
EPiC Series in Computing
Volume 65, 2019, Pages 1–14

GCAI 2019. Proceedings of the 5th Global
Conference on Artificial Intelligence

Ontology-Mediated Queries from Examples:
a Glimpse at the DL-Lite Case∗

Magdalena Ortiz

Institute of Logic and Computation, Faculty of Informatics, TU Wien
ortiz@kr.tuwien.ac.at

Abstract

Reverse engineering queries from given data, as in the case of query-by-example and query defin-
ability, is an important problem with many applications that has recently gained attention in the areas
where symbolic artificial intelligence meets learning. In the presence of ontologies this problem was
recently studied for Horn-ALC and Horn-ALCI. The main contribution of this paper is to take a first
look at the case of DL-Lite, to identify cases where the addition of the ontology does not increase
the worst-case complexity of the problem. Unfortunately, reverse engineering conjunctive queries
is known to be very hard, even for plain databases, since the smallest witness query is known to be
exponential in general. In the light of this, we outline some possible research directions for exploiting
the ontology in order to obtain smaller witness queries.

1 Introduction
In reverse engineering of queries, we are given a dataset together with desired answers, and want to
build a query that gives those answers when evaluated. It is often advocated as a way to facilitate query
formulation by non-experts, but its applications go far beyond. Since it was formulated by Zloof in the
70s [23], researchers have come across it in data exploration and analysis, usability, data security, the
study of expressiveness of query languages, etc., see [15, 16]. It has been studied for different query
languages and different types of databases, including relational data [5, 19, 21, 14, 20], graph databases
[7, 1], and RDF data [2]. Much work has aimed at finding practicable solutions [15, 20, 14, 11, 9]. Not
surprisingly, reverse engineering of queries also arises in AI, where learning from given data how to
separate classes is the core goal of entire research fields. Indeed, query reverse engineering can be seen
as a form of inductive logic programming [17]. Moreover, the problem has been shown to be useful for
exploiting database techniques to improve the feature engineering process for machine learning [4, 13].
It is clearly a core theoretical problem at the interface of learning and symbolic AI.

A setting where remarkably little has been done is query reverse engineering in the presence of
Description Logic (DL) ontologies. Over the last two decades, ontology mediated queries (OMQs),
which enrich standard queries with domain knowledge expressed as a DL ontology, have been exten-
sively studied (see [6, 18] and their references). Among other uses, they are advocated as a powerful
tool for querying incomplete data, facilitating access to complex data sources by less experienced users,

∗This work was partially supported by the Austrian Science Fund (FWF) projects P30360 and P30873.

D. Calvanese and L. Iocchi (eds.), GCAI 2019 (EPiC Series in Computing, vol. 65), pp. 1–14

OMQs from Examples: the DL-Lite Case Ortiz

and integrating data (see [22] and its references). In reverse engineering queries, the knowledge in the
ontology has the potential to help us find more and better solutions, as we argue in this paper. It is
then surprising how little this has been addressed. Although some related problems—like learnability
of some combinations of ontologies and rules [12]—had been studied before, the very recent [10] is to
our knowledge the first work to focus on this topic.

From the theoretical perspective, the study of query reverse engineering focuses on solving two
problems. In query definability (QDEF), the input is a dataset and a set of tuples that are desired
answers or positive examples, and we want to find a query that retrieves precisely those tuples. In the
more general query-by-example (QBE) we have both positive and negative examples, and we want to
find a query that gives all the positive examples and none of the negative ones. We study the variations
of these two problems where the input also includes a DL ontology, whose consequences are taken into
account for answering the queries.

Example 1. Consider the dataset on the left column. On the right we have a DL-LiteR ontology express-
ing that a person that receives chemotherapy takes immunosuppressive (IS) medication, that the range
of the relation ‘takes IS medication’ is the class of IS medications, and that taking an IS medication
implies taking a medication.

takesMed(p1, insulin) ReceivesChemo(p4)
takesISMed(p2, azasan) IsImmunoDef(p5)
takesISMed(p3, prednisone)

ReceivesChemov ∃takesISMed

∃takesISMed− v ISMed

takesISMedv takesMed

If we are given positive examples S+ = {p2, p3, p4} and negative example S− = {p1}, we can solve
positively the QBE problem, as witnessed by the query q(x) = ∃ytakesMed(x, y)∧ ISMed(y). The ex-
amples S+ = {p2, p3, p4, p5} and S− = {p1} can be separated with a UCQ q(x) = IsImmunoDef(x)∨(
∃ytakesMed(x, y) ∧ ISMed(y)

)
. Verifying if they can be separated with a CQ requires the rather in-

volved construction in Section 3.2. For a case where no separating query exists, consider the positive
examples S+ = {(p1, insulin), (p2, asazan)} and the negative example S− = {(p3, prednisone)}.
There is no witness query that can retrieve (p2, asazan) while avoiding (p3, prednisone). For the same
reason, any S+ including (p2, asazan) but not (p3, prednisone) is a negative instance of QDEF.

