
EPiC Series in Computing
Volume 90, 2022, Pages 204–221

Proceedings of 9th International Workshop on Applied
Verification of Continuous and Hybrid Systems (ARCH22)

ARCH-COMP 2022 Category Report:
Falsification with Ubounded Resources∗

Gidon Ernst1, Paolo Arcaini2, Georgios Fainekos3, Federico Formica4,
Jun Inoue5, Tanmay Khandait6, Mohammad Mahdi Mahboob4,

Claudio Menghi4, Giulia Pedrielli6, Masaki Waga7, Yoriyuki Yamagata5, and
Zhenya Zhang8

1 Ludwig-Maximilians-University (LMU), Munich, Germany gidon.ernst@lmu.de
2 National Institute of Informatics (NII), Tokyo, Japan arcaini@nii.ac.jp

3 Toyota Research Institute of North America georgios.fainekos@toyota.com
4 McMaster University, Canada {formicaf,mahbom2,menghic}@mcmaster.ca

5 National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
{jun.inoue,yoriyuki.yamagata}@aist.go.jp

6 Arizona State University (ASU), Tempe, USA {tkhandai,gpedriel}@asu.edu
7 Kyoto University, Japan mwaga@fos.kuis.kyoto-u.ac.jp
8 Kyushu University, Japan zhang@ait.kyushu-u.ac.jp

Abstract

This report presents the results from the 2022 friendly competition in the ARCH work-
shop for the falsification of temporal logic specifications over Cyber-Physical Systems. We
briefly describe the competition settings, which have been inherited and adapted from
the previous years, give background on the participating teams and tools, and discuss the
selected benchmarks. In this year’s competition, in addition to the result validation intro-
duced in the previous year, we change the experimental settings for a better account of
the difficulty of benchmarks and for a better comparability between the tools.
Data: https://gitlab.com/goranf/ARCH-COMP, https://dx.doi.org/10.5281/zenodo.7359624

1 Introduction
We report on one category of the friendly competition associated with the ARCH 2022 workshop.
The goal of the competition is to compare the state-of-the-art of tools for testing and verification
of various types of hybrid systems. The competition is organized in different categories, with
different specifications (computing reachable regions, checking temporal properties) and varying
dynamics in the system models (such as linear/non-linear and hybrid).

This report concerns the falsification category, which targets the black-/greybox analysis of
executable models with respect to requirements expressed in temporal logic with time bounds,

∗The falsification category was coordinated by the first author. The remaining authors represent all partici-
pants who have contributed results and/or text to this report and they are listed alphabetically.

G. Frehse, M. Althoff, E. Schoitsch and J. Guiochet (eds.), ARCH22 (EPiC Series in Computing, vol. 90),
pp. 204–221

https://gitlab.com/goranf/ARCH-COMP
https://dx.doi.org/10.5281/zenodo.7359624

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

encoded in Metric Temporal Logic (MTL) [23] or Signal Temporal Logic (STL) [24]. The task is
to search for initial system configurations and time-varying inputs subject to given constraints
that steer the system into a violation status with respect to the temporal requirements. Typical
approaches are simulation-based and employ quantitative metrics [16, 17] of how close a given
input is to violating a requirement (“robustness semantics”). Research in this area has produced
a variety of techniques, mature tools, and practical applications; these are described in overview
survey articles [4, 7]. For past instalments of this competition 2017–2021 see [8, 9, 13, 12, 11].
The benchmark set developed by this competition series can be seen as a baseline for research
in the area (cf. [10]), and we encourage authors to compare to the results presented here.

The competition of 2022 followed the structure of previous years: Once the benchmarks are
agreed on, the participants run the experiments on their own machines and submit the results
including concrete input traces that witness falsification. We therefore continue validating these
counterexamples found by different tools to ensure the correctness of the results. Besides, there
are four notable changes in the competition this year:

• The wind turbine model has been removed from the competition as, in previous editions,
has shown to be too easy to falsify (i.e., all tools were able to falsify it in most of the trials;
moreover, some tools falsified it with very few simulations). Moreover, doubts have been
raised whether the current parameterization of the wind input constitutes a meaningful
falsification challenge.

• We do not impose anymore a maximal number of simulations that can be run in one fal-
sification trial (in 2021 competition, the maximum number was set to 300). The rationale
of this choice is that we want to obtain a more accurate assessment of the difficulty of the
benchmarks.

• We reduced the number of trials from 50 to 10, in order to keep the overall experiment
time low. We had to do this for allowing a higher number of simulations in each trial (see
previous point). We believe that 10 trials should still provide some reasonable statistics
over potential results.

• We also aim to report separately the time taken by simulation in a falsification trial and
the total time, such that the ratio of the two to factors out differences in the machine
setup between the participants. The aim is to understand the cost of different falsification
algorithms and implementations, regardless of the simulation time. However, the collected
data was not consistent and has therefore been left out in this report.

ARCH-COMP 2022 Prize: We are very happy to announce that the Ψ-TaLiRo team
has been awarded the ARCH-COMP prize. The jury, consisting of group leaders and workshop
participants, appreciates the technical achievements embodied in PSY-TaLiRo and furthermore
recognises the long and continuous stream of contributions that the team has made to the
community. The prize goes to the participants Tanmay Khandait, who in particular contributed
a lot to the organization of this year’s competition, Giulia Pedrielli, and Georgios Fainekos and
recognizes contributions to Ψ-TaLiRo by Quinn Thibeault, Jacob Anderson, and Aniruddh
Chandratre.

Data Availability. The models and validation results produced by this competition are avail-
able through the shared GitLab repository at https://gitlab.com/goranf/ARCH-COMP, notably
in the subfolders models/FALS and 2022/FALS. An archive containing the traces submitted for
validation will be made available at https://dx.doi.org/10.5281/zenodo.7359624. This archive
contains the result of validation and instructions to re-validate the results.

205

https://gitlab.com/goranf/ARCH-COMP
https://dx.doi.org/10.5281/zenodo.7359624

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

2 Benchmark Definitions

2.1 Input Parameterization
Arbitrary piece-wise continuous input signals (Instance 1). This option leaves the
input specification up to the participants. The search space is, in principle, the entire set of
piece-wise continuous input signals (i.e., which permit discontinuities), where the values for each
individual dimensions are from a given range. Additional constraints that were suggested are
finite-number of discontinuity and finite variability for all continuous parts of inputs. Further,
each benchmark may impose further constraints. Participants may instruct their tools to search
a subset of the entire search space, notably to achieve finite parametrization, and then to apply
an interpolation scheme to synthesize the input signal.

However, the participants agreed that such a choice must be “reasonable” and should be
justified from the problem’s specification without introducing external knowledge about poten-
tial solutions. Moreover, more general parametrizations that are shared across requirements
and benchmark models were preferable. Due to the diversity of benchmarks, it was decided to
evaluate the proposed solutions using common sense.

Constrained input signals (Instance 2). This option precisely fixes the format of the
input signal, potentially allowing discontinuities. An example input signal would be piecewise
constant with k equally spaced control points, with ranges for each dimension of the input, dis-
abling interpolation at Simulink input ports so that tools don’t need to up-sample their inputs.
The arguments in favor of that are increased comparability of results. As possible downside
was mentioned that optimization-based tools (S-TaLiRo and Breach) are just compared with
respect to their optimization algorithm. Nevertheless such a comparison is still meaningful in
particular with the other, fundamentally different approaches to falsification that have entered
the competition since.

2.2 Models and Requirements
A brief description of the benchmark models follows, the formal requirements are shown in
Table 1 as STL/MTL formulas. The conjunctive requirements introduced in this year are
AT6abc, NNx, and CCx, as marked in the table.

