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Abstract

A mixed variational-Monte Carlo scheme is employed to assimilate streamflow data at
multiple locations in a distributed hydrologic model for flood forecasting purposes. The
goal of this work is to assess the role of the spatial distribution of the assimilation points
in terms of forecasts accuracy. The area of study is Arno river basin, and the strategy of
investigation is to focus on one single nearly-flood event, performing various assimilation
experiments that differ only in number and location of the assimilation sites.

1 Introduction

Assimilation of streamflow data in hydrologic models may improve the accuracy of flood fore-
casting. However, developing an effective assimilation system poses several challenges, especially
when dealing with a physically based and spatially distributed model. The central issues are:
i) the complex topology of the domains, i.e. river network and drainage directions in the water-
shed, ii) the large dimensionality of the problem, iii) the model including numerous phenomena
described by nonlinear and discontinuous equations. All of the above complicates the treatment
of the time lag existing between the states to update in the model (e.g. soil moisture), and the
detected mismatch between observed and modeled flow in rivers. An assimilation strategy that
attempts to overcome some of the stated issues is presented in [3]. A mixed variational-Monte
Carlo method is developed to assimilate river flow data in a distributed hydrologic model at
various locations, with the aim of improving discharge forecasts. Combining variational and
Monte Carlo approach allows to bypass the treatment of the time lag, and to deal with nonlin-
ear discontinuous equations and complex topologies while maintaining the assimilation system
usable. The method was tested through numerous hindcast experiments of real events in the
Arno river basin (central Italy). The focus was to evaluate the overall performances of the
model, with particular attention to the dependence of forecasts accuracy on lead time. The
analysis suggested that the spatial distribution of the assimilation points, along with the ex-
tension of the assimilation window, is a crucial point in the overall functioning of the method.
In this work, we intend to investigate more in detail the role of the spatial distribution of the
assimilated data. To this aim, we focus on one single flood event, performing numerous runs
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Figure 1: Scheme of the mixed variational-Monte Carlo assimilation method (from [3]).

where the only varying characteristics are the number and location of the assimilation sites.
We evaluate the impact on the forecasted river flow at both the assimilated and not assimilated
points.

2 The Hydrologic Model

The assimilation system is developed for the physically based and spatially distributed hydro-
logic model MOBIDIC (MOdello di Bilancio Idrologico DIstribuito e Continuo) [1, 4, 5], which is
employed operatively at the hydrologic service of Tuscany region (Servizio Idrologico Regionale,
Regione Toscana) for floods forecasting and water resources management purposes. The basic
characteristics of MOBIDIC are: i) a raster-based discretization of the watershed, ii) a vector-
based representation of the hydrographic network, iii) a detailed and computationally efficient
representation of soil moisture dynamics [2], iv) a modular structure which allows to tune the
level of complexity of the represented processes for each specific application. In the present
case, we adopt the setting employed in [3], i.e. the cascade of linear reservoirs for flow routing
through the river network and the linear conceptual reservoir for groundwater dynamics.

3 The Mixed Variation-Monte Carlo Assimilation System

The assimilation system employs a mixed variational-Monte Carlo strategy. First, a variational
approach is applied to the module of MOBIDIC describing flow routing through the river
network. The result is an estimate of the temporal evolution of the external inflow that each river
reach would require to match discharge observations. A parsimonious Monte Carlo approach
translates the estimate of inflow temporal evolution into an update of key variables involved
in surface runoff formation. As stated in the previous section, flow routing through the river
network is modelled adopting the scheme of linear reservoirs in cascade, which is a compromise
between complexity and representativeness of the physical process. Accordingly, the prognostic
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equation for streamflow is:

dQ(t)

dt
= A [qL(t) +UQ(t)−Q(t)] = F (A,Q(t), qL(t)) (1)