QBE and QDEF are highly relevant in many data management and AI scenarios, but unfortunately
they are computationally quite expensive. In the traditional setting with no ontologies, both QBE and
QDEF are CONEXPTIME-complete for conjunctive queries (CQs), which are at the core of practically
all languages for querying relational data. They remain intractable for unions of CQs (UCQs), but being
CONP complete they appear more amenable to be solved using tools for other intractable problems, and
for identifying tractable subcases [5]. Taking an ontology into account can increase the complexity even
further. The results of [10] show that the complexity increases rather significantly if we add an ontology
in the well-known Horn DLs Horn-ALC or Horn-ALCI. For both QBE and QDEF they prove tight
bounds of CONEXPTIME for Horn-ALC and 2EXPTIME for Horn-ALCI if one considers CQs, and
EXPTIME for Horn-ALC and 2EXPTIME for Horn-ALCI in the case of UCQs. If the signature is not
restricted, and all concepts and roles are allowed in the query, the bounds for CQs and the bounds for
Horn-ALCI are the same, but the complexity increase of UCQs and Horn-ALC is only to EXPTIME
rather than 2EXPTIME. But even in this case, the news are rather negative. Are there useful scenarios
of reverse query engineering in the presence of ontologies that are not so computationally costly?

In this paper, we give the first step towards a positive answer. We consider the so-called DL-Lite
family of DLs, which not only have the lowest complexity among standard DLs, but they are also the
most popular in the context of data access and management. We show that for DL-LiteR and UCQs,

2

OMQs from Examples: the DL-Lite Case Ortiz

the complexity of QBE and QDEF is in CONP, and thus not harder than for plain databases. That is,
we can add and leverage an ontology at no computational cost. Furthermore, we can implement both
problems using existing techniques like query rewriting for DL-LiteR. In the last part of the paper, we
go beyond just taking the ontology into account as done in [10], and instead advocate to really exploit
the ontology. Revisiting our example, S+ = {p2, p3, p4, p5} and S− = {p1} can be separated with the
UCQ q(x) = IsImmunoDef(x)∨

(
∃ytakesISMed(x, y)

)
, but we may prefer to introduce a new concept

for immunocompromised patients, and use the CQ q(x) = IsImmunoCompr(x) and while adding to the
ontology axioms IsImmunoDef v IsImmunoCompr and ∃takesISMed v IsImmunoCompr. We discuss
in Section 5 some first ideas towards reverse engineering smaller and more readable queries using more
predicates and axioms in the ontology.

2 Preliminaries

As usual in the context of OMQs, we consider datasets whose relations are only unary and binary, that
is, concepts and roles, and we focus on conjunctive queries and their unions.

2.1 Datasets and queries

Predicates come from two sets: the set C of concept names, and the set R of role names; the former have
arity 1 and the latter 2. Terms are the elements of the set I of individuals and of the set V of variables.
All these sets are countably infinite and pairwise disjoint. Query atoms are either concept atoms of the
form A(x) with A ∈ C and x ∈ V, or role atoms of the form r(x, y) with r ∈ R and x, y ∈ V. We use
V(q) for the variables occurring in a set of atoms q.

We define two kinds of queries. First, conjunctive queries (CQs) are defined as pairs (q, ~x), where q
is a finite set of atoms, and ~x ⊆ V(q). The variables in ~x are called answer variables, and the remaining
variables in V(q) are called existential variables. If n is the arity of ~x, we call q an n-ary query. We
usually call 0-ary queries Boolean, and write just q rather than (q, ()).

Our second query language are union of conjunctive queries (UCQs). A UCQ is a finite set Q of
CQs {(q1, ~x), . . . , (qn, ~x)} sharing the set ~x of answer variables. The notions of answer and existential
variables, arity and Boolean query extend naturally to UCQs.

Assertions are analogous to query atoms, but individuals a, b take the place of variables. A dataset
D is a finite set of assertions, and I(D) denotes the individuals that occur in it.

An n-ary CQ (q, ~x) defines a mapping ans from datasetsD to n-ary relations as follows. A valuation
is a mapping from variables to individuals. An n-ary tuple of individuals ~a is called an answer to (q, ~x)
over D if there is a valuation v such that v(q) ⊆ D and v(~x) = ~a. Then ans((q, ~x),D) is the set
of answers to (q, ~x) over D. Naturally, for a UCQ (q, ~x), we have that ans((q, ~x),D) is the union of
ans(qi(~x),D) for all qi ∈ Q. Note that for Boolean queries the only possible answer is the empty tuple
(); we may thus say that Q is true if ans(Q,D) = {()}, and that Q is false if ans(Q,D) = {}.

2.2 Ontologies

Many DLs can be used for writing ontologies [3]. In this paper, we focus on DL-LiteR [8].
In DL-LiteR, roles take the forms r or r− with r ∈ R, and concepts B are either A ∈ C, or ∃r with

r a role. DL-LiteR ontologies O are finite sets of axioms of the following forms,where B1 and B2 are
concepts and r1 and r2 are roles:

B1 vB2 B1 uB2 v⊥ r1 v r2 r1 u r2 v⊥.

3

OMQs from Examples: the DL-Lite Case Ortiz

To give semantics to ontologies, interpretations are defined as pairs (∆I , ·I) where ∆I 6= ∅ is the
domain and ·I is the interpretation function that maps concept names to subsets of ∆I , and role names
to subsets of ∆I ×∆I . We extend the function ·I to roles r− and concepts ∃r:

(r−)I = {(d′, d) ∈ ∆I ×∆I | (d, d′) ∈ rI}
(∃r)I = {d ∈ ∆I | (d, d′) ∈ rI for some d′ ∈ ∆I}

We say that an interpretation I satisfies an axiom E1 v E2 if EI1 ⊆ EI2 , and that I satisfies an axiom
E1 u E2 v ⊥ if EI1 ∩ EI2 = ∅. We call I a model of an ontology O and write I |= O if I satisfies all
axioms in O.

It will sometimes be convenient to manipulate interpretations as sets of atoms. Given an interpre-
tation I, an I-atom may take the form A(d) or r(d, d′), where A ∈ C, r ∈ R, and d, d′ ∈ ∆I . We
may write r−(d, d′) to mean the I-atom r(d′, d). We identify I with the set that contains exactly the
I-atoms A(d) with d ∈ AI , and r(d, d′) with (d, d′) ∈ rI . Note that, in particular, an interpretation
with ∆I ⊆ I is in fact a dataset.