Automatic Transmission (AT). This model of an automatic transmission encompasses a
controller that selects a gear 1 to 4 depending on two inputs (throttle, brake) and the current
engine load, rotations per minute ω, and car speed v. It is a standard falsification benchmark
derived from a model by Mathworks and has been proposed for falsification in [20].

Input specification: 0 ≤ throttle ≤ 100 and 0 ≤ brake ≤ 325 (both can be active at the same
time). Constrained input signals (instance 2) permit discontinuities at most every 5 time units.
Requirements are specific versions of those in [20] where the parameters have been chosen to
be somewhat difficult.

Fuel Control of an Automotive Powertrain (AFC). The model is described in [22] and
has been used in two previous instalments of this competition [8, 9]. The specific limits used in
the requirements are chosen such that falsification is possible but reasonably hard.

The constrained input signal (instance 2) fixes the throttle θ to be piecewise constant with 10
uniform segments over a time horizon of 50 with two modes (normal and power corresponding to

206

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

Table 1: Requirement formulas for the benchmarks
Key STL formula Remarks/Constraints

AT1 2[0,20]v < 120
AT2 2[0,10]ω < 4750
AT51 2[0,30]((¬g1 ∧ ◦ g1) → ◦ 2[0,2.5]g1) where ◦ ϕ ≡ 3[0.001,0.1] ϕ
AT52 2[0,30]((¬g2 ∧ ◦ g2) → ◦ 2[0,2.5]g2)
AT53 2[0,30]((¬g3 ∧ ◦ g3) → ◦ 2[0,2.5]g3)
AT54 2[0,30]((¬g4 ∧ ◦ g4) → ◦ 2[0,2.5]g4)
AT6a (2[0,30]ω < 3000) → (2[0,4]v < 35)
AT6b (2[0,30]ω < 3000) → (2[0,8]v < 50)
AT6c (2[0,30]ω < 3000) → (2[0,20]v < 65)

AT6abc AT6a ∧ AT6b ∧ AT6c cojunctive requirement

AFC27 2[11,50]((rise ∨ fall) → (2[1,5]|µ|< β)) 0 ≤ θ < 61.2 (normal mode)
AFC29 2[11,50]|µ|< γ 0 ≤ θ < 61.2 (normal mode)
AFC33 2[11,50]|µ|< γ 61.2 ≤ θ ≤ 81.2 (power mode)

where β = 0.008, γ = 0.007

rise = (θ < 8.8) ∧ (3[0,0.05](θ > 40.0))
fall = (θ > 40.0) ∧ (3[0,0.05](θ < 8.8))

NN 2[1,37](|Pos − Ref |> α+ β|Ref |→ 3[0,2]2[0,1]¬(α+ β|Ref |≤ |Pos − Ref |))
where α = 0.005 and β = 0.03

NNx 3[0,1](Pos > 3.2) ∧3[1,1.5](2[0,0.5](1.75 < Pos < 2.25)) ∧2[2,3](1.825 < Pos < 2.175)
conjunctive requiremet
1.95 ≤ Ref ≤ 2.05

WT1 2[30,630]θ ≤ 14.2
WT2 2[30,630]21000 ≤ Mg,d ≤ 47500
WT3 2[30,630]Ω ≤ 14.3
WT4 2[30,630]3[0,5]|θ − θd|≤ 1.6

CC1 2[0,100]y5 − y4 ≤ 40
CC2 2[0,70]3[0,30]y5 − y4 ≥ 15
CC3 2[0,80]((2[0,20]y2 − y1 ≤ 20) ∨ (3[0,20]y5 − y4 ≥ 40))
CC4 2[0,65]3[0,30]2[0,20]y5 − y4 ≥ 8
CC5 2[0,72]3[0,8]((2[0,5]y2 − y1 ≥ 9) → (2[5,20]y5 − y4 ≥ 9))
CCx

∧
i=1..4 2[0,50](yi+1 − yi > 7.5) conjunctive requirement

F16 2[0,15]altitude > 0

SC 2[30,35](87 ≤ pressure ∧ pressure ≤ 87.5)

207

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

feedback and feedforward control), and the engine speed ω to be constant with 900 ≤ ω < 1100
to capture the input profile outlined in [22] and to match the previous competitions. For
this reason, we do not consider the unconstrained (instance 1) input specification. Faults are
disabled (e.g. by setting fault_time > 50).

Neural-network Controller (NN). This benchmark is based on MathWork’s neural net-
work controller for a system that levitates a magnet above an electromagnet at a reference
position.1 It has been used previously as a falsification demonstration in the distribution of
Breach. The model has one input, a reference value Ref for the position, where 1 ≤ Ref and
Ref ≤ 3. It outputs the current position of the levitating magnet Pos. The input specification
for instance 1 requires discontinuities to be at least 3 time units apart, whereas instance 2
specifies an input signal with exactly three constant segments. The time horizon for the prob-
lem is 40. The requirement ensures that after changes to the reference, the actual position
eventually stabilizes around that value with small error.

Chasing cars (CC). The model is derived from Hu et al. [21] which presents a simple model
of an automatic chasing car. Chasing cars (CC) model consists of five cars, in which the first
car is driven by inputs (throttle and brake), and other four are driven by Hu et al.’s algorithm.
The output of the system is the location of five cars y1, y2, y3, y4, y5. The properties to be
falsified are constructed artificially, to investigate the impact of complexity of the formulas to
falsification. The input specifications for instance 1 allows any piecewise continuous signals
while the input specification for instance 2 constraints inputs to piecewise constant signals with
control points for each 5 seconds, i.e., 20 segments.

Aircraft Ground Collision Avoidance System (F16). The model has been derived from
the one presented in [19]. The F16 aircraft and its inner-loop controller for Ground Collision
avoidance have been modeled using 16 continuous variables with piece-wise nonlinear differential
equations. Autonomous maneuvers are performed in an outer-loop controller that uses a finite-
state machine with guards involving the continuous variables. The system is required to always
avoid hitting the ground during its maneuver starting from all the initial conditions for roll,
pitch, and yaw in the range [0.2π, 0.2833π]× [−0.4π,−0.35π]× [−0.375π,−0.125π].2 Since the
benchmark has no time-varying input, there is no distinction between instance 1 and instance 2.
The requirement is checked for a time horizon equal to 15.

Steam condenser with Recurrent Neural Network Controller (SC). The model is
presented in [35]. It is a dynamic model of an steam condenser based on energy balance and
cooling water mass balance controlled with a Recurrent Neural network in feedback. The time
horizon for the problem is 35 seconds. The input to the system can vary in the range [3.99, 4.01].
For instance 2, the input signal should be piecewise constant with 20 evenly spaced segments.

3 Participants
We briefly describe in alphabetical order all participating tools, the respective main ideas of
the underlying approaches, followed by details on how each tool was set up for the competition.

1https://au.mathworks.com/help/deeplearning/ug/design-narma-l2-neural-controller-in-simulink.html
2The report from 2019 [13] erroneously specifies: [0.2π, 0.2833π]× [−0.5π,−0.54π]× [0.25π, 0.375π], however,

previous results were in fact obtained with the correct range.