where, considering a network composed by n reaches, Q(t) ∈ Rn are flows exiting each reach,
qL(t) ∈ Rn are lateral inflows to each reach (surface runoff plus groundwater flow), and A ∈
Rn×n is a diagonal matrix containing the inverse of the characteristic residence time of each
reach on the diagonal. Lastly, U ∈ Rn×n is a binary matrix accounting for network topology.
The adjoint model of ( 1) is derived by minimizing a penalty functional J containing squared
errors between modelled and observed river flows, and between current and previous values of
the quantities to optimize, while physically constrained by ( 1) through a vector of Lagrange
multipliers λ(t) ∈ Rn. The quantities to optimize are the initial flow in each river reach Q0, and
the time series of the later inflow qL. After some computations, the minimization of J leads
to a system of ordinary differential equations that describes the time evolution of Lagrange
multipliers λ. Furthermore, a terminal condition for the backward integration of the adjoint
model, as well as update equations for initial streamflow Q0 and lateral input qL depending
on λ(t) are obtained. An iterative procedure constituted by subsequent integrations of forward
and adjoint model, and corresponding updates of Q0 and qL, provides optimal estimates of
Q0 and qL. It is important to underline that a mismatch between observed and modelled Q
at a specific location perturbs λ not only locally, but also in the upstream reaches. This is
due to the coupling existing between the equations for flow channel routing (see eq. ( 1)), and
allows to spread the updates of Q0 and qL throughout the upstream portion of the network.
The equations composing the adjoint model and the detailed steps to obtain it can be found
in [3]. Since qL is a state variable of MOBIDIC model, mass conservation is not guaranteed
if it is updated indiscriminately. It is dependent on runoff formation and hillslope routing, as
well as on groundwater dynamics through base flow. All these phenomena should be included
as physical constraints in the minimization of the functional J . However, this strategy would
be unpractical, especially because of the numerous threshold processes characterizing runoff
formation. A more effective approach is to combine the just described variational approach with
a parsimonious Monte Carlo technique. Namely, we infer key quantities for runoff formation on
the basis of both an ensemble of qL and optimal estimates from the variational procedure. In
practice, the steps of the strategy are the following. First, we generate an ensemble of qL once
at the beginning of the assimilation by reasonably varying a couple of fundamental quantities in
terms of runoff formation (i.e. initial soil moisture and rainfall intermittence). Both variables
are maintained spatially homogeneous, so that the size of the ensemble remains small (typically
around 100 realizations). Then, we run an iteration of the variational procedure to update qL
time series on the basis of the mismatch between observed and modelled river flows during the
assimilation window. Finally, for any single river reach independently and at each iteration,
we “pick up”the realization of qL in the predetermined ensemble which is the most similar to
the variational estimate. Initial soil moisture and rainfall intermittence corresponding to the
selected realization are adopted for the cells contributing to the corresponding reach. Hence, a
spatially distributed estimate of both quantities is obtained. Figure 1describes the assimilation
strategy schematically.

4 Assimilation Experiments

In order to investigate the impact that the spatial distribution of the assimilation sites has on
flood forecasting, we focus on one single nearly-flood event. We perform various assimilation
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Figure 2: Arno river network and location of the 25 observation points.

Figure 3: Summary of the assimilation sites in each experiment: rows correspond to experi-
ments, columns to streamflow observation points; the cell is filled if observations are assimilated.

experiments which differ only in number and location of the assimilation points. All the simu-
lations employ a spatial resolution of 500 m and a time step of 15 minutes. The extent of each
assimilation window is 6 hours.

4.1 Area of Study and Data

The assimilation experiments are performed in the Arno river basin (central Italy, about 8300
km2), whose mainstream is about 240 km length. The simulated event is selected among those
examined in [3]. It is characterized by significant rainfall (about 63 mm), following several days
of intermittent precipitation (about 100 mm in 13 days). Data assimilated in the experiments
are synthetic, i.e. generated by the model itself. The reason is twofold: first, streamflow ob-
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Figure 4: Scatter plots (a - linear scale, b – zoom in logarithmic scale) of peak flow at the
25 observation points for Open Loop (OL, black circles), 1st Assimilation Experiment (Exp1,
red circles), 2nd Assimilation Experiment (Exp2, yellow circles), 3rd Assimilation Experiment
(Exp3, green circles), and 4th Assimilation Experiment (Exp4, blue circles). Circles are filled
if streamflow observations are assimilated at the corresponding location.

servations are available only at 5 locations along the mainstream, secondly, in order to focus
on the role of assimilation points spatial distribution, we want to avoid disturbances due to
both specific characteristics of the event that the model could not represent, and uncoherent
observations at the various sites. In particular, synthetic observations are discharge time series
extracted from a run of MOBIDIC model, started 13 days before the period of interest, and
initialized with a map of soil moisture including both saturated and nearly dry areas. Employ-
ing synthetic data potentially allows to have at disposal observations at any desired location.
However, we prefer to locate the synthetic measurement stations in correspondence of real hy-
drometers in the network (Figure 2). The experiments assimilates data from: i) all the 25
synthetic stations of Figure 2 (baseline assimilation run, 1st assimilation experiment), ii) the
5 stations along the mainstream employed in [3], i.e. Subbiano, Montevarchi, Nave di Rosano,
Fucecchio, San Giovanni alla Vena (2nd Assimilation Experiment), iii) the stations placed in
proximity of the outlet of the main tributaries (3rd Assimilation Experiment), iv) the stations
placed close to the outlet of the main tributaries plus San Giovanni alla Vena (4th Assimilation
Experiment). This rationale is summarized in Figure 3, where, for each location of Figure 2, it
is specified whether data are actually assimilated (filled square) or not (empty square) during
each experiment. The 25 synthetic measurement stations are reported in ascendant order, to
facilitate the interpretation of the results shown in Section 5. All the experiments include 5
sequential assimilation windows, corresponding to 30 hours of observations. The results shown
in Section 5 refer to the final assimilation window for all the experiments.