2.3 Ontology-mediated Queries

In this work an ontology-mediated query (OMQ) has the form (Q,~x,O) where (Q,~x) is a CQ or UCQ
as above, and O is a DL-LiteR ontology. Like ordinary queries, OMQs define a mapping ans from
datasets to relations of the same arity as the query. However, for the semantics of OMQs we take a
open-world view, where a dataset D is viewed as a possibly incomplete world descriptions and the
ontology may imply the existence of facts not explicit in D.

To give semantics to OMQs we extend modelhood to datasets. We say that an interpretation I
satisfies an assertion A(a) if a ∈ ∆I and a ∈ AI . Similarly, it satisfies an assertion r(a, b) if {a, b} ⊆
∆I and (a, b) ∈ rI . Then I is a model of a dataset D (in symbols, I |= D) if it satisfies every assertion
in D. Given an ontology O, we write I |= O,D if I |= O and I |= D. For a concept B and an
individual a, we write O,D |= B(a) if a ∈ BI for every I with I |= O,D.

We remark that we make the standard name assumption (SNA) because it is convenient and closer
to standard databases, but this assumption is not necessary for our results.

We extend the notion of valuations to interpretations. Rather than that mapping V to I, I-valuations
now map variables in V to objects in ∆I . Given an interpretation I and a CQ (q, ~x), answers are defined
similarly as above: an n-ary tuple of individuals ~a is called an answer to (q, ~x) over I if there is an I-
valuation v such that v(q) ⊆ I and v(~x) = ~a. For a UCQ (Q,~x), we have that ans((Q,~x), I) is the
union of ans(qi(~x), I) for all qi ∈ Q. Finally, we can now define certain answers: given an n-ary OMQ
(Q,~x,O) and a dataset D, we define

ans((Q,~x,O),D) = {~a ∈ I(D)n | ~a ∈ ans((Q,~x), I) for all I such that I |= O,D}.

We remark that, given a dataset D and an ontology O, it can be the case that there is no I such that
I |= O,D. In this case, we say that (D,O) is inconsistent, and have that ans((Q,~x,O),D) = I(D)n

for every n-ary query (Q,~x).

3 Reverse Engineering of Queries

We define two central query reverse-engineering problems: query-by-example (QbE) and query defin-
ability (QDef). In what follows we use Q ∈ {CQ,UCQ} to denote query languages.

4

OMQs from Examples: the DL-Lite Case Ortiz

PROBLEM: QBE(Q)
INPUT: A dataset D and two sets S+ and S− of tuples from I(D)n.
QUESTION: Is there a query (Q,~x) in Q such that S+ ⊆ ans((Q,~x),D) and S− ∩

ans((Q,~x),D) = ∅?

PROBLEM: QDEF(Q)
INPUT: A dataset D and a set S+ of tuples from I(D)n.
QUESTION: Is there a query (Q,~x) in Q such that S+ = ans((Q,~x),D)?

If if exists, we call (Q,~x) a witness (query). Note that the QBE case trivializes if S+ ∩ S− 6= ∅, so we
will quietly assume the two sets are disjoint in the paper.

QBE and QDEF are rather well understood for the standard setting of CQs and UCQs over plain
databases. We review a few central results, mostly from [1, 19, 21]. For an in-depth discussion, please
refer to [5] (whose presentation we follow closely) and its references.

Theorem 1 ([1, 19, 21]). QBE(CQ) and QDEF(CQ) are CONEXPTIME complete, while QBE(UCQ)
and QDEF(UCQ) are CONP complete.

In all four cases, the upper bounds are obtained by testing for the existence of homomorphisms
between structures constructed from D, S+ and S−. As we will see below, these structures also give us
witness queries.

In general, by a structure we mean a set of atoms, which may be query atoms (which use only
variables), assertions (which use only individuals), or I-atoms (which use objects of some domain
containing the individuals). So, we have three types of structures S, and all of them have a domain of
objects that we denote dom(S):

• A database D is a finite structure whose domain is I(D).

• A set of query atoms Q is finite a structure whose domain is V(Q).

• An interpretation I is a possibly infinite structure whose domain is ∆I .

All these structures are similar, and their atoms use only concepts and roles. We are sometimes interested
in the following structures:

• Given a pair (D,~a), we denote by query(D,~a) the CQ obtained by replacing inD each individual
a ∈ ~a by a variable xa ∈ V.

• Given an interpretation I, we denote by I|I the result of restricting its domain to the individuals.
Note that I|I is a dataset whenever it is finite.

A homomorphism from structure S to structure S′ is a mapping h from dom(S) to dom(S′) such
that h(α) ∈ S′ for every atom α ∈ S. We write S → S′ if such a homomorphism exists. It is sometimes
important to distinguish a tuple ~e of elements in a structure S. We do so by writing (S,~e), and for two
such pairs we write (S,~e)→ (S′, ~e′) if there is a homomorphism from S to S′ with h(~e) = ~e′.

We can now describe how the upper bounds of Theorem 1 are obtained, together with a witness
query for a given input if it exists.

3.1 The case of UCQs
First, for deciding QBE(UCQ) we can use the following test:

5

OMQs from Examples: the DL-Lite Case Ortiz

QBE(UCQ) Test
INPUT: A dataset D and two sets S+ and S− of tuples from I(D)n.

Is it the case that (D,~a) 9 (D,~b) for all ~a ∈ S+ and all~b ∈ S−?