208

https://au.mathworks.com/help/deeplearning/ug/design-narma-l2-neural-controller-in-simulink.html

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

3.1 ARIsTEO
Description. ARIsTEO [28] is a Matlab toolbox for test case generation against system
specifications presented in STL and it is developed on the top of S-TaLiRo. ARIsTEO is
designed to targeting a large and practically-important category of CPS models, known as
compute-intensive CPS (CI-CPS) models, where a single simulation of the model may take hours
to complete. ARIsTEO embeds black-box testing into an iterative approximation-refinement
loop. At the start, some sampled inputs and outputs of the model under test are used to
generate a surrogate model that is faster to execute and can be subjected to black-box testing.
Any failure-revealing test identified for the surrogate model is checked on the original model. If
spurious, the test results are used to refine the surrogate model to be tested again. Otherwise,
the test reveals a valid failure. ARIsTEO is publicly available under the General Public License
(GPL).3

Setup. ARIsTEO provides the same interface and parameters as S-TaLiRo, while providing
additional configuration options. We had used an arx model (arx-2) with order na = 2,
nb = 2, and nk = 24 as structure for the surrogate model used in the approximation-refinement
loop of ARIsTEO. For models with multiple inputs and outputs the dimension of the matrix
na, nb and nk is changed depending on the number of inputs and outputs. We used the
default configuration of S-TaLiRo for searching failure-revealing revealing tests on the surrogate
model. We considered the same parametrization of S-TaLiRo for the input signals. The original
Simulink model was executed once to learn the initial surrogate model. The cut-off values for
the number of simulations of the original model and for the number of simulations of the
surrogate model (per trial) were set to 300. The results of ARIsTEO can further improve by
(i) using configurations for the surrogate model that provide more accurate approximations of
the original models and more effectively guide the search toward faulty inputs; and (ii) using
the SOAR option of S-TaLiRo that significantly improved the results of S-TaLiRo compared
with the last edition of this competition.

3.2 FalCAuN

Description. FalCAuN [34] is an experimental tool for testing a Simulink model using black-
box checking [32], an automated testing method based on active automata learning and model
checking. In FalCAuN, the input and the output signals of the Simulink model are discretized in
time and values, and the model is abstracted into a black-box Mealy machine. FalCAuN learns
the Mealy machine and conducts model checking to find a counterexample. FalCAuN is designed
to efficiently falsify a Simulink model against multiple specifications by reusing the learned
Mealy machine. FalCAuN is publicly available under General Public License (GPL) v35.

We utilize the discrete-time semantics of STL, which is essentially the same as the semantics
of LTL. Because of such discretization, the control points must be fine enough to capture the
timing constraints in the STL formula. For example, in order to capture the timing constraint
3[0,0.05], the duration between the control points must be at most 0.05. We note that due to
the use of the discrete-time semantics, the signal reported as a counterexample by FalCAuN may
not falsify the model in terms of the continuous-time semantics.

3https://github.com/SNTSVV/ARIsTEO
4https://nl.mathworks.com/help/ident/ref/arx.html
5https://github.com/MasWag/FalCAuN

209

https://github.com/SNTSVV/ARIsTEO
https://nl.mathworks.com/help/ident/ref/arx.html
https://github.com/MasWag/FalCAuN

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

Setup. For the signal discretization, we have the following hyperparameters: the (constant)
duration of the intervals between samples, the input signal values at the control points, and
the thresholds of the output signal values for the discretization. We used the shortest duration
between the control points such that the LTL encoding of the STL formula is small enough for
the back-end model checker LTSMin. The duration ranges from 1.0 to 10.0 time units. In most
benchmarks, we let the input signal values be the maximum and the minimum of the range.
The exceptions are as follows.

• In AT6a, AT6b, and AT6c, the throttle can be 50 in addition to 0 and 100.
• In AT2 instance 2, the throttle and the brake can be 5 and 6 evenly spaced values,

respectively, i.e., the value of the throttle can be one of 0, 25, 50, 75, and 100.
• In SCa, the input can be 4.00 in addition to 3.99 and 4.01.

In most benchmarks, we let the threshold of the output signal values be the thresholds in the
STL formula. The exceptions are as follows.

• In AT1 and AT2 instance 2, we have the common thresholds: 120 for the speed and 4750
for the RPM.

• In AT6a, AT6b, and AT6c, we have the common thresholds: 35, 50, and 65 for the speed
and 3000 for the RPM.

• In CC1, CC2, and CC3, we have the common thresholds: 15 and 40 for y5 − y4 and 20
for y2 − y1.

3.3 falsify
Description. falsify is an experimental program which solves falsification problems of safety
properties by reinforcement learning [36]. falsify uses a grey-box method, that is, it learns system
behavior by observing system outputs during simulation. falsify is currently implemented by a
deep reinforcement learning algorithm Asynchronous Advantage Actor-Critic (A3C) [29].

Setup. The input specification uses piecewise constant function with discontinuities spaced
in even intervals ∆T . ∆T = 1 for all models except for SC in which ∆T = 0.1 is used. The
choice for the SC model was ∆T = 0.1 model because Instance 2 uses ∆T = 1.75, which is near
to ∆T = 1.

3.4 FalStar
Description. FalStar [14] is an a falsification tool that explores the idea to construct fal-
sifying inputs incrementally in time, thereby exploiting potential time-causal dependencies in
the problem. The algorithm used in this competition is called adaptive Las-Vegas tree search
(aLVTS). The main idea is to try “simple” inputs first, i.e., to scale gracefully with the intuitive
combinatorial hardness of the benchmark problem [15]. This is achieved by sampling from input
domains with gradually finer temporal and spatial resolution, starting with extreme values. The
approach can be regarded as a more reasonable baseline over random sampling, which takes the
structure of the problem into account, but which neither relies on sophisticated optimization
methods nor insight into the models themselves. The code is publicly available under the BSD
license.6

Setup. The search space for instance 1 included piecewise constant inputs (the only param-
eterization currently supported), ranging from 2 upto 4 control points at which discontinuities

6https://github.com/ERATOMMSD/falstar

210

https://github.com/ERATOMMSD/falstar

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

are allowed (resp. upto 3 for NN). In this configuration FalStar benefits from a low number of
control points and is more likely to try inputs with fewer control points first. For the AT bench-
marks it was clear beforehand that this choice suffices to falsify all benchmarks, and the setting
was then kept for the remaining experiments. Instance 2 input signals are parameterized with
the number of control points as specified by the respective benchmarks. The F16 benchmark
does not have a time-varying input and therefore the strategy proposed in [14] is not applicable.
Instead, global optimization with Nelder/Mead is used on this benchmark, which is effective.

3.5 ForeSee
Description. In falsification, the scale problem can occur when the signals used in the spec-
ification have different scales (e.g., rpm and speed): namely, the contribution of a signal could
be masked by another one when computing robustness. ForeSee [37] (FORmula Exploitation
by Sequence trEE) tackles this problem by introducing a new robustness definition, called QB-
Robustness, which combines quantitative robustness and classical Boolean satisfaction. QB-
Robustness does not require comparing (i.e., by minimum or maximum) robustness values of
different sub-formulas, so possibly avoiding the scale problem. However, in order to be com-
puted, QB-Robustness requires the selection of a sequence of sub-formulas along the syntax tree
of the specification for which to compute the quantitative robustness. Different sub-formulas
sequences can be more or less effective in mitigating the scale problem.

ForeSee implements a falsification strategy based on a Monte Carlo Tree Search over
the structure of the formal specification: first, by tree traversal, it identifies the sub-formulas
sequence; then, on the leaves, it performs numerical hill-climbing optimization, with the aim
of falsifying the selected sub-formulas. ForeSee is the spiritual successor of FalStar/MCTS
from [13, 12]. It is publicly available under GNU General Public License (GPL) v3.7

Setup. Since ForeSee is implemented on the basis of Breach, it provides the same interface
of Breach, namely, users can characterize the shape of input signals with a number of options,
including piecewise constant, piecewise linear, pulse, etc. In this report, we regulate the shape
of input signals with piecewise constant, parametrized by the number of control points.

In the current implementation of ForeSee, only CMA-ES [2] is provided as the optimizer;
this is due to our insight in the performances of different optimizers, in which CMA-ES outper-
forms other optimizers. However, involving other optimizers is not difficult for ForeSee, and
will be considered in the future releases.

