c). As shown in Example 2, T̂ and
Ť are test-equivalent. Then, they are also Ptest-bisimilar, by Theorem 1. Check the fact. From
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Example 8, we know that there is a Ptest-open morphism µ̂ from T̂ to Ť . Using the identity
ttest-morphism which is a Ptest-open morphism, we can construct a span with the common
object T̂ of the Ptest-open morphisms.

Third, treat the systems T̃ and T depicted in Fig. 2(d). As demonstrated in Example 3, T̃
and T are bis-equivalent. Hence, these systems are Pbis-bisimilar, according to Theorem 1. To

verify the fact, we need the timed transition system
−→
T depicted in Fig. 4. Define a mapping

−→µ 2 : S−→T → ST as follows: −→µ 2(−→si,j) = sj, for all 0 ≤ i ≤ 6 and 0 ≤ j ≤ 4, and take the identity

mapping −→η 2 : VT → V−→T . It is easy to see that (−→µ 2,
−→η 2) is a tbis-morphism, and, moreover,

a Pbis-open morphism, by Proposition 3. Using the Pbis-open morphism (−→µ 1,
−→η 1) :

−→
T → T

specified in Example 10, we get a span with the common object
−→
T of the Pbis-open morphisms.

Finally, consider the bbis-equivalent systems Ṫ and T̈ shown in Fig. 3 (see Example 4).
Due to Theorem 1, Ṫ and T̈ are Pbis-bisimilar. Contemplate the system T × depicted in Fig. 5
and the Pbbis-open morphism (µ×1 , η

×
1 ) from T × to Ṫ , specified in Example 12. Further, define

a mapping µ×2 : ST
×

τ → ST̈τ as follows: µ×2 (s×i,j) = ṡj (0 ≤ i ≤ 3, 0 ≤ j ≤ 2), and a mapping

η×2 : VT̈ → VT × as follows: η×2 (x) = η×2 (y) = x. Using Proposition 4, it is easy to check that

(µ×2 , η
×
2 ) is a Pbbis-open tbbis-morphism from T × to T̈ . Thus, we have a span with the common

object T × of the Pbbis-open morphisms.

5 Path-Bisimulation

To obtain a logic characteristic of bisimulation induced by open maps, Joyal, Nielsen, and
Winskel [14] have proposed a second category-theoretic characterization of bisimulation —
path bisimulation which is a relation based generalization of open maps bisimulation.

Definition 15. Let M be a category of models, let P be a small category of path objects, where
P is a subcategory of M, let I be a common initial object4 in P and M. Then,

• Two objects X1 and X2 in M are called path-P-bisimilar iff there is a set R of pairs of
paths (p1, p2) with common domain P , so p1 : P → X1 is a path in X1 and p2 : P → X2

is a path in X2, such that

(o) (i1, i2) ∈ R, where i1 : I → X1 and i2 : I → X2 are the unique paths starting in the
initial object, and for all (p1, p2) ∈ R and for all m : P → Q, where m is in P, holds

(i) if there exists q1 : Q → X1 with q1 ◦ m = p1 then there exists q2 : Q → X2 with
q2 ◦m = p2 and (q1, q2) ∈ R and

(ii) if there exists q2 : Q → X2 with q2 ◦ m = p2 then there exists q1 : Q → X1 with
q1 ◦m = p1 and (q1, q2) ∈ R.

• Two objects X1 and X2 are strong path-P-bisimilar iff they are path-P-bisimilar and the
set R further satisfies:

(iii) If (q1, q2) ∈ R, with q1 : Q → X1 and q2 : Q → X2 and m : P → Q, where m is in
P, then (q1 ◦m, q2 ◦m) ∈ R.