The answer to this test is positive iff we have a positive instance of QBE(UCQ), and in that case, we
also have a canonical witness UCQ: the union of the CQs query(D,~a) with ~a ∈ S+ (after unifying the
answer variables via renaming). A very similar procedure gives us a solution for QDEF(UCQ), now the
only difference is that, instead of testing (D,~a) 9 (D,~b) for each ~b in S+, we must test every n-ary
tuple from I(D) that is not in S+.

QDEF(UCQ) Test
INPUT: A dataset D and a set S+ of tuples from I(D)n.

Is it the case that (D,~a) 9 (D,~b) for all ~a ∈ S+, and all~b ∈ I(D)n \ S+?

The canonical witness query for the QDEF(UCQ) instance is exactly the same in this case.

Our canonical witness query has size O(|D| × |S+|), and is hence polynomial in the input. Decid-
ing (D,~a) → (D,~b) is a well-known NP-complete problem. Hence the CONP upper bound for both
QBE(UCQ) and QDEF(UCQ) easily follows: if the answer to either test is false, we can guess the tuples
~a and~b and check (D,~a)→ (D,~b) in NP. Not surprisingly, this is tight [1].

Example 2. In a dataset storing suppliers of some company we have two roles RA and RB , which
respectively store suppliers of products of type A and of products of type B, and two roles LEU and
LnEU that store the locations of the suppliers in European Union countries and in non-European Union
ones. Consider the following dataset Ds:

RA(s1, p1) RB(s2, p2) LEU(s2, lit) LnEU(s1, tur)

If we have S+ = {(s1, p1), (s2, lit)} and S− = {(s2, p2), (s1, tur)}, our canonical witness query
(written in logic notation for readability) is:

q(x, y) =
(
∃xs2 , xp2

, xl, xt RA(x, y) ∧RB(xs2 , xp2
) ∧ LEU(xs2 , xl) ∧ LnEU(x, xt)

)
∨(

∃xs1 , xp1
, xp2

, xt RA(xs1 , xp1
) ∧RB(x, xp2

) ∧ LEU(x, y) ∧ LnEU(xs1 , xt)
)
}

Observe that there is no homomorphism h of this query into Ds that would give us h(x) = s2 and
h(y) = p2, or h(x) = s1 and h(y) = tur . Canonical witnesses may contain unnecessary atoms, as in
this case, where we can easily see that the simpler query q(x, y) = RA(x, y) ∨ LEU(x, y) is a more
intuitive witness.

3.2 The case of CQs
For the case of CQs we can use the same intuitions, but we need to test for all ~a ∈ S+ at once, and for
a witness query we need a single CQ that captures the union of all query(D,~a). This is achieved by
synchronizing all the (D,~a) using the well-known direct product construction.

Direct product of structures The direct product of two n-ary tuples ~a = (a1, . . . , an) and ~b =

(b1, . . . , bn) is the n-ary tuple ~a ⊗ ~b = ((a1, b1), . . . , (an, bn)). For two structures S1 and S2, their
direct product is defined as

S1 ⊗ S2 = {P (~a⊗~b) | P (~a) ∈ S1 and P (~b) ∈ S2}.

6

OMQs from Examples: the DL-Lite Case Ortiz

We let (S1,~a)⊗(S2,~b) = (S1⊗S2,~a⊗~b), and relying on the associativity of⊗, we use Π1≤i≤m(Si, ~ai)
as a shorthand for (S1, ~a1) ⊗ · · · ⊗ (Sm, ~am). We call the pair Π1≤i≤m(Si, ~ai) safe if all the elements
in the tuple ~a1 ⊗ · · · ⊗ ~am appear in the structure S1 ⊗ · · · ⊗ Sm.

The direct product synchronizes into a single structure all the (D,~a) that we need to test for the
QBE(CQ) problem and it is, in general, the minimal structure that does this. It is the least upper bound
on the lattice of objects (S,~a) defined by the relation→, that is:

• Π1≤i≤m(Si, ~ai)→ (Si, ~ai) for every 1 ≤ i ≤ m, and

• if (S,~a)→ (Si, ~ai) for every 1 ≤ i ≤ m, then (S,~a)→ Π1≤i≤m(Si, ~ai).

The direct product is used for the QBE(CQ) and QDEF(CQ) tests that characterize the QBE(CQ) and
QDEF(CQ) problems. Note that we must check for safety of the product.

QBE(CQ) Test
INPUT: A dataset D and two sets S+ and S− of tuples from I(D)n.

Is it the case that:
- Π~a∈S+(D,~a) is safe, and
- Π~a∈S+(D,~a) 9 (D,~b) for all~b ∈ S−?

QDEF(CQ) Test
INPUT: A dataset D and a set S+ of tuples from I(D)n.

Is it the case that:
- Π~a∈S+(D,~a) is safe, and
- Π~a∈S+(D,~a) 9 (D,~b) for all~b ∈ I(D)n \ S+?

The canonical witness query for both problems is now query(Π~a∈S+(D,~a)). Although the UCQ
case and the CQ case are conceptually similar, there is a major difference between taking the union
of all (D,~a) as a UCQ, or taking their direct product as a CQ: the size is now O(|D||S+|) rather than
O(|D| × |S+|). Since we have to test→ with an exponentially larger structure, the upper bound jumps
to CONEXPTIME. Unfortunately, both of these bounds are tight: the complexity of deciding QBE(CQ)
is CONEXPTIME-hard, and there are instances where any witness query is of necessarily exponential
size. This was first shown by Willard [21], but a more recent proof by ten Cate and Dalmau [19] shows
that this holds even if we restrict the examples to unary relations, that is, to concepts only.