Since ForeSee technically relies on Monte Carlo Tree Search (MCTS), the hyperparameters
in MCTS need to be properly selected. As a default setting, we use 0.2 as the scalar in the
UCB1 algorithm, that takes a balance of exploration and exploitation; and we set 10 generations
as the budget for the playout phase of MCTS.

3.6 S-TaLiRo
Description. S-TaLiRo [1] is a Matlab toolbox for monitoring and test case generation against
system specifications presented in STL (or MTL). The test cases are automatically generated
using optimization techniques guided by formal requirements in STL in order to find falsifying
systems behaviors. The tool supports different optimization algorithms. In past competitions,
the Stochastic Optimization with Adaptive Restarts (SOAR) [27] framework was used for all
the benchmarks except for choosing instance 1 type inputs in Steam Condenser model. In

7https://github.com/choshina/ForeSee

211

https://github.com/choshina/ForeSee

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

that benchmark, Simulated annealing global search was combined with a local optimal control
based search [35]. For the 2021 competition, we have used the minSOAR framework [26, 25]
for the newly proposed conjunctive benchmarks. The minSOAR framework can be thought
of as an extension to SOAR which can handle multiple conjunctive requirements by modeling
information from each resulting robustness component. S-TaLiRo is publicly available on-line
under General Public License (GPL) 8.

Setup. In S-TaLiRo, input signals are parameterized in two ways: the number of control
points for the input signal, and the time location of those control points during simulation.
The number of control points for each input signal is given by the user forming an optimization
problem with search space dimension the same as the number of control points. An option is
provided to the user to add to the search space the timing of the control points, but this option
is not used in the competition. For this competition, the control point time locations are evenly
spaced over the duration of the simulation for all the benchmarks except for the SC problem
instance 1.

For the transmission model the [throttle, brake] control points are interpolated with the pchip
function, with [7, 3] as the number of control points in specifications 1-6 and [4, 2] for 7-9 to
reduce the dimensionality of the search space. For the Neural model, we use 13 control points
to yield piecewise constant signals of 3.33 seconds apart. The Wind Turbine used the default
model input of 126 control points interpolated linearly. For the SC model, Simulated Annealing
(SA) global search was utilized in combination with an optimal control based local search on
the infinite dimensional input space. The SA global search utilizes piecewise constant inputs
with 12 possibly uneven time durations.

3.7 Ψ-TaLiRo
Description. ΨTaLiRo [33], the python version of S-TaLiRo, is an open-source toolbox for
temporal logic robustness-guided falsification of Cyber-Physical Systems (CPS). This toolbox,
which is completely modular, helps in the generation of test cases for falsification of system
under test using a common interface for temporal logic monitors. While the toolbox provides
inbuilt optimizers (DA, Uniform Random etc.), one can also develop optimizers and pass it
ΨTaLiRo. The tool box is publicly available on-line under General Public License (GPL) 9. For
this competition, we provide results with two algorithms

1. LS-emiBO aims to model embed the dependencies between the different components
in a conjunctive requirement. This algorithm works by considering a component chosen
from a classifier built between the points and component with minimum robustness, and
then sampling a point that maximizes the Expected Improvement (EI) function. It is
important to note that this algorithm turns into a simple Bayesian Optimization if we do
not have conjunctive requirements.

2. Part-X adaptively partitions the search space to enclose the falsifying points. The
algorithm uses local Gaussian process estimates in order to adaptively branch and sample
within the input space. The partitioning approach not only helps us identify the zero
level-set, but also to circumvent issues that rise due to the fact that the robustness is
discontinuous. In fact, the only assumption we need on the robustness function is that it
is a locally continuous function [31].

8https://sites.google.com/a/asu.edu/s-taliro
9https://gitlab.com/sbtg/psy-taliro

212

 https://sites.google.com/a/asu.edu/s-taliro
https://gitlab.com/sbtg/psy-taliro

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

Setup. In ΨTaLiRo, input signals to blackbox models are parameterized with control loca-
tions and their corresponding time stamps, which then leads to the formation of an optimization
problem with the dimensionality depending upon the number of control points. The input sig-
nals along with their corresponding time stamps are interpolated depending on the instance.
For this competition, all signals have evenly spaced control points and are interpolated using
pchip for instance 1 and piecewise constant for instance 2, and we utilize RTAMT [30] for
robustness calculation. The LS-emiBO optimizer samples 20 points from the search space and
then sequentially sample points until a falsification is found or the maximum budget of 2000
evaluations is reached. Finally, the Part-X optimizer, which provides probabilistic guarantees,
starts with an initialization budget n0 = 20, per-subregion budget for unclassified subregions
with nBO = 20, classified subregions budget nc = 50, maximum budget T = 2000, number of
Monte Carlo iterations R = 20, number of evaluations per iterations M = 500, number of cuts
B = 2, and classification percentile δu = 0.05. Also, we used δv = 0.001 to identify dimensions
that should not be branched. We provide the probabilistic guarantees in table 2

4 Evaluation & Validation

Falsification tools were instructed to run each individual requirement 10 times, to account for
the stochastic nature of most algorithms. We report the falsification rate, i.e., the number of
trials where a falsifying input was found, as well as the median and mean of the number of
simulations required to find such input (not including the unsuccessful runs in the aggregate).
There was no cut-off for the number of simulations imposed on the experiments (last years had
a maximum of 300).

The results were provided by the participants and have therefore been obtained on multiple
platforms with varying resources and different MATLAB/Simulink versions. In contrast to prior
years, all results have been obtained this year with the new competition settings (cf. section 1).

We continue the effort to valudate results, which has been established in 2021. The over-
arching goal is to ensure that the comparison reported here is meaningful, and the approach
taken accounts for several potential sources of error, both for technical reasons or because of
human error. The hypothetical case of cheating participants was not regarded likely, and we
emphasize upfront that no indication whatsoever for dishonest behavior was found. Rather, the
goal is to establish a higher standard of quality of evaluation results, that can ultimately benefit
any future work in simulation-based falsification: Just like the benchmark set established by
this community gets adopted by experiments in the literature, validation of results using an
independent reference checker should become standard, too. To that end, for each falsification
trial per requirement, we collected the following information:

• information about which benchmark (model + requirement identifier)
• the initial conditions and time-series input signal resulting from that trial
• whether the signal is expected to falsify the requirement
• if available, a robustness value derived from running the input through the model
• optionally, the corresponding output signal, and further information such as time stamps

or wall-clock times
In the following, we will refer to the this information as the “reported” result. Technical details
on the reporting format are documented here: https://gitlab.com/gernst/ARCH-COMP/-/blob/

FALS/2021/FALS/Validation.md. Multiple questions were identified as concerns for validation,
albeit not all points were achieved or fully taken into account:

213

https://gitlab.com/gernst/ARCH-COMP/-/blob/FALS/2021/FALS/Validation.md
https://gitlab.com/gernst/ARCH-COMP/-/blob/FALS/2021/FALS/Validation.md

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

1. does the reported input signal adhere to the valid ranges of input for that particular
model, as described in section 2?

2. does the reported input signal adhere to the constraints of the respective instance?
3. is the reported verdict correct, i.e., whether running this signal through the model pro-

duces a falsifying trace?
4. is the reported robustness value consistent with the verdict (values strictly < 0 indicate

a falsification), and how accurately can the robustness be reproduced?
5. how accurately can the reported output be reproduced, if given?
6. are the values reported in tables 3 and 4 correct?

In the end, we checked for 1., 3., and 4. Regarding 2., it is not quite straight-forward to check
the shape of the signal, so we did not attempt it. Regarding 5., not all participants did report
output signals, so we omitted this aspect from further investigation. For 6., there was simply not
sufficient consistent data, as many participants chose to run a fraction only of the experiments
represent in the tables.

