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Abstract

Conflict-Driven Clause-Learning (CDCL) SAT and SAT Modulo Theories (SMT) solvers are well

known as workhorses for, e.g., formal verification applications. Here we discuss ways to go beyond

by learning not only clauses, but also much more expressive constraints. We outline techniques for

Integer Linear Programming (ILP), going first from SAT to SMT for ILP and then to SMT with on-

the-fly bottleneck constraint encoding. Then we illustrate the power of learning full constraints, and the

resulting methods for 0-1 ILP (Pseudo-Boolean solvers) and full ILP (Cutsat and IntSat), outlining

difficulties and their solutions, giving examples and some intuition on why these techniques work so

well.

1 Introduction

One of the most remarkable successes of AI technology is probably the combination of heuris-
tics, learning and novel data structures that allow Conflict-Driven Clause Learning (CDCL)
propositional SAT solvers to fully automatically handle very large, hard, real-world indus-
trial and scientific problem instances. It is therefore not surprising that for many years re-
searchers have tried to produce effective extensions of CDCL able to handle richer constraint
languages. In fact, SAT can be seen as the particular case of Integer Linear Programming (ILP)
where all variables are binary (0-1) and constraints are clauses, sets (disjunctions) of literals
x1 ∨ . . .∨xm ∨y1 ∨ . . .∨yn, i.e., constraints x1 + . . .+xm + (1− y1) + . . .+ (1− yn) ≥ 1. Of course
arbitrary ILP constraints can be encoded into clauses, but, as we will see here, handling them
natively opens the door to far more compact and efficient reasoning, learning, and optimization.

Indeed, an extensive amount of work exists on CDCL-like techniques for Pseudo-Boolean
solving (aka. 0-1 ILP), which considers Boolean variables, arbitrary linear constraints of the
form a1x1 + · · ·+ anxn ≤ a0 and optimizing an objective function b1y1 + · · ·+ bmxm where the
coefficients ai, bj are integers (see [20] for all background and references).

The Cutsat [12] and IntSat [17] ILP solvers go another step beyond, introducing CDCL tech-
niques for full ILP (arbitrary integer variables, linear constraints and objective). As reported in
[17], IntSat appears to be the first ILP method that is competitive with state-of-the-art commer-
cial tools such as CPLEX and Gurobi (which solve ILP by combining LP relaxations, simplex,
branch-and-cut and many other methods, see [11]). This is the case already for the first IntSat
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prototype implementations (single-core, unlike its competitors), performing especially well on
problems having a more combinatorial (as opposed to numerical) nature.

In this paper we outline these new techniques, along with other solutions based on Sat
Modulo Theories with or without on-the-fly bottleneck constraint encoding. The contents of
this paper is as follows:

• In Section 2 we describe CDCL SAT solving and give our intuition about the three key
ingredients that make it behave so well and which we try to carry over to richer constraint
languages.

• Section 3 briefly outlines SAT Modulo Theories (SMT) and our DPLL(T) approach to
SMT.

• We discuss an SMT-based method for ILP (Section 4).

• We give some intuition about why SMT works so well if there are few or no bottleneck
constraints, and explain how the SMT-based method can be improved by the selective
on-the-fly SAT encoding of such bottlenecks. (Section 5).

• We consider methods that learn new linear constraints, and give intuition on why this can
be much more powerful than just learning new clauses (Section 6).

• Section 7 describes some methods for 0-1 ILP, from the pure SMT solution to constraint-
learning solvers.

• Section 8 is on CDCL-like constraint-learning solvers for full ILP (i.e., with optimization
and solutions over Z). In particular we discuss Cutsat [12] and IntSat [17].

2 CDCL SAT solving

SAT is the particular case of ILP where all variables are binary (0/1) and constraints have the
form x1 + . . . + xm − y1 . . . − yn > −n, written as clauses x1 ∨ . . .∨xm ∨y1 ∨ . . .∨yn, i.e., sets
(disjunctions) of literals. Given a partial assignment A, seen as a set of (non-contradictory)
literals, a clause C is true in A if A ∩ C 6= ∅, it is false or a conflict if l ∈ A for every literal l
in C, and it is undefined otherwise. All essential CDCL features are described in the following
14-line algorithm, where A is seen as an (initially empty) stack:
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The basic CDCL algorithm:

1. Propagate: while possible and no conflict appears, if, for some clause l∨C, C is false
in A and l is undefined, push l onto A, associating to l the reason clause C.

