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Abstract

TemPsy (Temporal Properties made easy) is a pattern-based, domain-specific language
for the specification of temporal properties. In this paper we provide an overview of
TemPsy-Check, a tool that implements a model-driven approach for performing offline
trace checking of temporal properties written in TemPsy. TemPsy-Check relies on an
optimized mapping of temporal requirements written in TemPsy into Object Constraint
Language (OCL) constraints on a conceptual model of execution traces.

1 Introduction

The tool presented in this paper has been developed as part of a research collaborative project
that we run with our public service partner CTIE (Centre des technologies de l’information
de l’Etat, the Luxembourg national center for information technology), on model-driven run-
time verification of business processes [7]. In this project we have investigated the use of trace
checking for detecting anomalous behaviors of eGovernment business processes and for checking
whether third-parties (e.g., other administrations, suppliers) involved in the execution of the
process fulfill their guarantees.

The context of this project set three main requirements for the development of the solution:
R1) when analysts do not have adequate skills to make use of temporal logic, an alternative

domain-specific language should be provided to facilitate the specification of business pro-
cess requirements;

R2) to be viable in the long term, any solution shall rely on standard and stable MDE (model-
driven engineering) technology for checking the compliance of a system to its application
requirements;

R3) any solution shall be scalable, such that a trace with millions of events could be checked
within seconds.

To fulfill requirement R1, in previous work [6] we proposed OCLR, a domain-specific lan-
guage for the specification of temporal properties, based on the catalogue of property spec-
ification patterns defined by Dwyer et al. [9], and extended with additional constructs. The
language has been defined in collaboration with the CTIE analysts, based on the analysis of the
requirements specifications of an industrial case study. The most recent version of the language,
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now called TemPsy (Temporal Properties made easy) [5], sports a syntax close to natural lan-
guage, has all the constructs required to express the property specification patterns found in
our case study, and has a precise semantics expressed in terms of linear temporal traces.

To fulfill requirements R2 and R3, in previous work [8] we proposed a scalable model-
driven trace checking procedure, which relies on a mapping of temporal requirements written
in TemPsy into Object Constraint Language (OCL) [13] constraints on a conceptual model of
execution traces. This mapping is optimized based on the structure of the TemPsy property to
check, in order to achieve better performance.

In this paper we discuss the TemPsy-Check tool1, which implements the procedure pre-
sented in [8]. TemPsy-Check is available at http://weidou.github.io/TemPsy-Check/ .

2 The TemPsy language
TemPsy [5] is the most recent version of our previous proposal [6] for a pattern-based, domain-
specific specification language for temporal properties; it is based on an extended version of the
catalogue of property specification patterns defined in [9].

The design of TemPsy has been driven by the analysis of the requirements documentation
of various applications developed as business processes by our partner. This analysis revealed
that the vast majority of these requirements could be expressed as temporal properties, enriched
with timing information. More specifically, we were able to recast most of specifications written
in natural language using the system of property specification patterns of Dwyer et al. In some
cases, we extended the original definitions proposed in [9] to match the specifications; these
extensions are:

1) The possibility, in the definition of a scope boundary, to refer to a specific occurrence of
an event, as in “before the second occurrence of event X. . . ”. In the original definition of the
pattern systems, boundaries of scopes refer implicitly to the first occurrence of an event.

2) The possibility to indicate a time distance with respect to a scope boundary, as in “at
least two time units before the n-th occurrence of event X. . . ”.

3) Support for expressing time distance between events occurrences in the precedence and
response patterns as well as in their chain versions, for expressing properties such as “event B
should occur in response to event A within 2 time units”.

4) Additional variants for the bounded existence and absence patterns.
By design, TemPsy does not aim at being as expressive as a full-fledged temporal logic.

Instead, its goal is to make as easy as possible the specification of the temporal requirements
of business processes, by supporting only the constructs needed to express temporal require-
ments commonly found in business process applications. TemPsy has received positive feedback
from our partner, which has deemed it as suitable communication mechanism to express the
requirements specifications of business processes. Our partner has integrated TemPsy into the
SoftwareAG ARIS modeling tool [14], and its analysts have started using it to annotate business
process models with TemPsy specifications.

2.1 Syntax
The syntax of TemPsy is shown in Fig. 1: non-terminals are enclosed in angle brackets, ter-
minals are enclosed in single quotes, optional elements are enclosed in brackets, the character

1TemPsy-Check can be considered a profound and optimized revision of its predecessor OCLR-Check,
which was based on OCLR and participated in the 2nd Competition on Runtime Verification in 2015 [12].
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〈TemPsyBlock〉 ::= 〈TemPsyExpression〉+
〈TemPsyExpression〉 ::= [‘temporal’ 〈Id〉 ‘:’] 〈Scope〉 〈Pattern〉
〈Scope〉 ::= ‘globally’

| ‘before’ 〈Boundary1 〉
| ‘after’ 〈Boundary1 〉
| ‘between’ 〈Boundary2 〉 ‘and’ 〈Boundary2 〉
| ‘after’ 〈Boundary2 〉 ‘until’ 〈Boundary2 〉