Example 3. (ctd.) With the same Ds and S+ = {(s1, p1), (s2, lit)} as in Example 2, the product
S = (Ds ⊗Ds, (s1s2, p1lit)) is not safe. Indeed, Ds ⊗Ds contains

RA(s1s1, p1p1) RB(s2s2, p2p2) LEU(s2s2, lit lit) LnEU(s1s1, turtur)

and neither (s1s2) nor (p1lit)) occur in it. Hence there is no witness CQ.

4 Reverse Engineering OMQs

We now define variants of the Q-QBE and Q-QDEF problems for OMQs, where also an ontology O in
some DL language L is given as an input.

7

OMQs from Examples: the DL-Lite Case Ortiz

PROBLEM: QBE(Q, L)
INPUT: A dataset D, an L ontology O, and two sets S+ and S− of tuples from I(D)n.
QUESTION: Is there a query (Q,~x) in Q such that S+ ⊆ ans((Q,~x,O),D) and

S− ∩ ans((Q,~x,O),D) = ∅?

PROBLEM: QDEF(Q, L)
INPUT: A dataset D, an L ontology O, and a set S+ of tuples from I(D)n.
QUESTION: Is there a query (Q,~x) in Q such that S+ = ans((Q,~x,O),D)?

These definitions are essentially the same as in [10], except that we omit the signature Σ, and allow all
concepts and roles to occur in the query. In that work, the authors characterize the precise complexity
of Q-QBE and Q-QDEF problems for the two DLs called Horn-ALC and Horn-ALCI [10]. The latter
is a strict extension of DL-LiteR, while the former is orthogonal to it. Their results (without restricted
signatures) are summarized in the following theorem.

Theorem 2. [10] The following hold:

1. QBE(CQ,Horn-ALC) and QDEF(CQ,Horn-ALC) are CONEXPTIME-complete.

2. QBE(UCQ,Horn-ALC) and QDEF(UCQ,Horn-ALC) are EXPTIME-complete.

3. QBE(CQ,Horn-ALCI) and QDEF(CQ,Horn-ALCI) are 2EXPTIME-complete.

4. QBE(UCQ,Horn-ALCI) and QDEF(UCQ,Horn-ALCI) are EXPTIME-complete.

The case where L is DL-LiteR has not been studied yet. From these results, since DL-LiteR supports
inverse roles r− and Horn-ALC does not, we can only transfer the upper bounds for the third and fourth
items. These together with the results of Section 3 give us:

Corollary 1. The following hold:

1. QBE(CQ,DL-LiteR) and QDEF(CQ,DL-LiteR) are CONEXPTIME-hard, and in 2EXPTIME.

2. QBE(UCQ,DL-LiteR) and QDEF(UCQ,DL-LiteR) are CONP-hard and in EXPTIME.

Our main contribution is to close the second gap, obtaining the best possible bound:

Theorem 3. QBE(UCQ,DL-LiteR) and QDEF(UCQ,DL-LiteR) are CONP-complete

We prove Theorem 3 in the rest of this section. For this, we rely on some of the results of [10], and
on well-known properties of DL-LiteR [8]. We focus on the case of QBE; the case of QDEF is proved
similarly by simply taking the corresponding set of~b-tuples.

In what follows, we restrict our attention to instances of QBE(Q,L) and QDEF(Q,L) for which
(O,D) is consistent and S+ 6= ∅; both problems trivialize if any of those two conditions fails, see [10].
We remark that for DL-LiteR ontologies, testing if (O,D) is consistent can be done in NLOGSPACE
with existing algorithms.

Universal Model We start by recalling the notion of universal models. For DL-LiteR and other so-
called Horn DLs, we can build a universal model for any consistent O and D. This model can be
homomorphically embedded into any other model ofO,D, and is therefore sufficient for answering any
query that is preserved under homomorphisms, as is the case for CQs and UCQs. The following result
is well-known in the OMQ literature.

Claim 1. [8] For every consistent pair (O,D) with O in DL-LiteR, there exists an interpretation UO,D
such that UO,D |= O,D, and I → UO,D for every model I of O,D.

8

OMQs from Examples: the DL-Lite Case Ortiz

Adapting the characterization The QBE and QDEF tests in Section 3 cannot be used directly in
the presence of ontologies. For instance, it fails for the example given in the introduction: the product
Π~a∈S+(D,~a) is not safe ((p2, p3, p5) does not occur in D ⊗ D ⊗ D), but a CQ does exist. This is
not surprising: the characterizations in the previous section does not take into account the ontology,
which can of course have an effect on QBE. Therefore, we have an alternative characterization that, in
a nutshell, replaces D by the universal model UO,D.

QBE(UCQ,L) Test
INPUT: A dataset D, an L ontology O, and two sets S+ and S− of tuples from I(D)n.

Is it the case that (UO,D,~a) 9 (UO,D,~b) for all ~a ∈ S+ and all~b ∈ S−?

Since Horn-ALCI contains DL-LiteR, we can use the following result, shown in [10] for the DLs
Horn-ALC and Horn-ALCI:

Proposition 1. An instance D,O, S+, S− of the QBE(UCQ,DL-LiteR) problem is positive iff it is also
a positive instance of the QBE(UCQ,DL-LiteR) Test.