2. if there is no conflict
if all variables are defined in A, output “solution A” and halt.
else Decide: push some undefined literal l, marked as a decision, and go to 1.

3. If A contains no decisions, output “unsatisfiable” and halt.

4. Use a clause data structure C. Initially, let C be any conflict.

• Conflict analysis: Invariant: C is false in A, that is, if l ∈ C then l ∈ A.
If l is the literal of C whose negation is topmost in A, and D is the reason clause
of l, then replace C by (C \ {l}) ∪D. Repeat this until there is only one literal
ltop in C such that ltop is, or is above, A’s topmost decision.

• Backjump: pop literals from A until either there are no decisions in A or, for
some l in C with l 6= ltop, there are no decisions above l in A.

• Learn: add the final C as a new clause, and go to 1 (where C propagates ltop).

Note that replacing C by (C \{l})∪D is in fact an inference by resolution between C and D ∨ l.
Essentially all state-of-the-art CDCL SAT solvers use this (so called 1UIP conflict analysis-
based) algorithm, with efficient data structures for propagation, heuristics that select recently
active literals as decisions, periodically restarting as well as forgetting (removing) the least
useful learned clauses, and using clause simplification and other inprocessing methods (see,
e.g., [14, 6] for more details and further references).

In our opinion, there are three key ingredients that make CDCL especially effective:

• Learning at each conflict the backjump clause as a lemma makes propagation progressively
more powerful, preventing a potentially exponential amount of repeated work in future
similar conflicts. Note that such similar conflicts are frequent in structured industrial
problems, but not in random ones, where indeed learning is not very useful.

• The decision heuristics that decide on variables with many occurrences in recent conflicts.
Our intuition behind this dynamic activity-based heuristics (introduced in the Chaff solver
[16] using the VSIDS implementation) is that it works off, one by one, clusters of tightly
related variables. Indeed, if one tries a CDCL solver with this heuristic on two independent
SAT instances sharing no variables. it will finish solving one instance before handling the
other one.

• Forget from time to time the less useful (e.g., low-activity) lemmas. This is crucial to keep
propagation fast and memory usage limited, and it may work well because the lemmas
from the already worked-off clusters are no longer needed.

After decades of academic and industrial efforts, with a lot of resources from, e.g., EDA
(Electronic Design Automation), altogether this technology provides complete high-performance
solvers, handling real-world problems from many sources, with a single, fully automatic, push-
button, variable selection heuristic. Hence modeling for such solvers is essentially only a declar-
ative task.
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But CDCL SAT solvers also have severe limitations. The language of clauses is low-level,
so tools encoding typical constraints into SAT are needed, and sometimes no adequate or suffi-
ciently compact encodings are available, typically for arithmetic constraints. Also, traditionally
such solvers are only capable of reporting unsatisfiability or satisfiability returning a model, and
optimization received less attention. Therefore more expressive frameworks appeared, such as
the one we address in the next section.

3 SAT Modulo Theories (SMT)

The origin of SMT was essentially the need for reasoning about equality, arithmetic, data
structures such as arrays, etc., in software and hardware verification. It amounts to deciding
satisfiability of an (existential) SAT formula with atoms over a background theory T . For
example, if T is Equality with Uninterpreted Functions (EUF) (i.e., a congruence), a (three-
clause) SMT formula is f(g(a)) 6= f(c) ∨ g(a) = d, g(a) = c, c 6= d. It is unsatisfiable,
because in a congruence c 6=d and g(a)=c imply that g(a) 6=d and that f(g(a))=f(c).

Another (two-clause) example combining arithmetic, the theory of arrays and EUF is:
A=write(B, i+1, x), read(A, j+3)=y ∨ f(i−1) 6=f(j+1).