〈Pattern〉 ::= ‘always’ 〈Event〉
| ‘eventually’ 〈RepeatableEventExp〉
| ‘never’ [‘exactly’ 〈Int〉] 〈Event〉
| 〈EventChainExp〉 ‘preceding’ [〈TimeDistanceExp〉] 〈EventChainExp〉
| 〈EventChainExp〉 ‘responding’ [〈TimeDistanceExp〉] 〈EventChainExp〉

〈Boundary1 〉 ::= [〈Int〉] 〈Event〉 [〈TimeDistanceExp〉]
〈Boundary2 〉 ::= [〈Int〉] 〈Event〉 [‘at least’ 〈Int〉 ‘tu’]
〈EventChainExp〉 ::= 〈Event〉 (‘,’ [‘#’ 〈TimeDistanceExp〉] 〈Event〉)*
〈TimeDistanceExp〉 ::= 〈ComparingOp〉 〈Int〉 ‘tu’
〈RepeatableEventExp〉 ::= [〈ComparingOp〉 〈Int〉] 〈Event〉
〈ComparingOp〉 ::= ‘at least’ | ‘at most’ | ‘exactly’
〈Event〉 ::= 〈Id〉
〈Id〉 ::= 〈IdStartChar〉 〈IdChar〉*

| 〈Id〉 (〈IdConnector〉 〈Id〉)*
〈IdStartChar〉 ::= [A-Z] | ‘_’ | [a-z]
〈IdChar〉 ::= 〈IdStartChar〉 | [0-9]
〈IdConnector〉 ::= ‘.’ | ‘::’
〈Int〉 ::= [1-9] ([0-9])*

Figure 1: Syntax of TemPsy

‘+’ indicates one or more occurrences of an element, the character ‘*’ indicates zero or more
occurrences of an element.

A TemPsy property, which is a denoted by the non-terminal 〈TemPsyBlock〉, comprises a
set of 〈TemPsyExpression〉s combined by conjunction. Each TemPsy expression starts with an
optional ‘temporal’ keyword and has an optional alphanumeric identifier, followed by a 〈Scope〉
and a 〈Pattern〉. A 〈Scope〉 indicates the segment(s) of an execution trace in which a 〈Pattern〉
should hold.

The keywords indicating the five 〈Scope〉s identify univocally the corresponding scopes
from [9] (‘globally’, ‘before’, ‘after’, ‘between’-‘and’, ‘after’-‘until’). As for the 〈Pattern〉s,
‘always’ corresponds to universality, ‘eventually’ to existence, ‘never’ to absence, ‘preceding’
to precedence and precedence chain, ‘responding’ to response and response chain.

The definition of 〈Scope〉s and 〈Pattern〉s refers to the concept of 〈Event〉. We assume that
an 〈Event〉 is represented by an alphanumeric string, to match the event names logged in the
execution trace on which the properties specified in TemPsy are meant to be checked. 〈Scope〉s
contain boundaries (expressed with 〈Boundary1 〉 or 〈Boundary2 〉) that denote a specific oc-
currence of an event as a boundary, possibly with a time distance; notice that 〈Boundary2 〉
represents a syntactic restriction of 〈Boundary1 〉. Chains of events, used in precedence and
response patterns, are defined as 〈EventChainExp〉, which denotes a comma-separated list of
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Figure 2: An event trace on which to evaluate the properties described in section 2.2; events
are above the line, timestamps below

events, possibly with a time distance (〈TimeDistanceExp〉) between each pair of events (denoted
with the ‘#’ symbol). Time distances are expressed with an integer value, followed by the ‘tu’
keyword, which represents a generic time unit (i.e., any denomination of time).

2.2 TemPsy at Work
We now present some examples of properties that can be expressed with TemPsy , in order to
provide the reader with a high-level, intuitive understanding of the language. We consider the
execution trace shown in Fig. 2; for each property2 we first define it in English, indicate whether
it is violated or not by the trace, and then express it in TemPsy .

p1) “Event C shall happen 8 time units after the second occurrence of event X.” (satisfied)
temporal p1: after 2 X exactly 8 tu eventually C

p2) “Event A shall happen within 30 time units after the first occurrence of eventX.” (satisfied)
temporal p2: after X at most 30 tu eventually A

p3) “Event C shall eventually happen after at least 3 time units since the first occurrence of
event X; and it shall happen before event Y if the latter happens.” (violated because event
C occurs after event Y )
temporal p3: after 1 X at least 3 tu until Y eventually C

p4) “After the second occurrence of event X, event C shall eventually happen exactly twice.”
(satisfied)
temporal p4: after 2 X eventually exactly 2 C

p5) “Event C shall happen at least once between every first occurrence of event X and the next
event Y ; the time interval between event X and the first occurrence of event C shall be
at least 5 time units.” (violated because event C does not occur between the first segment
delimited by event X on the left and event Y on the right)
temporal p5: between X at least 5 tu and Y eventually at least 1 C

p6) “Event B shall happen at least 3 time units before the first occurrence of event Y .” (satis-
fied)
temporal p6: before Y at least 3 tu eventually B

p7) “Before the first occurrence of event Y , once event X occurs, event A shall happen followed
by event B; the time interval between X and A shall be at least 3 time units.” (satisfied)
temporal p7: before Y A, B responding at least 3 tu X

The informal and the formal semantics are described in the online technical report [5].
2These properties are given as an example and should be considered individually, rather than together as a

set; they do not correspond to the specification of a real system.
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3 Model-driven Trace Checking with TemPsy

The idea at the basis of the model-driven trace checking approach implemented by TemPsy
is to reduce the problem of checking a TemPsy property ρ over a trace λ, to the problem of
evaluating an OCL constraint (semantically equivalent to ρ) on an instance of a conceptual
model for execution traces (equivalent to λ).