4.1 Comparative Results

The results for unconstrained piecewise-continuous input signals (instance 1) are shown in
table 3. For a better comparison of the performance of the tools, a common ground is piecewise
constant input signals (instance 2) with a concrete specification of the number of discontinuities
allowed. The corresponding results are shown in table 4. Empty cells indicate lack of data for
various reasons, such as missing tool support for a particular benchmark feature, or simply that
the respective participants did not take the time to set up and/or run these experiments.

The results depend on the choices for the search space, which we briefly discuss for each
participating tool as described in section 3. For a more detailed discussion of the outcomes,
see [13, 12, 11].

Some results of FalCAuN could not be confirmed, because the abstraction it uses is too coarse,
which is to some degree expected. Validation for FalStar is not meaningful, since it is based
on exactly the same experimental setup. Otherwise, we are happy that all results could be
validated. Nevertheless, we emphasize that validation was worthwhile, as we did catch cases of
mismatching Simulink model versions and minor issues with formalization of requirements.

4.2 Falsification with Probabilistic Guarantees

This year we also propose to introduce tools that can provide probabilistic guarantees for
falsification of the system under test to understand if we can provide any conclusion about the
system under test along with falsifying it. This becomes an even important question to address
when no falsification are found. Providing probabilistic guarantees can help in assessing the
safety of the system while also providing the quality of test samples generated.

To that end, we introduce the Part-X [31] algorithm in this competition that can help
in providing the probabilistic guarantees of the system under test. Along with the standard
results for benchmarks, Part-X also provide results on the lower and upper confidence bounds
of normalized falsification volume at 95% confidence. The results are shown in table 2 for both
intances. We refrain from an in-depth analysis of these results for now.

Definition 1 (Normalized Falsification Volume). Let {σk} be the subregions produced by the
Part-X algorithm up to the kth iteration each with associated surrogate model Ŷ γ

k (x) ,x ∈ σk

214

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

Table 2: Results for piecewise continuous input signals (instance 1) and constrained input
signals (instance 2). FR: falsification rate, ✓: validated falsification rate, S: mean number of
simulations, S̃: median (rounded down) number of simulations, LCB : Lower Confidence Bound
at 95% confidence, UCB : Upper Confidence Bound at 95% confidence R: Non-simulation time
ratio (%). Bold entries indicate that some results could not be validated.
Tool Ψ-TaLiRo Ψ-TaLiRo
Approach Part-X Part-X
Instance 1 2

Property FR ✓ S S̃ LCB UCB R FR ✓ S S̃ LCB UCB R

AT1 10 9 34.9 28.5 0.00E+00 7.03E-04 70.7 10 10 30.5 25.5 0.00E+00 5.58E-04 85.7
AT2 10 10 6.7 5.5 9.45E-02 1.80E-01 52.8 10 10 6.5 5.0 1.16E-01 2.77E-01 50.6
AT51 0 0 – – 0.00E+00 0.00E+00 93.9 10 10 13.3 11.5 2.22E-01 5.86E-01 64.3
AT52 10 10 5.6 2.0 1.81E-01 9.02E-01 62.5 10 10 66.5 53.5 0.00E+00 0.00E+00 93.5
AT53 10 10 15.7 15.5 2.45E-02 4.26E-01 59.7 10 10 2.2 2.0 8.38E-01 1.00E+00 57.0
AT54 3 3 862.6 – 0.00E+00 3.60E-05 91.0 10 10 85.0 65.0 0.00E+00 7.68E-02 76.2
AT6a 10 10 134.3 51.5 1.18E-01 2.47E-01 58.2 10 10 153.7 72.0 5.75E-02 1.94E-01 53.1
AT6b 10 10 212.2 150.0 9.45E-02 2.88E-01 57.8 10 10 307.9 111.5 3.40E-02 1.97E-01 56.4
AT6c 10 9 200.5 138.0 9.94E-02 2.86E-01 58.1 10 10 334.4 249.5 4.34E-02 1.98E-01 59.3
AT6abc 10 9 126.1 50.0 1.02E-01 2.67E-01 68.7 10 10 106.9 67.5 5.72E-02 2.06E-01 69.4

CC1 10 10 19.0 16.5 2.71E-01 8.31E-01 69.2 10 10 17.6 21.0 2.83E-01 8.86E-01 68.7
CC2 10 10 23.9 12.0 4.82E-01 1.00E+00 68.6 10 10 17.8 12.0 2.27E-01 1.00E+00 66.3
CC3 10 9 23.1 24.0 1.28E-01 4.58E-01 69.9 10 10 13.5 12.0 1.18E-01 1.00E+00 69.5
CC4 0 0 – – 0.00E+00 0.00E+00 95.3 0 0 – – 0.00E+00 0.00E+00 94.5
CC5 10 10 45.8 29.0 3.83E-02 7.10E-01 79.4 10 10 29.9 22.5 2.09E-01 5.90E-01 73.8
CCx 9 9 681.9 703.0 0.00E+00 0.00E+00 96.0 10 10 607.1 156.0 0.00E+00 0.00E+00 96.2

NN 10 10 15.2 16.0 4.84E-01 8.80E-01 83.5 10 10 145.8 89.5 0.00E+00 1.36E-01 87.3
NNx – – – – – – – 10 10 190.7 40.0 0.00E+00 1.20E-02 66.4

SC 0 – – – 0.00E+00 0.00E+00 78.9 0 0 – – 0.00E+00 2.70E-05 45.5

F16 0 – – – 0.00E+00 0.00E+00 39.2 – – – – – – –

AFC27 – – – – – – – 10 0 34.3 27.0 5.90E-01 7.27E-01 89.4
AFC29 – – – – – – – 10 0 12.1 11.0 2.31E-01 5.36E-01 87.9
AFC33 – – – – – – – 0 0 – – 0.00E+00 0.00E+00 96.1

and V be the total volume of the search space, then the normalized falsification volume calculated
for δC-quantile is:

(1)V δC |(x,y) =
∫
⋃

σk

IqδC
<0

V
.

215

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

T
ab

le
3:

R
es

ul
ts

fo
r

pi
ec

ew
is

e
co

nt
in

uo
us

in
pu

t
si

gn
al

s
(i

ns
ta

nc
e

1)
.
F
R

:
fa

ls
ifi

ca
ti

on
ra

te
,
✓

:
va

lid
at

ed
fa

ls
ifi

ca
ti

on
ra

te
,
S

:
m

ea
n

nu
m

be
r

of
si

m
ul

at
io

ns
,
S̃

:
m

ed
ia

n
(r

ou
nd

ed
do

w
n)

nu
m

be
r

of
si

m
ul

at
io

ns
,
L
C
B

:
Lo

w
er

C
on

fid
en

ce
B

ou
nd

at
95

%
co

nfi
de

nc
e,

U
C
B

:
U

pp
er

C
on

fid
en

ce
B

ou
nd

at
95

%
co

nfi
de

nc
e,

R
:
(
S
im

u
la
ti
o
n
T
im

e
T
o
ta

lT
im

e
)
∗
1
0
0

(%
).

T
oo

l:
U

n
if
or

m
R

an
d
om

A
R

Is
T

E
O

F
a
l
C
A
u
N

fa
ls

if
y

F
a
lS

ta
r

F
o
r
eS

ee
Ψ

-T
aL

iR
o

A
pp

ro
ac

h:
a
r
x
-2

A
3C

aL
V

T
S

LS
em

iB
O

B
en

ch
m

ar
k
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
R

A
T

1
0

0
–

–
0

–
–

10
10

31
77

.8
31

66
.5

10
10

26
.2

18
.5

10
10

33
7.

6
34

7.
5

10
8

10
6.

3
10

5.
5

72
.7

A
T

2
10

10
7.

6
5.

0
10

10
5.

4
2.

0
7/

7
7/

7
19

92
.0

14
42

.0
10

10
3.