Let us solve this example using the so-called Lazy approach to SMT, aka Lemmas on demand
[9]. First one forgets about the meaning of each literal, and handles it as a propositional one
(here named by numbers):

f(g(a)) 6=f(c)︸ ︷︷ ︸
1

∨ g(a)=d︸ ︷︷ ︸
2

, g(a)=c︸ ︷︷ ︸
3

, c 6=d︸︷︷︸
4

If { 1∨2, 3, 4 } is given to a SAT solver, a model such as [ 1, 3, 4 ] is returned.
This model is then given to a Theory solver, that does know the meaning of these propositional
symbols as theory literals and can handle conjunctions of these, and it detects that this model
is T -inconsistent. Then one forbids this model by adding the blocking clause 1∨3∨4 to the
clause set, which is sent again to the sat solver. After repeating this, blocking also the model
[ 1, 2, 3, 4 ], the SAT solver detects unsatisfiability. This process always terminates with
unsatisfiability or finding T -consistent model.

If a CDCL SAT solver is used, this lazy approach can be considerably improved:

1. Instead of checking the T -consistency only of full propositional models, one can incremen-
tally check the partial assignment while it is being built.

2. Given a T -inconsistent assignment M , instead of adding ¬M as a clause, one can ask the
theory solver for an explanation or a reason of T -inconsistency, a small T -inconsistent
subset of M , and add this reason as a clause.

3. Upon a T -inconsistency, instead of adding a blocking clause and restarting the SAT solver
from scratch, the solver can do conflict analysis of the explanation and backjump.

All this is covered in our (nowadays standard, cf. Google) DPLL(T) approach to SMT [18]:

DPLL(T) = DPLL(X) engine + T -Solvers

Its main aims are modularity and flexibility: one can plug in (combinations of) T -Solvers into
the DPLL(X) engine. In DPLL(T) the T -Solvers also do Theory Propagation, i.e., propagating
literals that are theory consequences. This gives more pruning and the T -Solver also guides the
search, instead of only validating it.
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4 Integer Linear Programming through SMT

Assume given a set S of linear constraints of the form c1 x1+. . .+cn xn ≤ c0 where {x1, . . . , xn}
is a set of variables and (we assume) the coefficients ci are integers. The aim is to decide the
satisfiability of S over the integers, that is, the existence of a solution Sol : {x1, . . . , xn} → Z
satisfying all such constraints, that is, c1 · Sol(x1) + . . . + cn · Sol(xn) ≤Z c0. For simplicity,
here we assume that for all variables integer upper and lower bounds are known; this aspect,
as well as optimization, will be addressed later on in this paper.

The SMT Theory T is then the set S, and the SMT solver will decide and propagate
bounds of the form lb ≤ x and x ≤ ub. Theory propagation of bounds simply amounts to
bound propagation with S. For example, the bounds { 0 ≤ x, 1 ≤ y } and the constraint
{ x + y + 2z ≤ 2 } entail z ≤ 0, since 0 + 1 + 2z ≤ 2 =⇒ 2z ≤ 1 =⇒ z ≤ b1/2c. The
explanation clause (disjunction of bounds) for this propagation is simply 0 6≤x ∨ 1 6≤y ∨ z≤0.
In case of a conflict, one can generate explanation clauses on demand for conflict analysis to
compute the backjump clause, which is learned. Backjumping is as in standard CDCL SAT
(as well as lemma forgetting, restarts, etc.). Termination and completeness of this follow from
standard SMT [18]. An important aspect of this technique is that only new clauses are learned.
The theory S does not change.

This method was later on introduced in the Constraint Programming community under the
name Lazy Clause Generation (LCG) [19], and shown to work very well on problems such as
scheduling and timetabling.

5 On-the-fly SAT encoding of bottleneck constraints

One may wonder why SMT works so well on so many practical problems. In our opinion, the
main reason is that most constraints are not bottlenecks: they only generate few (different)
explanation clauses, and SMT generates exactly these few clauses, on demand, thus avoiding
the need of fully encoding all constraints into clauses beforehand.

However, sometimes bottleneck constraints C do occur. During the SMT solving process
such a constraint C can generate very large (usually exponential) numbers of explanation
clauses, and in fact all of them together can amount to an almost full, and moreover very
naive, SAT encoding of C.