Consider an auxiliary fact for the cases ∗ ∈ {trace, test}.
4In the cases when P is P∗ and M is TTS∗, the initial object I∗ is the timed transition system

({s0}, s0,Σ, {x}, ∅) for ∗ ∈ {trace, test, bis}, and ({s0}, s0,Στ , {x}, ∅) for ∗ = bbis.
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Lemma 5. Let R be a path-P∗-bisimulation between T1 and T2 and ∗ ∈ {trace, test}. Given
α ∈ L(Ti) for some i = 1, 2, there exists a pair (p1, p2) ∈ R such that pj : P → Tj for all
j = 1, 2, where P = T α, if ∗ = trace, and P = T α,∅, otherwise.

We are now ready to establish the main result of this section.

Theorem 2. For ∗ ∈ {trace, test, bis, bbis}, P∗-bisimilarity, path-P∗-bisimilarity, strong path-
P∗-bisimilarity all coincide with ∗-equivalence.

Example 14. To illustrate the meaning of the theorem, consider the most interesting case, i.e.
the test-equivalent systems T̂ and Ť from Example 2. According to Theorem 2, they are path-
Ptest-bisimilar. Consider an evidence of the truth of the statement. Due to Lemma 2(ii),(iii),
for any object T α,L in Ptest and any object T in TTStest, there is a bijection between the
ttest-morphisms µ : T α,L → T and the pairs (α,L) such that α ∈ L(T ), L ⊆

⋃
A∈AT (α)A,

and for all A ∈ AT (α) A ∩ L 6= ∅, if L 6= ∅. Also, we know that there is at most one

ttest-morphism between timed transition systems. Specify a relation R̂ = R̂1 ∪ R̂2, where

R̂1 = {(pε,{(a,d)}
T̂

: T ε,{(a,d)} → T̂ , pε,{(a,d)}
Ť : T ε,{(a,d)} → Ť ) | d ≤ 1} and R̂2 = {(pα,∅

T̂
:

T α,∅ → T̂ , pα,∅Ť : T α,∅ → Ť ) | α ∈ L(T̂ ) = L(Ť )}. Obviously, (pε,∅
T̂
, pε,∅Ť ) ∈ R̂. Take arbitrary

(pα,L
T̂

, pα,LŤ ) ∈ R̂ and m : T α,L → T α′,L′ in Ptest. Suppose that there is pα
′,L′

T̂
: T α′,L′ → T̂ such

that pα,L
T̂

= pα
′,L′

T̂
◦m. (The case when there is pα

′,L′

Ť : T α′,L′ → Ť such that pα,LŤ = pα
′,L′

Ť ◦m
is similar.) From example 2, we know that the systems T̂ and Ť have the same languages, and
in both the systems, there is the only run of the empty timed word which can be extended only by
an occurrence of an action a at time d, where d ≤ 1, and, moreover, for any non-empty timed
word from the systems’ languages there is the run of the timed word, which cannot be extended.
This means that for any ttest-morphism pα,LT : T α,L → T ∈ {T̂ , Ť }, if α 6= ε, then L = ∅,
and if α = ε, then L ⊆

⋃
A∈AT (ε)={A}A = {(a, d) | (a, d) ∈ L(T )}, and for all A ∈ AT (ε)

A ∩ L 6= ∅, if L 6= ∅. Hence, there exists pα
′,L′

Ť : T α′,L′ → Ť such that pα,LŤ = pα
′,L′

Ť ◦m and

(pα
′,L′

T̂
, pα

′,L′

Ť ) ∈ R̂. Thus, R̂ is indeed a path-Ptest-bisimulation.

6 Coalgebraic Bisimulation

Another alternative abstract characterization of bisimulation is based on a category of coalge-
bras induced by an endofunctor on an arbitrary category. In [16] it has been shown that the
concept of path-bisimilarity can be translated into a coalgebraic setting with lax cohomomor-
phisms. Notice, in [22] a coalgebraic characterization of path-bisimilarity is obtained without
the use of lax notions, however, in this case one cannot define a functor from a category of
computations to the category of coalgebras.