5
2.

0
10

10
10

7.
5

33
.5

10
10

15
.5

12
.5

57
.5

A
T

51
1

1
92

3.
0

92
3.

0
0

0
-

-
10

10
4.

5
3.

0
10

10
65

.2
22

.0
10

10
19

.3
10

.5
1

1
22

.0
22

92
.0

A
T

52
10

10
4.

1
2.

0
10

10
1.

7
1.

5
10

10
1.

1
1.

0
10

10
25

2.
6

24
0.

5
10

10
65

.1
36

.5
10

10
3.

2
2.

5
61

.7
A

T
53

10
10

18
.6

15
.0

10
10

12
.8

8.
5

10
10

1.
2

1.
0

10
10

99
.6

81
.5

10
10

4.
0

2.
0

10
10

28
.0

21
.0

60
.2

A
T

54
4

4
11

21
.3

10
56

.0
0

0
-

-
10

10
1.

4
1.

0
10

10
86

.3
52

.5
10

10
24

.8
23

.5
7

5
71

5.
3

55
4.

0
90

.6
A

T
6a

10
10

74
.4

41
.5

10
10

93
.4

70
.0

10
2

86
0.

0
78

6.
0

10
10

74
.4

79
.0

10
10

12
8.

0
13

6.
0

10
10

76
.6

89
.0

58
.1

A
T

6b
10

10
25

1.
3

18
9.

0
4

4
11

2.
3

12
7

10
0

75
0.

9
65

3.
5

3
3

16
6.

3
18

6.
0

10
10

92
.0

81
.0

10
10

22
7.

9
21

1.
0

7
7

42
6.

1
22

4.
0

58
.2

A
T

6c
10

10
18

5.
2

86
.0

10
10

12
4.

2
11

1.
5

10
0

12
27

.1
10

14
.0

0
0

–
–

10
10

62
0.

0
95

3.
4

10
10

15
6.

9
12

8.
0

9
9

32
8.

2
11

2.
0

53
.3

A
T

6a
bc

10
10

58
.8

33
.5

10
10

73
.4

30
.5

10
10

41
.0

60
1.

5
10

10
34

.2
29

.5
37

.0

N
N

10
10

38
.6

27
.5

1
1

29
9.

0
29

9.
0

9
9

19
.7

13
.0

10
10

18
5.

5
12

6.
0

10
10

51
.3

46
.0

10
10

36
.4

35
.5

84
.6

N
N

β
=

0
.0
4

5
5

72
.4

74
N

N
x

0
0

–
–

5
5

78
7.

0
81

3.
0

10
10

1.
1

1.
0

N
L

C
C

1
10

10
10

.4
9.

5
10

10
24

.8
17

.5
10

10
20

6.
1

21
4.

5
10

10
42

.0
28

.5
10

10
2.

9
1.

5
10

10
13

.1
8.

5
71

.5
C

C
2

10
10

15
.4

15
.0

10
10

14
.6

9.
0

10
0

11
9.

0
11

9.
0

4
4

43
.3

10
.0

10
10

3.
8

1.
5

10
10

16
.4

11
.0

65
.5

C
C

3
10

10
77

.9
54

.5
10

10
59

.5
35

.0
10

3
22

4.
0

21
8.

0
10

10
35

.0
33

.0
10

10
6.

2
4.

5
10

10
21

.5
15

.0
71

.8
C

C
4

0
0

–
–

0
0

–
–

0
0

–
–

2
2

12
56

.5
12

56
.5

1
1

12
53

.0
12

53
.0

93
.6

C
C

5
10

10
28

.5
14

.5
10

10
18

.8
18

.0
3

3
5.

7
5

10
10

60
.5

32
.0

10
10

47
.3

39
.0

84
.8

C
C

x
9

9
66

7.
8

46
9.

0
4

4
13

4.
0

74
.0

9
9

96
2.

4
10

00
.0

10
10

21
0.

6
70

.0
20

.8

F
16

0
0

–
–

SC
0

–
–

–
0

–
–

216

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

T
ab

le
4:

R
es

ul
ts

fo
r

co
ns

tr
ai

ne
d

in
pu

t
si

gn
al

s
(i

ns
ta

nc
e

2)
.
F
R

:
fa

ls
ifi

ca
ti

on
ra

te
,
✓

:
va

lid
at

ed
fa

ls
ifi

ca
ti

on
ra

te
,
S

:
m

ea
n

nu
m

be
r

of
si

m
ul

at
io

ns
,
S̃

:
m

ed
ia

n
(r

ou
nd

ed
do

w
n)

nu
m

be
r

of
si

m
ul

at
io

ns
,
L
C
B

:
Lo

w
er

C
on

fid
en

ce
B

ou
nd

at
95

%
co

nfi
de

nc
e,

U
C
B

:
U

pp
er

C
on

fid
en

ce
B

ou
nd

at
95

%
co

nfi
de

nc
e,

R
:
(
S
im

u
la
ti
o
n
T
im

e
T
o
ta

lT
im

e
)
∗
1
0
0

(%
).

T
oo

l:
U

n
if
or

m
R

an
d
om

A
R

Is
T

E
O

F
a
l
C
A
u
N

fa
ls

if
y

F
a
lS

ta
r

F
o
r
eS

ee
Ψ

-T
aL

iR
o

A
pp

ro
ac

h:
a
r
x
-2

A
3C

aL
V

T
S

LS
em

iB
O

B
en

ch
m

ar
k
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
R

A
T

1
0

–
–

0
0

–
–

10
10

15
0.

0
14

2.
5

10
10

10
5.

4
10

5.
0

86
.8

A
T

2
10

10
18

.8
13

.5
10

10
12

.9
8.

0
8/

8
8/

8
12

28
.9

10
29

.5
10

10
11

.6
11

.0
50

.3
A

T
51

10
10

20
.5

16
.5

10
10

19
.0

10
.0

10
10

15
.5

15
.5

10
10

13
.7

8.
5

69
.3

A
T

52
10

10
74

.1
65

.0
9

9
74

.7
46

.0
10

10
4.

7
5.

0
10

10
79

.1
95

.0
92

.9
A

T
53

10
10

1.
5

1.
0

10
10

1.
4

1.
0

10
10

2.
4

1.
5

10
10

2.
7

2.
0

57
.1

A
T

54
10

10
47

.9
42

.0
10

10
44

.0
40

.0
10

10
33

.4
29

.0
10

10
37

.7
32

.0
79

.6
A

T
6a

10
10

15
6.

6
13

8.
0

7
7

65
.1

62
.0

9
9

25
5.

0
22

6.
0

61
.7

A
T

6b
10

10
47

2.
2

58
8.

0
5

5
91

.2
74

.0
9

9
10

7.
3

76
.0

9
9

58
0.

0
52

2.
0

49
.4

A
T

6c
10

10
32

6.
8

17
6.

0
7

7
17

5
14

1.
0

10
0

23
9.

6
21

5.
0

0
0

–
–

8
8

36
1.

5
16

8.
0

54
.7

A
T

6a
bc

10
10

14
9.

0
12

5.
5

9
9

84
.1

81
.0

10
10

24
0.

5
74

.0
7.

8

A
FC

27
10

0
–

–
9

–
21

.9
25

.0
10

6
1.

9
1.

0
10

0
11

3.
2

10
9.

5
97

.8
A

FC
29

10
0

25
.1

19
.0

10
–

3.
4

3.
5

10
5

1.
0

1.
0

10
0

19
.6

19
.0

10
0.

0
A

FC
33

10
0

–
–

0
–

–
–

10
0

1.
0

1.
0

0
0

–
–

35
.0

N
N

10
10

27
7.

2
15

8.
5

10
10

11
7

82
.5

10
10

74
.9

88
.5

10
10

15
5.