For example, consider a a timetabling problem with a (cardinality) constraint C of the form
x1+. . .+xn ≤ 40, stating, e.g., that only 40 time slots are available. In addition, assume that the
instance is unsatisfiable because (for some possibly complicated reason) the other constraints
altogether imply that strictly more than 40 slots are needed. Then the SMT solver may end
up enumerating exponentially many explanation clauses for C, of the form ¬y1 ∨ . . .∨¬y41, for
many of the

(
n
41

)
subsets {y1 . . . y41} of size 41 of the n variables. This may end up being an

(almost) full encoding of C, and a very naive one.

Obviously, for such C one needs a more compact encoding, using auxiliary variables (see,
e.g., [1, 4] and references on such encodings). The idea of [3, 2] is to detect and encode such
bottleneck constraints C on the fly, during the SMT solving process. This is a significant
additional improvement.
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6 Learning constraints can beat learning clauses

Given CDCL’s enormous success for SAT, for decades researchers (e.g., from the SAT commu-
nity, but not only) have tried to produce an effective CDCL-like method for ILP to reason at
the constraint level 1. However, due to a number of obstacles (see, e.g., Example 4 below),
the results of such attempts were always orders of magnitude slower than the state-of-the-art
commercial MIP/ILP solvers such as CPLEX or Gurobi, based on LP relaxations, simplex, and
branch-and-cut (see, e.g., the “mip basics” at www.gurobi.com).

Typical attempts to generalize CDCL from SAT to ILP are in the following sense, where
(possibly sub-indexed) letters a denote integer coefficients:

SAT ILP
clause l1 ∨ . . .∨ ln linear constraint a1x1 + · · ·+ anxn ≤ a0

0/1 variable x integer variable x
positive literal x lower bound a≤x
negative literal x upper bound x≤a

propagation bound propagation
resolution inference cut inference

Example 1: By bound propagation, from the lower bound 1≤x, the upper bound y≤2, and
the constraint x−2y+5z ≤ 5, we infer that 1−4+5z ≤ 5, so 5z ≤ 8, and hence z ≤ 8/5, which
is rounded, propagating a new bound z ≤ 1. Note that any 1-variable constraint propagates
a bound by itself, e.g., from −7x ≤ 3 we have −3 ≤ 7x, and hence −3/7 ≤ x, which after
rounding propagates the lower bound 0≤x.

Example 2: From 4x + 4y + 2z ≤ 3 and −10x + y − z ≤ 0, by multiplying the former by 5
and the latter by 2 and adding them up, we obtain the cut 22y + 8z ≤ 15. Here the variable
x is eliminated, which can always be achieved if in the two premises x has coefficients a and b
such that a · b < 0. The result 22y + 8z ≤ 15 can be normalized dividing by gcd(22, 8) = 2,
giving 11y + 4z ≤ 15/2 and, by rounding, 11y + 4z ≤ 7.

Example 3: Indeed, learning new constraints obtained by means of cuts can be advantageous
over just learning clauses as in pure SMT. Consider the following set of constraints, where
variables x, y, z, u are Boolean (0-1):

C1 : x +y −z ≤ 1
C2 : −2x +3y +z −u ≤ 1
C3 : 2x −3y +z +u ≤ 0.

Below we depict the stack as it would grow upwards, in a CDCL algorithm: the first decision is
the literal x (i.e., it is decided that x is true), then y, also by a decision, then z becomes true due

1Other SAT/SMT-related LP methods exist, but for rational arithmetic, such as [15, 13, 8], but in this paper
we have decided to restrict ourselves to NP-complete problems.
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to propagation with the constraint C1, and then u becomes true due to propagation with the
constraint C2. After this, C3 is a conflict (it becomes false in the current partial assignment):

C3 conflict!
u C2

z C1

y decision
x decision Stack ↑

bound reason

Conflict analysis in SMT style would be as follows. The reason C3 is conflicting due to the
fact that it implies that y, z and u cannot be true all three at the same time, i.e., it implies the
clause ¬y ∨¬z ∨¬u. The reason why C2 propagated u is the clause ¬y ∨¬z ∨ u implied by C2.
Resolution between both clauses yields the clause ¬x ∨ ¬y ∨ ¬z. Since it still has two literals
of the current decision level, namely y and z, another iteration of conflict analysis is needed
before a backjump becomes possible. However, a cut between C2 and C3 yields:

−2x +3y +z −u ≤ 1
2x −3y +z +u ≤ 0

2z ≤ 1

which is equivalent to the clause ¬z, which is much stronger than ¬x ∨ ¬y ∨ ¬z. and directly
allows one to backjump to decision level zero asserting ¬z.