However, unlike the case of standard databases, this test does not result in an immediate decision
procedure. Indeed, for most ontology languages, and in particular for DL-LiteR, UO,D can be infinite.
The authors of [10] provide sophisticated techniques to test for existence of homomorphisms between
possibly infinite universal models, taking into account possibly restricted signatures. For the case of
UCQs and no signature restriction, however, they make a key observation that will be useful for us,
namely:

Lemma 1. [10] For every dataset D, DL-LiteR ontology O, and n-ary tuples ~a,~b ∈ I(D)n,

(UO,D,~a)→ (UO,D,~b) iff (UO,D|I,~a)→ (UO,D,~b)

where UO,D|I is the restriction of UO,D to have as domain the individuals in O only.

This is useful, since now the source for testing homomorphism existence is a small dataset. The
target structure, however, is still infinite. Here is where we make use of the DL-LiteR machinery, and
exploit query rewriting.

Query rewriting for DL-LiteR DL-LiteR was designed with the deliberate intention of supporting
scalable OMQ answering leveraging existing database technologies. This goal is realized in the crucial
property of UCQ rewritability enjoyed by OMQs that comprise a CQ and a DL-LiteR ontology. In a
nutshell, such an OMQ can be effectively translated into an equivalent UCQ that, without an ontology,
gives the same answers over any dataset.

Proposition 2. [8] Given an OMQ (q, ~x,O) where (q, ~x) is a CQ and O a DL-LiteR ontology, we can
obtain a UCQ rew(q, ~x,O) = ({q1, . . . , qn}, ~x) such that for every dataset D

ans((q, ~x,O),D) = ans(rew(q, ~x,O),D)

The number n of CQs in rew(q, ~x,O) may be exponential in the number of axioms in O, but each qi is
polynomial in the combined sizes of q and O, and can be computed with a non-deterministic algorithm
in polynomial time.

To leverage this for QBE, we simple take query(UO,D|I,~a), and the existence of homomorphisms
reduces to testing if~b is an answer to its rewriting. This reduces QBE to a few ordinary UCQ evaluations,
yielding the desired decision procedure.

9

OMQs from Examples: the DL-Lite Case Ortiz

Proposition 3. An input (D,O, S+, S−) is a positive instance of QBE(UCQ,DL-LiteR) iff for every
~a ∈ S+ and every~b ∈ S− we have

~b 6∈ ans(rew(qa,O),D), where qa = query(UO,D|I,~a).

Proof. From Proposition 1 we have that (D,O, S+, S−) is a positive instance of QBE(UCQ,DL-LiteR)
iff (UO,D,~a) 9 (UO,D,~b) for all ~a ∈ S+ and~b ∈ S−. We also have, for all ~a ∈ S+ and~b ∈ S−:

(UO,D,~a)→ (UO,D,~b) iff (UO,D|I,~a)→ (UO,D,~b) by Lemma 1,
iff qa → (UO,D,~b) since query(·) preserves→,
iff qa → (I,~b) for all I |= O,D by Claim 1,
iff~b ∈ ans((qa,O),D) by the semantics of OMQs,
iff~b ∈ ans(rew(qa,O),D) by Proposition 2.

Hence (D,O, S+, S−) is a positive instance of QBE(UCQ,DL-LiteR) iff ~b 6∈ ans(rew(qa,O),D) for
all ~a ∈ S+ and~b ∈ S−.

Now we are ready to conclude the proof of Theorem 3.

Proof of Theorem 3. The lower bound follows from Theorem 1 (see also Corollary 1). To show the
upper bound for QBE, consider the following non-deterministic polynomial time algorithm:

(1) Guess some ~a ∈ S+ and some~b ∈ S−.
(2) Build UO,D|I.
(3) Take qa = query(UO,D|I,~a).
(4) Non-deterministically obtain some CQ (q, ~x) ∈ rew(qa,O).
(5) Verify that~b ∈ ans(q,D) by finding a homomorphism from (q, ~x) into (D,~b).

The correctness of the algorithm follows from Proposition 3. For the complexity bound, the only step
we need to explain how to do in polynomial time is item (2), that is, building UO,D|I. But for DL-LiteR
this is also easy. We simply take all the axioms E1 v E2 in O, and take let v∗O to be the transitive
closure of this relation. Then add to D the necessary assertions to close it under the following rules:

If B1(a) ∈ D and B1 v∗O B2, then B2(a) ∈ D.
If r1(a, b) ∈ D and r1 v∗O r2, then r2(a, b) ∈ D.

It is easy to see that this can be done deterministically in polynomial time.
For QDEF, we use the same argument, but the only difference is that instead of guessing some

~b ∈ S−, the algorithm guesses some~b ∈ I(D)n \ S+.

Note that we do not only have a tight upper bound on the complexity, but in case of a positive answer,
we also have a witness query: ⋃

~a∈S+

rew(query(UO,D|I,~a))

Note that the witness query can be constructed using standard techniques for reasoning in DL-LiteR,
which may be useful towards a practicable implementation.

10

OMQs from Examples: the DL-Lite Case Ortiz

5 Ontology axioms for smaller queries
In the characterizations and results so far we have taken the ontology into account, but we have not
really exploited it. Naturally, we have silently assumed the worst case: that the ontology does not help
us much. However, this need not always be the case. Recall our example from the introduction, where
we could use an ontology with axioms

ReceivesChemo v ∃takesISMed IsImmunoDef v IsImmunoCompr
∃takesISMed− v ISMed ∃takesISMed v IsImmunoCompr

takesISMed v takesMed

to separate S+ = {p2, p3, p4, p5} and S− = {p1} with the very natural CQ

q(x) = IsImmunoCompr(x).