5
10

0.
0

88
.8

N
N

β
=

0
.0
4

10
/2

0
9/

20
10

7.
3

76
N

N
x

10
10

71
2.

7
48

8.
0

0
0

–
–

10
10

1.
0

1.
0

10
10

46
.8

48
.0

37
.2

C
C

1
10

10
16

.4
9.

5
10

10
9.

1
8.

0
10

10
19

.9
16

.5
10

10
27

.6
28

.5
10

10
10

.8
8.

0
73

.9
C

C
2

10
10

12
.4

13
.0

10
10

10
.8

9.
0

9
9

8.
4

7.
0

1
1

14
8.

0
14

8.
0

10
10

9.
6

7.
0

68
.3

C
C

3
10

10
19

.6
21

.0
10

10
12

.8
13

.5
10

10
8.

2
5.

0
10

10
16

.4
10

.0
10

10
11

.7
8.

0
70

.5
C

C
4

0
0

–
–

0
0

–
–

1
0

15
.5

15
.0

10
9

58
6.

3
57

5.
0

3
0

16
08

.0
15

80
.0

96
.9

C
C

5
10

10
37

.4
22

.0
10

10
21

.1
11

.5
4

4
16

.5
16

.0
10

10
95

.2
30

.0
10

10
28

.3
27

.0
75

.3
C

C
x

7
7

61
4.

0
29

1.
0

3
3

97
10

3.
0

10
10

24
0.

5
74

.0
35

.4

SC
0

0
–

–
10

0.
0

0
–

217

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

5 Conclusion and Outlook
The benchmark set established by this competition appears to gain traction in the falsification
literature, underpinning the results and experiments that are being published. Publishing such
results as part of the competition report sets a reference and gold-standard against which such
efforts can compare. It is therefore great to again have new participants this year.

Clearly, the approaches implemented in the participating tools have become even more
diverse, and a comparison on even footing and for a full set of results becomes more difficult.
Nevertheless, the results reported in tables 3 and 4 already give a good overview of the strengths
and weaknesses of the respective approaches. It has become apparent that no “best” approach
can be singled out.

The effort to validate the falsifying inputs generated by the tools proved to be more involved
than initially thought. A non-negligible part of that effort was to establish the technical basis
in terms of exchange formats and a validator tool. There are plenty of sources of error—by
the human and computational—which each of its own warrants dedicated investigation. While
many big and systematic issues could be resolved, some more subtle ones remain.

Overall, our findings stress the importance of validating experimental data, especially in
a well-defined comparative setting. This experience is shared with other competitions like
SV-COMP (which has validation since 2016 [5]), Test-Comp (which had independent coverage
evaluation from the start in 2019 [6]), and many other competitions (for an overview, see [3]).

Several issues remain: The goal of a larger benchmark set with more complex and higher-
dimensional models is still not achieved. Moreover, there is still no end-to-end process for
obtaining results and validating these in a more automated way, such that the entire competition
can—at least in principle—be repeated independently.

The competition on Search-Based Software Testing [18] (SBST) has a Cyber-physical sys-
tems track with a lane-keeping assistant benchmark. Overall, six tools have participated in the
SBST competition. We will aim at an exchange of ideas and lessons learned to bring the two
currently disjoint communities closer together.

Finally, we aim at facilitating the process for new participants to enter the friendly ARCH-
COMP on falsification. To that end, it would be great to have a guide that outlines the steps
necessary and where respective information can be found.

Acknowledgments Many thanks to the organizers of the ARCH workshop 2022 for host-
ing this competition and for providing a supportive and friendly environment. The organizer
thanks all participants for their time and patience during investigation of the discrepancies
found during validation. P. Arcaini is supported by MIRAI Engineerable AI Project (No. JP-
MJMI20B8), JST; and ERATO HASUO Metamathematics for Systems Design Project (No.
JPMJER1603), JST, Funding Reference number: 10.13039/501100009024. The ASU team (S-
TaLiRo + SOAR) was partially supported by DARPA FA8750-20-C-0507, NSF CNS 1932068,
NSF CMMI 2046588, NSF CNS 2000792, NSF CMMI 1829238, NSF IIP-1361926 and the NSF
I/UCRC Center for Embedded Systems. Z. Zhang is supported by JSPS KAKENHI Grant
No. 20H04168, 19K24348, 19H04086, JST-Mirai Program Grant No. JPMJMI20B8, Japan. F.
Formica, M. M. Mahboob, and C. Menghi are supported by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), [funding reference number RGPIN-2022-04622]. M.
Waga is partially supported by JST ACT-X Grant Number JPMJAX200U and JST CREST
Grant Number JPMJCR2012, Japan.

218

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

References
[1] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan. S-TaLiRo:

A tool for temporal logic falsification for hybrid systems. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 254–257. Springer, 2011.

[2] Anne Auger and Nikolaus Hansen. A restart CMA evolution strategy with increasing population
size. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, pages 1769–
1776, 2005.

[3] Ezio Bartocci, Dirk Beyer, Paul E Black, Grigory Fedyukovich, Hubert Garavel, Arnd Hartmanns,
Marieke Huisman, Fabrice Kordon, Julian Nagele, Mihaela Sighireanu, et al. Toolympics 2019: An
overview of competitions in formal methods. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 3–24. Springer, 2019.

[4] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded Maler, Dejan
Ničković, and Sriram Sankaranarayanan. Specification-based monitoring of cyber-physical systems:
a survey on theory, tools and applications. In Lectures on Runtime Verification, pages 135–175.
Springer, 2018.

[5] Dirk Beyer. Reliable and reproducible competition results with benchexec and witnesses (report
on SV-COMP 2016). In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 887–904. Springer, 2016.

[6] Dirk Beyer. International competition on software testing (Test-Comp). In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems, pages 167–175.
Springer, 2019.

[7] Anthony Corso, Robert J Moss, Mark Koren, Ritchie Lee, and Mykel J Kochenderfer. A survey
of algorithms for black-box safety validation. arXiv preprint arXiv:2005.02979, 2020.

[8] Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, and Georgios Fainekos. ARCH-COMP17 cat-
egory report: Preliminary results on the falsification benchmarks. In Goran Frehse and Matthias
Althoff, editors, ARCH17. 4th International Workshop on Applied Verification of Continuous and
Hybrid Systems, volume 48 of EPiC Series in Computing, pages 170–174. EasyChair, 2017.

[9] Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, Georgios Fainekos, Gidon Ernst, Zhenya Zhang,
Paolo Arcaini, Ichiro Hasuo, and Sean Sedwards. ARCH-COMP18 category report: Results on
the falsification benchmarks. In Goran Frehse, editor, ARCH18. 5th International Workshop on
Applied Verification of Continuous and Hybrid Systems, volume 54 of EPiC Series in Computing,
pages 104–109. EasyChair, 2018.

[10] Johan Liden Eddeland, Alexandre Donze, Sajed Miremadi, and Knut Akesson. Industrial temporal
logic specifications for falsification of cyber-physical systems. In ARCH@CPSIoTWeek, 2020.

[11] Gidon Ernst, Paolo Arcaini, Ismail Bennani, Aniruddh Chandratre, Alexandre Donzé, Georgios
Fainekos, Goran Frehse, Khouloud Gaaloul, Jun Inoue, Tanmay Khandait, Logan Mathesen, Clau-
dio Menghi, Giulia Pedrielli, Marc Pouzet, Masaki Waga, Shakiba Yaghoubi, Yoriyuki Yamagata,
and Zhenya Zhang. ARCH-COMP 2021 category report: Falsification with validation of results.
In Goran Frehse and Matthias Althoff, editors, 8th International Workshop on Applied Verification
of Continuous and Hybrid Systems (ARCH21), volume 80 of EPiC Series in Computing, pages
133–152. EasyChair, 2021.