7 Constraint-learning 0-1 solvers

An extensive amount of work exists on Pseudo-Boolean solving (aka. 0-1 ILP), which considers
Boolean variables, arbitrary linear constraints of the form a1x1+· · ·+anxn ≤ a0 and optimizing
an objective function b1y1 + · · · + bmxm where the coefficients ai, bj are integers (see [20] for
all background and references). An important problem for extending CDCL to ILP is the
following, which we will call the rounding problem. It already occurs in the 0-1 case, although
it is much easier to solve here than for full ILP.

Example 4: Assume we have two constraints over 0-1 variables: x + y + 2z ≤ 2 and
x+y−2z ≤ 0. Now we take the decision that y is true, which due to x+y+ 2z ≤ 2 propagates
¬z (by rounding z≤ 1/2). Then x + y − 2z ≤ 0 becomes a conflict : it is false in the current
partial assignment A = { y,¬z }, since x is at least 0.

Now let us attempt a straightforward generalization of the CDCL algorithm: since ¬z is
the topmost (last propagated) bound, a cut eliminating z between both constraints would be
needed, generating the new constraint C which is 2x+ 2y ≤ 2, or equivalently, x+ y ≤ 1. Then
conflict analysis is over because there is only one bound in A at, or above, the last decision
relevant for C, namely y. But unfortunately the new constraint x + y ≤ 1 is not false in A,
breaking (what should be) the invariant. Hence it does not propagate ¬y and is too weak to
force a backjump. This problem is due to the rounding that takes place when propagating z.

One can always go the pure SMT way to solve the rounding problem whenever it appears.
In the previous example, x + y + 2z ≤ 2 entails the reason ¬y ∨ ¬z (propagating ¬z) and
x + y − 2z ≤ 0 is conflicting due to the reason ¬y ∨ z. Resolution between both reasons yields
¬y, which can be used to backjump.

7
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In fact some Pseudo-Boolean solvers always handle conflicts like this and only learn new
clauses, even if for conflicts where no rounding problem appears. These are in fact SMT solvers.
Other solvers such as Sat4J [5] have such an SMT setting but also other ones.

But one can be smarter. it is not difficult to see that the rounding problem does not appear
if the variable that is eliminated in the cut inference has coefficient 1 or −1 in at least one of
the two premises. Moreover, in the 0-1 case, for any propagation by a constraint C from a set of
literals S, there exists a clause entailed by C that can also do this propagation from S. In fact,
one can as well weaken C into an entailed constraint D that also does the same propagation
and that is logically stronger than any clause, and such that the propagated variable also has
coefficient 1 or −1 in D [10].

8 Constraint-learning solvers for full ILP

Now we consider the full ILP case, i.e., variables in Z, and decisions and propagations in the
stack are upper and lower bounds. For this situation, the rounding problem illustrated in
Example 4 was solved in a very ingenious way by Jovanovic and de Moura in their Cutsat
procedure [12]. In Cutsat, a decision can only make a variable equal to its current upper or
lower bound, which permits, at each conflict caused by bound propagations with rounding, to
compute tightly propagating constraints (again: where the propagated variable has coefficient 1
or −1). These tightly propagating constraints justify the same propagations without rounding,
and allow one to do conflict analysis using tightly propagating constraints only. This on-the-
fly computation of tightly propagating constraints during conflict analysis makes the learning
scheme of [12] similar to the all-decisions SAT learning scheme. In this scheme, one does
resolutions until reaching a clause built from decisions only. This is well known to perform
significantly worse than 1UIP, search-wise. Experiments with the Cutsat implementation of
[12] show that, not very unexpectedly, this finding unfortunately carries over to Cutsat (see
[17]).