In fact, the DL-LiteR rewriting algorithm rewrites this CQ into the UCQ

q(x) = IsImmunoCompr(x) ∨ IsImmunoDef(x) ∨
(
∃y takesISMed(x, y)

)
∨ RecievesChemo(x)

which is not very different from the canonical witness UCQ
⋃

~a∈S+ rew(query(UO,D|I,~a)) (except that
it contains less unnecessary atoms). This suggests a natural question: when can we use the ontology,
possibly by adding axioms, to obtain a small witness CQ? As we have discussed above, witness CQs
are known to be of exponential size in general. However, a pair of a small CQ and a DL ontology could
potentially express this CQ more succinctly, in a similar way as it succinctly represents the possibly
exponentially larger UCQ that results from its rewriting in the case of DL-LiteR. It would be nice if we
could always leverage an ontology for finding small CQs, but we conjecture this is not possible. And
even if it was, in practice we may not always be allowed to modify the original ontology, or we may
want to modify it in very limited ways to avoid affecting other aspects of the domain conceptualization.
We therefore formulate the following decision problem, where we only allow to add axioms that to not
modify any entailments over the original signature.

PROBLEM: succinct-OQbE(L)
INPUT: A dataset D, two sets S+, S− from I(D)n, and a (possibly empty) L ontology O

such that (D, S+, S−,O) is a positive instance of QBE(UCQ,L).
QUESTION: Are there a CQ (q, ~x) and an L ontology O′ such that:

− (q, ~x) is a witness for QBE(CQ,L) on input (D, S+, S−,O ∪O′),
− the size of (q, ~x,O′) is polynomially bounded by (D, S+, S−,O), and
− O |= α iff O ∪O′ |= α for every assertion α whose predicate occurs in O?

When the input ontology is empty we are in the case where we want to add an ontology to transform
a positive instance of QBE(UCQ) into a positive instance of QBE(CQ,L), as we did in the example
above. QDEF can also be generalized similarly. We expect these problems to be highly non-trivial for
all standard DLs, and leave them for future research.

A family of positive instances
As the focus of this work is on feasible and useful cases, we finish by identifying a simple family
of positive instances of succinct-OQbE(DL-LiteR) that covers our motivating example. Before giving
the characterization, we remark that it is not insensitive to variable renamings, and some instances not
satisfying the conditions below may be transformable into instances that do by renaming variables.

11

OMQs from Examples: the DL-Lite Case Ortiz

However, this is not critical. On the one hand, the characterization is not intended to be complete:
the conditions are sufficient, not necessary. On the other hand, our construction relies on the witness
rew(query(UO,D|I,~a)) which can be assumed to have analogous variable occurrences over the CQs by
using variables canonically during rewriting.

Assume that we are given a dataset D, sets S+ and S− of tuples from I(D)n, and a DL-LiteR
ontology O, so that (D, S+, S−,O) is a positive instance of QBE(UCQ,DL-LiteR). Let (Q,~x) =⋃

~a∈S+ rew(query(UO,D|I,~a)) with ~x = (x1, . . . xn) be its canonical witness UCQ, and let Q∩ =⋂
qi∈Q qi. Moreover, let the sets of atoms q′1, . . . , q

′
n denote the differences q′i = qi \ Q∩, and let

Q′ =
⋃

qi∈Q q
′
i. For each variable x, we define

concepts(x) = {A | A(x) ∈ Q′} ∪ {∃r | r(x, y) ∈ Q′} ∪ {∃r− | r(y, x) ∈ Q′}.

Then we call the instance (D, S+, S−,O) DL-LiteR abbreviatable if the following hold:

1. Each variable in each q′i occurs only once, that is, there are no joins in the differences q′i.

2. For every individual a that occurs in the i-th position of some tuple in S−, we have that (O,D) 6|=
B(a) for every B ∈ concepts(xi).

The succinct OMCQ witness of such an abbreviatable instance is (q, ~x,O∪OQ), where: (i)OQ contains,
for each x with |concepts(x)| > 0 and for some fresh concept Ax, all axioms B v Ax with B ∈
concepts(x), and (ii) q = Q∩ ∪ {Ax(x) | |concepts(x)| > 0}.

The restricted shape of the axioms we added guarantees thatO andO∪OQ entail the same assertions
over the signature of O. It can be verified that every homomorphism from some qi ∈ Q into UO,D
is still a homomorphism when we extend UO,D into UO∪OQ,D, and we still have (UO∪OQ,D,~a) 9
(UO∪OQ,D,~b) for all ~a ∈ S+ and all ~b ∈ S−. Therefore, (q, ~x) is a witness to the QBE(CQ,DL-LiteR)
instance (D, S+, S−,O ∪OQ) as desired, and its size is polynomial in (D, S+, S−,O).

6 Conclusions

In this paper, we have revisited the problem of reverse engineering queries in the presence of ontologies,
with emphasis on showing that in the case of UCQs, the addition of a DL-LiteR ontology does not
increase the worst-case complexity. Our results are for the case where all concepts and roles can be used
in the query. We mentioned that in [10], the authors consider both restricted and unrestricted signature.
Both settings are important, but in this work choose to adopt the latter for two reasons. On the one hand,
we are interested in keeping the complexity increase to a minimum, and in identifying manageable
settings. Imposing additional restrictions can only make the problem harder [10]. On the other hand,
we are interested in exploiting the vocabulary and knowledge of the ontology as much as possible, and
use it to obtain smaller and more readable queries. Indeed, we may even prefer to expand rather than to
restrict the signature in some cases, as we discussed in the last section, where we advocated for a more
active role for the ontology and hinted that it could help us obtain smaller and more readable queries.
We proposed a naı̈ve algorithm for restricted instances that obtains small witness CQs by adding axioms
to the ontology. Despite being simple, we hope it will help motivate the search for better and smarter
algorithms to learn the query along with ontology axioms. We plan to explore this direction in future
work, probably building on ideas that have been used for practical reverse engineering of queries in the
database literature [11, 15, 9, 14, 20]. An interactive system where the user is shown candidate concepts
or instances to be generalized, and proposes suitable axioms, may be particularly promising.