5 Results

Since the assimilation system is specifically designed for flood forecasting purposes, results are
presented in terms of predicted discharges. Figure 4 shows the scatter plot for the peak flow
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at the 25 locations of interest, with the plot on the left in linear scale (a), and the zoom on
the right in logarithmic scale (b), in order to present the behaviour also in reaches with lower
discharges. All the experiments predict the peak flow more accurately than the open loop run
(OL, black circles) at any observation point. The best performances are obtained with the 1st

experiment (Exp1, red circles), i.e. when streamflow data are assimilated at all the displayed
locations. However, especially for the larger peak flows, the performances are not directly
related to whether data are or are not assimilated locally. In fact, for both Fucecchio (the
second highest peak flow) and Nave di Rosano (the fifth highest peak flow) a more accurate
forecast is obtained in the 3rd and 4th experiments (green and blue circles), not assimilating
data locally, than in the 2nd one (yellow circles), which assimilates streamflow observations at
both these locations. Furthermore, at San Giovanni alla Vena (the highest peak flow), the best
prediction corresponds to the 3rd experiment, which is the only one not assimilating locally.
Overall, the 3rd experiment provides results similar to those of the full assimilation (Exp1)
at many locations. Since the 3rd experiment assimilates data in proximity of the outlet of
the main tributaries of Arno river, it can be stated that an assimilation employing a lower
number of assimilation points may perform comparably to one using more stations, provided
that the spatial distribution of the points is hydrologically meaningful. The 4th experiment
differs from the 3rd one only in assimilating data also at S. Giovanni alla Vena in addition to
the main tributaries. Nevertheless, performances are generally worse, especially for the higher
peak flows. This fact suggests that the assimilation updates may deteriorate if the magnitude
of the employed data differs significantly among the assimilation points, as it happens in the
4th experiment in respect to the 3rd one (i.e. the observed discharges in the tributaries are
much lower than those at S. Giovanni alla Vena). The less accurate forecasts are obtained in
the 2nd experiment, outperformed by the 3rd and 4th tests also at its owns assimilation points.
The reason is probably twofold. Firstly, the number of assimilation point is extremely low
(only 5), corresponding to a very high degree of freedom in the inverse problem. Secondly, the
magnitude of the assimilated data is significantly lower at 2 of the 5 assimilation points (at
Subbiano and Montevarchi, with an observed peak of about 280 and 570 m3s−1, in respect to
Nave di Rosano, Fucecchio and S. Giovanni, with maximum streamflows of about 970, 1400
and 1500 m3s−1). As previously noticed, the effectiveness of assimilation points whose data are
much lower than the others employed is limited. This means that the 2nd experiment essentially
relies on only 3 points. In order to further clarify the obtained results, Figure 5 shows the full
hydrograph corresponding to the open loop and the 4 assimilation experiments at 6 selected
stations, all located along the main stream of Arno river. The hydrographs are displayed from
downstream to upstream, with S. Giovanni alla Vena being the point closest to the outlet. It
is immediately visible that the full assimilation (Exp1) provides the best results if both the
timing and magnitude of the discharges are considered, and that the most comparable results
are obtained with the 3rd experiment, although with slightly worse performances.

6 Conclusions

Preliminary experiments about the impact of the spatial distribution of the assimilation points
showed that more information does not correspond necessarily to a better functioning of the
assimilation [3], i.e. the system can benefit from a lower level of constrain. However, this was
related especially to specific characteristics of the event that the model could not represent, or
to uncoherent observations at the various sites. Both these conditions should not verify when
assimilating synthetic data. Indeed, in the experiments performed in this work, we evidence
that increasing the level of constrain in the assimilation problem, i.e. employing a greater
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Figure 5: Hydrographs at 6 selected locations along the main stream of Arno river for the open
loop and the 4 assimilation experiments (line colours maintain the same meaning of Figure 4),
and with observations in grey (triangles are the assimilated observations, in case the experiment
includes assimilation at the shown location).

number of assimilation points, provides more accurate forecasts. However, it is shown also that
adding assimilation points whose data are significantly lower than those assimilated at other
locations provides a negligible contribution to the results. Conversely, including a downstream

674



Observations Spatial Distribution in Streamflow Data Assimilation G. Ercolani and F. Castelli

supplementary point, whose data are much greater than the other employed, may even worsen
the performances. This behaviour is connected to the rationale of the assimilation scheme, based
on the adjoint model of the flow routing throughout the river network and hence maintaining
the coupling between connected reaches. Hence, one of the main advantages of the system, i.e.
the capability of spreading updates upstream of an assimilation point naturally, may represent
also a vulnerability if the assimilation sites are not selected properly.
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