IntSat [17] is a different method for ILP. Unlike Cutsat, it admits arbitrary new bounds as
decisions and guides the search exactly as with the 1UIP approach in CDCL-based SAT solving,
while still overcoming the rounding problem. The key ideas behind IntSat are as follows.

Given a partial assignment A, a set (stack) of bounds, each time a constraint C and a set
of bounds R with R ⊆ A propagate a new bound B, this bound is pushed onto A, associating
to B not only its reason constraint C but also its reason set R. Conflict analysis and cuts
performed are both guided by successive refinements of a so-called Conflicting Set of bounds
CS ⊆ A that is infeasible along with the current set of constraints. After each conflict, always
a backjump takes place and a new constraint is learned. In the following IntSat algorithm, A
is seen as an (initially empty) stack of bounds:

8
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The basic IntSat algorithm:

1. Propagate: while possible and no conflict appears, if C and R propagate some fresh
bound B, for some constraint C and set of bounds R with R ⊆ A, then push B onto
A, associating to B the reason constraint C and the reason set R.

2. if there is no conflict
if all variables are defined in A, output “solution A” and halt.
else Decide: push some fresh bound B onto A, marked as a decision, and go to 1.

3. If A contains no decisions, output “infeasible” and halt.

4. Use data structures C, a constraint, and CS, the Conflicting Set of bounds. Initially,
C is any conflict and CS is the subset of bounds of A causing the falsehood of C.

• Conflict analysis: Invariants: CS ⊆ A and if S is the current set of constraints,
then S ∪ CS is infeasible (has no solution).

Repeat the following three steps:

– If B is the bound in CS that is topmost in A, and R is the reason set of B,
then let CS be (CS \ {B}) ∪R.

– If a cut eliminating B’s variable exists between C and B’s reason constraint
then replace C by that cut.

– Early Backjump: If for some maximal k ∈ N, after popping k bounds the
last one being a decision, C propagates some new bound in the resulting A,
then pop k bounds, learn C as a new constraint, and go to 1.

until CS contains a single bound Btop that is, or is above, A’s topmost decision.

• Backjump: Pop bounds from A until either there are no decisions in A or, for
some B in CS with B 6= Btop, there are no decisions above B in A. Then push
Btop with associated reason constraint C and reason set CS \ {Btop}.

• Learn: add the final C as a new constraint, and go to 1.

Note that in the second step of conflict analysis indeed sometimes no cut eliminating B’s variable
exists between C and B’s reason constraint; this can be because that variable does not occur
in C, or it occurs with the same sign.

Example 5: Assume there are two constraints x + y + 2z ≤ 2 and x + y − 2z ≤ 0 and we
take the decision 0≤ x, which propagates nothing, and later on another decision 1≤ y, which
due to x + y + 2z ≤ 2 propagates z ≤ 0, which is pushed with associated reason constraint
x+ y + 2z ≤ 2 and reason set { 0≤x, 1≤y }. Conflict analysis: Initially, x+ y− 2z ≤ 0 is the
conflict C and CS is the set of bounds { 0≤x, 1≤y, z≤0 } ⊆ A causing the falsehood C. In
the first iteration, in CS we replace z≤0 by its reason set { 0≤x, 1≤y }. The resulting CS is
{ 0≤x, 1≤ y }. A cut eliminating z exists (see Example 7) and C becomes x + y ≤ 1. Then
conflict analysis is over because the CS contains exactly one bound Btop, which is 1≤y, at or
above A’s topmost decision. Backjump: We pop bounds until for some B in CS with B 6= Btop,
there are no decisions above B in A, in this case, until there are no decisions above 0≤ x in
A, and then push Btop, which is y≤ 0, with reason set { 0≤ x }, and with reason constraint
x + y ≤ 1. Note that this reason constraint is not a “good” reason, i.e., it does not propagate

9
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y≤0, but still y≤0 is a valid consequence of the set of constraints together with its reason set
{ 0≤x }. Learn: The final C, which is x + y ≤ 1, is learned.