12

OMQs from Examples: the DL-Lite Case Ortiz

References
[1] Timos Antonopoulos, Frank Neven, and Frédéric Servais. Definability problems for graph query languages.

In Proc. Joint 2013 EDBT/ICDT Conferences, ICDT 2013, pages 141–152. ACM, 2013.
[2] Marcelo Arenas, Gonzalo I. Diaz, and Egor V. Kostylev. Reverse engineering SPARQL queries. In Proc. 25th

International Conference on World Wide Web, WWW ’16, pages 239–249, 2016.
[3] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors.

The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press,
2003.

[4] Pablo Barceló, Alexander Baumgartner, Victor Dalmau, and Benny Kimelfeld. Regularizing conjunctive fea-
tures for classification. In Proc. 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2019, pages 2–16. ACM, 2019.

[5] Pablo Barceló and Miguel Romero. The complexity of reverse engineering problems for conjunctive queries.
In Proc. 20th International Conference on Database Theory, ICDT 2017, volume 68 of LIPIcs, pages 7:1–
7:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[6] Meghyn Bienvenu and Magdalena Ortiz. Ontology-mediated query answering with data-tractable description
logics. In Reasoning Web. Web Logic Rules - 11th International Summer School 2015, Tutorial Lectures,
volume 9203 of Lecture Notes in Computer Science, pages 218–307. Springer, 2015.

[7] Angela Bonifati, Radu Ciucanu, and Aurélien Lemay. Learning path queries on graph databases. In Proc.
18th International Conference on Extending Database Technology, EDBT 2015, pages 109–120. OpenPro-
ceedings.org, 2015.

[8] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Rea-
soning, 39(3):385–429, 2007.

[9] Gonzalo I. Diaz, Marcelo Arenas, and Michael Benedikt. Sparqlbye: Querying RDF data by example.
Proc. VLDB Endowment, 9(13):1533–1536, 2016.

[10] Vı́ctor Gutiérrez-Basulto, Jean Christoph Jung, and Leif Sabellek. Reverse engineering queries in ontology-
enriched systems: The case of expressive horn description logic ontologies. In Proc. 27th International Joint
Conference on Artificial Intelligence, IJCAI 2018, pages 1847–1853. ijcai.org, 2018.

[11] Dmitri V. Kalashnikov, Laks V.S. Lakshmanan, and Divesh Srivastava. Fastqre: Fast query reverse engineer-
ing. In Proc. 2018 International Conference on Management of Data, SIGMOD ’18, pages 337–350, New
York, NY, USA, 2018. ACM.

[12] Jörg-Uwe Kietz. Learnability of description logic programs. In Proc. 12th International Conference on
Inductive Logic Programming, ILP’02, pages 117–132, Berlin, Heidelberg, 2003. Springer-Verlag.

[13] Benny Kimelfeld and Christopher Ré. A relational framework for classifier engineering. SIGMOD Record,
47(1):6–13, 2018.

[14] Hao Li, Chee-Yong Chan, and David Maier. Query from examples: An iterative, data-driven approach to
query construction. Proc. VLDB Endowment, 8(13):2158–2169, September 2015.

[15] Denis Mayr Lima Martins. Reverse engineering database queries from examples: State-of-the-art, challenges,
and research opportunities. Information Systems, 83:89 – 100, 2019.

[16] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. New trends on exploratory methods for data
analytics. In Proc. VLDB Endowment, volume 10, pages 1977–1980, 2017. Cited By :12.

[17] Stephen Muggleton and Luc de Raedt. Inductive logic programming: Theory and methods. The Journal of
Logic Programming, 19-20:629 – 679, 1994. Special Issue: Ten Years of Logic Programming.

[18] Magdalena Ortiz and Mantas Simkus. Reasoning and query answering in description logics. In Reasoning
Web. Semantic Technologies for Advanced Query Answering - 8th International Summer School 2012, volume
7487 of Lecture Notes in Computer Science, pages 1–53. Springer, 2012.

[19] Balder ten Cate and Vı́ctor Dalmau. The product homomorphism problem and applications. In Proc. 18th
International Conference on Database Theory, ICDT 2015, volume 31 of LIPIcs, pages 161–176. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

13

OMQs from Examples: the DL-Lite Case Ortiz

[20] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. Query reverse engineering. The VLDB
Journal, 23(5):721–746, October 2014.

[21] Ross Willard. Testing expressibility is hard. In Proc. Principles and Practice of Constraint Programming -
CP 2010, volume 6308 of Lecture Notes in Computer Science, pages 9–23. Springer, 2010.

[22] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo, Antonella Poggi, Riccardo Rosati,
and Michael Zakharyaschev. Ontology-based data access: A survey. In Proc. 27th International Joint Con-
ference on Artificial Intelligence, IJCAI 2018, pages 5511–5519. ijcai.org, 2018.

[23] Moshé M. Zloof. Query-by-example: The invocation and definition of tables and forms. In Proc. 1st Inter-
national Conference on Very Large Data Bases, VLDB ’75, pages 1–24. ACM, 1975.

14

	Introduction
	Preliminaries
	Datasets and queries
	Ontologies
	Ontology-mediated Queries

	Reverse Engineering of Queries
	The case of UCQs
	The case of CQs

	Reverse Engineering OMQs
	Ontology axioms for smaller queries
	Conclusions