[12] Gidon Ernst, Paolo Arcaini, Ismail Bennani, Alexandre Donzé, Georgios Fainekos, Goran Frehse,
Logan Mathesen, Claudio Menghi, Giulia Pedrielli, Marc Pouzet, Shakiba Yaghoubi, Yoriyuki
Yamagata, and Zhenya Zhang. ARCH-COMP 2020 category report: Falsification. In Goran Frehse
and Matthias Althoff, editors, ARCH20. 7th International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH20), volume 74 of EPiC Series in Computing, pages 140–
152. EasyChair, 2020.

[13] Gidon Ernst, Paolo Arcaini, Alexandre Donzé, Georgios Fainekos, Logan Mathesen, Giulia
Pedrielli, Shakiba Yaghoubi, Yoriyuki Yamagata, and Zhenya Zhang. ARCH-COMP 2019 category
report: Falsification. In Goran Frehse and Matthias Althoff, editors, ARCH19. 6th International

219

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

Workshop on Applied Verification of Continuous and Hybrid Systems, volume 61 of EPiC Series
in Computing, pages 129–140. EasyChair, 2019.

[14] Gidon Ernst, Sean Sedwards, Zhenya Zhang, and Ichiro Hasuo. Fast falsification of hybrid systems
using probabilistically adaptive input. arXiv preprint arXiv:1812.04159, 2018.

[15] Gidon Ernst, Sean Sedwards, Zhenya Zhang, and Ichiro Hasuo. Falsification of hybrid systems
using adaptive probabilistic search. ACM Trans. Model. Comput. Simul., 31(3), jul 2021.

[16] Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifications. In
Klaus Havelund, Manuel Núñez, Grigore Roşu, and Burkhart Wolff, editors, Formal Approaches
to Software Testing and Runtime Verification, LNCS, pages 178–192. Springer, 2006.

[17] Martin Fränzle and Michael R Hansen. A robust interpretation of duration calculus. In Interna-
tional Colloquium on Theoretical Aspects of Computing, pages 257–271. Springer, 2005.

[18] Alessio Gambi, Gunel Jahangirova, Vincenzo Riccio, and Fiorella Zampetti. Sbst tool competition
2022. In 2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST),
pages 25–32. IEEE, 2022.

[19] Peter Heidlauf, Alexander Collins, Michael Bolender, and Stanley Bak. Verification challenges
in F-16 ground collision avoidance and other automated maneuvers. In Goran Frehse, editor,
ARCH18. 5th International Workshop on Applied Verification of Continuous and Hybrid Systems,
volume 54 of EPiC Series in Computing, pages 208–217. EasyChair, 2018.

[20] Bardh Hoxha, Houssam Abbas, and Georgios Fainekos. Benchmarks for temporal logic require-
ments for automotive systems. In Goran Frehse and Matthias Althoff, editors, ARCH14-15. 1st
and 2nd International Workshop on Applied veRification for Continuous and Hybrid Systems, vol-
ume 34 of EPiC Series in Computing, pages 25–30. EasyChair, 2015.

[21] Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of stochastic hybrid systems. In
International Workshop on Hybrid Systems: Computation and Control, pages 160–173. Springer,
2000.

[22] Xiaoqing Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts. Powertrain
control verification benchmark. In Proceedings of the 17th International Conference on Hybrid
Systems: Computation and Control, HSCC ’14, pages 253–262, New York, NY, USA, 2014. ACM.

[23] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, Nov 1990.

[24] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In Yassine
Lakhnech and Sergio Yovine, editors, Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, pages 152–166, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[25] Logan Mathesen. Making Bayesian Optimization Practical in the Context of High Dimensional,
Highly Expensive, Black-Box Functions. PhD thesis, Arizona State University, 2021.

[26] Logan Mathesen, Giulia Pedrielli, and Georgios Fainekos. Efficient optimization-based falsification
of cyber-physical systems with multiple conjunctive requirements. In 2021 IEEE 17th International
Conference on Automation Science and Engineering (CASE), pages 732–737, 2021.

[27] Logan Mathesen, Giulia Pedrielli, Szu Hui Ng, and Zelda B Zabinsky. Stochastic optimization
with adaptive restart: A framework for integrated local and global learning. Journal of Global
Optimization, 79(1):87–110, 2021.

[28] Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache. Approximation-refinement
testing of compute-intensive cyber-physical models: An approach based on system identification.
In International Conference on Software Engineering (ICSE). IEEE / ACM, 2020.

[29] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, pages 1928–1937, 2016.

[30] Dejan Ničković and Tomoya Yamaguchi. Rtamt: Online robustness monitors from stl. In Au-
tomated Technology for Verification and Analysis: 18th International Symposium, ATVA 2020,

220

ARCH-COMP 2022: Falsification with Unbounded Resources Ernst et al.

Hanoi, Vietnam, October 19–23, 2020, Proceedings, page 564–571, Berlin, Heidelberg, 2020.
Springer-Verlag.

[31] Giulia Pedrielli, Tanmay Khandait, Surdeep Chotaliya, Quinn Thibeault, Hao Huang, Mauricio
Castillo-Effen, and Georgios Fainekos. Part-X: A family of stochastic algorithms for search-based
test generation with probabilistic guarantees, 2021.

[32] Doron A. Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. In Jianping Wu,
Samuel T. Chanson, and Qiang Gao, editors, Formal Methods for Protocol Engineering and Dis-
tributed Systems, FORTE XII / PSTV XIX’99, IFIP TC6 WG6.1 Joint International Conference
on Formal Description Techniques for Distributed Systems and Communication Protocols (FORTE
XII) and Protocol Specification, Testing and Verification (PSTV XIX), October 5-8, 1999, Beijing,
China, volume 156 of IFIP Conference Proceedings, pages 225–240. Kluwer, 1999.

[33] Quinn Thibeault, Jacob Anderson, Aniruddh Chandratre, Giulia Pedrielli, and Georgios Fainekos.
Psy-taliro: A python toolbox for search-based test generation for cyber-physical systems. In
Alberto Lluch Lafuente and Anastasia Mavridou, editors, Formal Methods for Industrial Critical
Systems, pages 223–231, Cham, 2021. Springer International Publishing.

[34] Masaki Waga. Falsification of cyber-physical systems with robustness-guided black-box checking.
In Aaron D. Ames, Sanjit A. Seshia, and Jyotirmoy Deshmukh, editors, HSCC ’20: 23rd ACM In-
ternational Conference on Hybrid Systems: Computation and Control, Sydney, New South Wales,
Australia, April 21-24, 2020, pages 11:1–11:13. ACM, 2020.

[35] Shakiba Yaghoubi and Georgios Fainekos. Gray-box adversarial testing for control systems with
machine learning components. In International Conference on Hybrid Systems: Computation and
Control (HSCC), 2019.

[36] Yoriyuki Yamagata, Shuang Liu, Takumi Akazaki, Yihai Duan, and Jianye Hao. Falsification
of cyber-physical systems using deep reinforcement learning. IEEE Transactions on Software
Engineering, 47(12):2823–2840, 2021.

[37] Zhenya Zhang, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo, and Jianjun Zhao. Effective
hybrid system falsification using monte carlo tree search guided by QB-robustness. In Alexandra
Silva and K. Rustan M. Leino, editors, Computer Aided Verification, pages 595–618, Cham, 2021.
Springer International Publishing.

221

	Introduction
	Benchmark Definitions
	Input Parameterization
	Models and Requirements

	Participants
	ARIsTEO
	FalCAuN
	falsify
	FalStar
	ForeSee
	S-TaLiRo
	-TaLiRo

	Evaluation & Validation
	Comparative Results
	Falsification with Probabilistic Guarantees

	Conclusion and Outlook