Example 6: Assume there are three constraints

C0 : x −3y −3z ≤ 1
C1 : −2x +3y +2z ≤ −2
C2 : 3x −3y +2z ≤ −1

and initial bounds:
−2≤z z≤2
1≤y y≤4
−2≤x x≤3.

Then the following sequence of decisions and propagations can take place on the stack:

2≤y { 1≤x, z≤−2 } C0 : x− 3y − 3z ≤ 1

x≤1 { y≤2, z≤−2 } C0 : x− 3y − 3z ≤ 1

z≤−2 decision

z≤−1 { x≤2, 1≤y } C1 : − 2x + 3y + 2z ≤ −2

x≤2 decision

z≤0 { x≤3, 1≤y } C1 : − 2x + 3y + 2z ≤ −2

y≤2 { x≤3, −2≤z } C1 : − 2x + 3y + 2z ≤ −2

1≤x { 1≤y, −2≤z } C1 : − 2x + 3y + 2z ≤ −2

−2≤z initial

. . . . . .

bound reason set reason constraint

In this state, C1 is a conflict. with initial CS = { −2 ≤ z, x ≤ 1, 2 ≤ y }, and conflict
analysis proceeds as follows. Replacing 2 ≤ y by its reason set, we get a new CS which is { −2 ≤
z, 1≤x, z≤−2, x≤1 }. A cut eliminating y between C1 and C0 exists, and gives C3 : − x− z ≤ −1.
At his point, already an Early backjump exists, due to z≤−1. So one can backjump to decision level
1, push there 2≤x and learn C3. The new bound triggers two more propagations and we get:

2≤y { 2≤x, z≤−1 } C0 : x− 3y − 3z ≤ 1

−1≤z { x≤2 } C3 : − x− z ≤ −1

2≤x { z≤−1 } C3 : − x− z ≤ −1

z≤−1 { x≤2, 1≤y } C1 : − 2x + 3y + 2z ≤ −2

x≤2 decision

z≤0 { x≤3, 1≤y } C1 : − 2x + 3y + 2z ≤ −2

y≤2 { x≤3, −2≤z } C1 : − 2x + 3y + 2z ≤ −2

1≤x { 1≤y, −2≤z } C1 : − 2x + 3y + 2z ≤ −2

−2≤z initial

Now again C1 is conflicting, with initial CS = { x≤2, −1≤z, 2≤y }, and conflict analysis needs four
iterations:

1. Replacing 2≤y by its reason set we get CS = { x≤2, z≤−1, 2≤x, −1≤z }. The cut(C0, C1)
gives C : − x− z ≤ −1 as before.

2. Replace −1≤z by its reason set. We get CS = { x≤2, z≤−1, 2≤x }. No cut is made (since z
is negative in both C and C3).

3. Replace 2≤x. We get CS = { x≤2, z≤−1 }; no cut exists.

4. Replacing z≤−1, we obtain CS = { 1≤y, x≤2 }. Now a cut exists and gives −4x + 3y ≤ −4.
At this point one can do an early backjump adding 2 ≤ x at decision level zero. But Conflict
analysis is also finished (only one bound of current decision level in CS), and we can backjump
to decision level 0 adding x 6≤ 2, i.e., 3≤ x. This latter option is stronger, and hence probably
preferrable.

10
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After one further propagation (−1≤z), the procedure returns “infeasible” since the conflict C2 appears
at decision level 0.

The following theorem holds even if no cuts are performed and no new constraints are learned
(although practical performance depends crucially on these). Its proof follows essentially the same
scheme as our termination, soundness and completeness results for SAT and SAT Modulo Theories
(SMT) [18].

Theorem 8.1. The basic IntSat algorithm, when given as input a finite set of constraints S including
for each variable xi a lower bound lbi≤xi and an upper bound xi≤ubi, always terminates, finding a
solution if, and only if, there exists one, and returning “infeasible” if, and only if, S is infeasible.