We start with defining the terminology from [16]. Let M be a locally small category with a
small path subcategory P. We will define an embedding of M into a category of coalgebras for
some endofunctor on the category Set|P| of |P|-sorted sets (|P|-indexed sets), where |P| is the
set of objects in P. The endofunctor FP : Set|P| −→ Set|P| is defined as follows:

{XP }P∈|P| 7−→ {
∏
Q∈|P|

(P(XQ))HomP(P,Q)}P∈|P|,

where P(·) denotes the powerset, XP specifies a component of a |P|-sorted set X for P ∈ |P|,
and HomP(P,Q) stands for the set of all morphisms from P to Q in P. On morphisms in the
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category Set|P|, the endofunctor FP acts by the following rule:

FP : ({γP }P∈|P| : X → Y ) 7−→ {
∏
Q∈|P|

hPQ}P∈|P|,

where hPQ : P(XQ)HomP(P,Q) → P(YQ)HomP(P,Q) : g 7−→ f , f(m) = {γQ(x) | x ∈ g(m)} for all
m ∈ HomP(P,Q).

A coalgebra for FP or FP-coalgebra is a pair (S, tr) with S an object in Set|P| and tr : S →
FP(S) a morphism in Set|P|, which consists of a family of functions:

{trP : SP →
∏
Q∈|P|

(P(SQ))HomP(P,Q)}P∈|P|.

The set S is called the carrier and the function tr is called the coalgebra structure of the
FP-coalgebra. Notice, any element x of

∏
Q∈|P|(P(SQ))HomP(P,Q) is also a |P|-sorted function

x = {xQ : HomP(P,Q)→ P(SQ)}Q∈|P|. Due to the canonical bijection∏
Q∈|P|

(P(SQ))HomP(P,Q) ∼=
∏

m∈]Q∈|P|HomP(P,Q)

P(Scodomain(m)),

we can omit the subscript and write x(m) for a morphism m : P → Q in P instead of xQ(m)
and may represent a coalgebra structure as the following family of functions:

{trP : SP →
∏

m∈]Q∈|P|HomP(P,Q)

P(Scodomain(m))}P∈|P|.

A morphism γ : S1 → S2 in the category Set|P| is called a cohomomorphism between FP-
coalgebras (S1, tr1) and (S2, tr2) iff FP(γ) ◦ tr1 = tr2 ◦ γ. FP-coalgebras and cohomomorphisms
between them constitute a category, denoted by CAP.

From now on, for an FP-coalgebra (S, tr), a triple 〈m1,m,m2〉, where m1 ∈ SP , m2 ∈ SQ
and m ∈ HomP(P,Q), satisfying m2 ∈ trP (m1)(m), will be denoted by m1

m→ m2.
As usual in the theory of coalgebras, bisimulation is a relation represented by a span of

coalgebra morphisms [23]. An FP-bisimulation between two coalgebras (S1, tr1) and (S2, tr2) is
a |P|-sorted relation R = {RP }P∈|P| ⊆ (S1 × S2) such that, if (m1,m2) ∈ RP and m : P → Q
in P, then

• if m1
m→ m′1, then m2

m→ m′2 and (m′1,m
′
2) ∈ RQ for some m′2 ∈ S2,

• if m2
m→ m′2, then m1

m→ m′1 and (m′1,m
′
2) ∈ RQ for some m′1 ∈ S1.

Clearly, each FP-bisimulation has a coalgebra structure trR : R → FP(R) and together
with the projections π1 : R → S1 and π2 : R → S2 form a span of cohomomorphisms of the
FP-coalgebra.

Next, following [16], we relax the requirement on coalgebra morphism. A morphism γ : S →
S′ in Set|P| is called a lax cohomomorphism between FP-coalgebras (S, tr) and (S′, tr′) if for
each s ∈ SP and m ∈ HomP(P,Q), {γQ(r) | r ∈ trP (s)(m)} ⊆ tr′P (γP (s))(m). FP-coalgebras

and lax cohomomorphisms constitute a category, denoted by CAlaxP (the category CAP contains
those lax cohomomorphisms for which the above inclusion is replaced by equality).

For M with P, define a functor BehMP : M → CAlaxP . BehMP acts on objects X in M as
follows: {HomM(P,X)}P∈|P| is the carrier and {trP : m1 7−→

∏
m∈]Q∈|P|HomP(P,Q){m2 | m1 =

m2 ◦ m}}P∈|P| is the coalgebra structure of the corresponding FP-coalgebra. BehMP acts on

morphisms f : X → Y in M as follows: BehMP (f)P : HomM(P,X)→ HomM(P, Y ) : α 7−→ f ◦α.
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Proposition 5. [16] For any two objects X and Y in M, a |P|-sorted relation R is a path-
P-bisimulation between X and Y iff it is an FP-bisimulation between BehMP (X) and BehMP (Y )
containing the pair (iX , iY ), where iX : I → X and iY : I → Y are paths, with an initial object
I.

Example 15. In order to elucidate Proposition 5, contemplate the path-Ptest-bisimulation R̂
between the systems T̂ and Ť from Example 14. According to the proposition, R̂ is an FPtest-

bisimulation between BehTTStest
Ptest

(T̂ ) and BehTTStest
Ptest

(Ť ) containing the pair (iT̂ , iŤ ) of paths

with the initial object Itest. Verify this statement. The functor BehTTStest
Ptest

maps a system T

to the FPtest-coalgebra with the carrier

{
ST α,L = {pα,LT ∈ HomTTStest(T α,L, T )}

}
T α,L∈|Ptest|

and the coalgebra structure

{
trT α,L : pα,LT 7−→

∏
m∈

⊎
T α′,L′∈|Ptest|

HomPtest (T α,L,T α
′,L′ ) {p

α′,L′

T ∈

ST α′,L′ | p
α,L
T = pα

′,L′

T ◦m}
}
T α,L∈|Ptest|

. Taking into consideration the minimality of SR(·), we

have the carrier

{
ST α,L = {pα,LT }

}
T α,L∈|Ptrace|

and the coalgebra structure

{
trT α,L : pα,LT 7−→

∏
m∈

⊎
T α′,L′∈|Ptest|

HomPtest (T α,L,T α
′,L′ ) ST α′,L′

}
T α,L∈|Ptest|

. In informal words, the carrier is

indexed by ‘trees’ whose trunks correspond to timed words over Σ and whose branches are
constructed of sets of actions from Σ with times at which the actions occur after executions of the
timed words, and the coalgebra structure is marked by all possible mappings from trees to another
ones, embedding their trunks and finding in the trees subbranches of the branches of the images of

the trees. We know that R̂ contains (iT̂ , iŤ ). Let (pα,L
T̂

, pα,LŤ ) ∈ R̂. Assume pα,L
T̂

m→ pα
′,L′

Ť , i.e.

pα
′,L′

T̂
∈ trT α,L(pα,L

T̂
)(m). This implies pα,L

T̂
= pα

′,L′

T̂
◦m. Since R̂ is a path-Ptest-bisimulation,

there is pα
′,L′

Ť : T α′,L′ → Ť such that pα,LŤ = pα
′,L′

Ť ◦m and (pα
′,L′

T̂
, pα

′,L′

Ť ) ∈ R̂. This means

pα
′,L′

Ť ∈ trT α,L(pα,LŤ )(m), i.e. pα,LŤ
m→ pα

′,L′

Ť . Hence, R̂ is indeed an FPtest-bisimulation.

Corollary 1. For ∗ ∈ {trace, test, bis, bbis} and any two objects T and T ′ in TTS∗, P∗-
bisimilarity, path-P∗-bisimilarity, strong path-P∗-bisimilarity, ∗-equivalence coincide with FP∗-
bisimilarity between BehTTS∗

P∗
(T ) and BehTTS∗

P∗
(T ′) containing the pair (iT , iT ′), where iT :

I∗ → T and iT ′ : I∗ → T ′ are paths, with an initial object I∗.
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