Optimization. In this framework, optimization is incorporated easily, since, unlike what happens in
SAT, linear constraints are first-class citizens (i.e., belong to the core language). For finding a solution
that minimizes a linear expression a1x1 + . . . + anxn (or maximizes it with opposite signs), first an
arbitrary solution A is found and then, at each new solution A one adds a stronger new constraint
a1x1 + . . .+ anxn ≤ a1 ·A(x1) + . . .+ an ·A(xn)− 1, which is conflicting, and does conflict analysis on
it, etc., until infeasible. These successively stronger constraints are indeed very effective for pruning.

Initial upper and lower bounds. The assumption that each variable has initial lower and
upper bounds, (or, equivalently, initial constraints propagating such bounds) is common in practical
applications. However, some problems do have unbounded variables. In theory, any ILP can be
converted into an equivalent fully bounded one [21], but these bounds are too large to be useful in
practice. One solution is to have a z-bound : to introduce a single fresh auxiliary variable z, with lower
bound 0≤ z, and for each variable x without lower bound add the constraint −z ≤ x, and similarly,
if it has no upper bound, add x ≤ z. Then one can re-run the IntSat procedure with successively
larger upper bounds z ≤ ub for z, thus guaranteeing completeness for finding (optimal) solutions.
Further practical solutions are subject of current work, also for handling the well-known fact that,
with unbounded variables and without z-bound, bound propagation may not terminate in unfeasible
problems: consider, e.g., C1: x− y ≤ 0 and C2: −x + y + 1 ≤ 0 and the bound 0≤x, which makes C1

propagate 0≤y; then C2 propagates 1≤x, and so on.

Implementation ideas. Our prototype IntSat implementation currently consists of 1400 lines of
simple C++ code with standard STL data structures. For instance, a constraint is an STL vector of
monomials (pairs of two ints), sorted by variable number, plus some additional information (indepen-
dent term, activity). Coefficients are never larger than 230, and cuts producing any coefficient larger
than 230 are simply not performed, which is a straightforward way of guaranteeing that no overflow
occurs if bound propagation, cuts, normalization, etc., are done storing intermediate results in 64-bit
integers. Two arrays store for each variable xi the positions in the stack of its current (strongest) upper
bound and lower bound, respectively. In the stack itself bounds are linked, pointing to the position
in the stack of the previous bound of the same type (lower or upper) for that variable. When push-
ing or popping bounds, these properties are maintained in constant time. Affordably efficient bound
propagation is crucial for performance. In our current implementation, this done with occurs lists and
counter-based filters preventing many cache misses due to useless visits to the actual constraints.

Performance. In [17] several experiments are described with our prototype IntSat implementation
running on one core, compared with the latest 4-core versions of the commercial solvers CPLEX and
Gurobi. The technology behind the latter two solvers is extremely mature, after decades of improve-
ments. According to [7], between 1991 and 2012 they have seen a 475000x speedup from algorithmic
improvements (i.e., not counting the 2000x from hardware), from a combination of techniques, such as
specialized cuts, heuristics and presolve methods. In [17], random optimization instances are considered
as well as the well-known Mixed Integer Problem Library (MIPLIB) ones. In many, but of course not
all cases, IntSat is fastest in finding the first solution, i.e., in proving feasibility, as well as in finding
good solutions and (near) optimal ones.
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9 Conclusions and further work

A large amount of further theoretical and practical ideas around 0-1 ILP and IntSat arise to be explored.
From the implementation point of view, this includes, e.g., special treatments for binary variables
and for specific types of constraints, decision heuristics (tailored towards solutions or to infeasibility),
restarts and cleanups, early backjump and conflict analysis strategies, reason set strengthening, or
pre– and in-processing. It also seems that periodically optimizing the LP relaxation during the IntSat
process can be useful at least for lower bounding, but possibly also for guiding the decision heuristics.
It could be used for handling MIPs, i.e., where some variables may take non-integer solutions, by
deciding on the integer variables as it is done now, and having a simplex optimize the remaining ones.
Combining ideas from both worlds may worth exploring, due to our feeling that CDCL-like techniques
may be superior on problem aspects with a combinatorial flavor, whereas traditional ones could be
better for the essentially numerical ones. In any case, it seems unlikely that for ILP or MIP solving one
single technique can dominate the others; the best solvers will probably continue combining different
methods from a large toolbox.
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