This reduction allows us to rely on standard and stable MDE technology to perform offline
trace checking. Indeed, standard OCL checkers, such as Eclipse OCL [10], can be used to
evaluate OCL constraints on model instances. The use of a model-driven approach and of
standard technologies fulfills requirement R2 stated in section 1, and enables us to provide a
practical and scalable solution for trace checking of temporal properties, which is also viable in
the long term.

At the basis of this approach there is the definition of a conceptual model for execution
traces, since the transformation of TemPsy properties into efficiently checkable OCL constraints
defined on such model is a key strategy for us to achieve scalability. The model, not depicted
here for space reasons, contains a Trace, which is composed of a sequence of TraceElements,
accessed through the association traceElements. Each TraceElement contains an attribute
event of type string, which represents the actual event recorded in the trace, and an attribute
timestamp of type integer, which indicates the time at which the event occurred.

The Trace class contains some side-effect-free operations in OCL; operations consist of two
types of functions. The first type, of the form applyScope*S*, are named after the different
types of scope (e.g., applyScopeBefore) and return segment(s) of a trace (i.e., sub-traces) as
determined by the parameters of the scope provided in input. The second type, of the form
checkPattern*P*, are named after the different types of pattern (e.g., checkPatternExistence)
and check whether the pattern provided in input as the second parameter holds on the sub-
trace(s) represented by the first parameter.

TemPsy-Check, when given in input a set of properties to check and a trace file, creates
an instance of the Trace class based on the trace input file.

The key step of our approach is to evaluate an OCL invariant on this trace instance for
every TemPsy property provided in input. The checking of this invariant, which can be done
using standard OCL checking tools, is semantically equivalent to performing trace checking of
the TemPsy property. The invariant is roughly equivalent to this OCL expression:

1 context Trace
2 inv: let subtraces=applyScope*S*(scope) in
3 subtraces ->forAll(subtrace |
4 checkPattern*P*(subtrace , pattern))

Notice that in the actual constraints, the placeholder *S* is replaced with a string from
{Globally, Before, After, BetweenAnd, AfterUntil} and the placeholder *P* is replaced with
a string from {Universality, Existence, Absence, Precedence, Response}. These strings
correspond, respectively, to the scope and the pattern used in the input TemPsy property to
check. In the invariant, the variable subtraces contains the portion(s) of the trace returned by
the function applyScope*S*, which takes an instance of a TemPsy Scope as input parameter.
The invariant checks, by calling the function checkPattern*P*, whether the input pattern
holds on each sub-trace in subtraces.

The details of the procedure implemented by TemPsy-Check and the definition of the
various OCL functions of type applyScope*S* and checkPattern*P* are available in [8, 5].
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4 Implementation
The implementation of TemPsy-Check is based on Xtext [11] and Eclipse OCL [10]. The tool
takes as input a list of TemPsy expressions represented in an XMI-based format and a trace
instance in CSV format. Any TemPsy expressions defined in the textual notation shown in
Fig. 1 can be converted to the XMI-based format using another tool included in the distribution.
TemPsy-Check provides file readers for loading TemPsy expressions and trace instances; it
can be extended to support other formats thanks to its design following the Strategy Pattern.
Moreover, we have developed a Java class ConstraintFactory to help build OCL constraints
corresponding to the input TemPsy expressions. The evaluation of the OCL invariants is done
using the OCL checker included in Eclipse. The boolean output of the checker is then returned
to the user.

5 Summary of Experimental Results
To fulfill requirement R3, we extensively evaluated the scalability of TemPsy-Check by assess-
ing the relationship among the checking time, the structural properties of a trace (e.g., length,
distribution of events), and the type of property to check; we used real properties extracted
from a case study developed in collaboration with our partner CTIE, on traces with length
ranging from 100K to 1M. We also compared the performance of TemPsy-Check with Mon-
Poly [2], a state-of-the-art alternative technology, selected from the participants to the “offline
monitoring” track of the international Competition on Software for Runtime Verification [1, 12].

The experimental results show that TemPsy-Check can load and analyze very large traces
(with one million events) in about two seconds and that it scales linearly with respect to the
length of the trace to check. The results also show that TemPsy-Check in practice performs
similarly to or better than3 the state-of-the-art, depending on the type of properties, confirming
the feasibility and benefits of a model-driven approach for trace checking of temporal properties.

The detailed evaluation methodology and the complete evaluation data are available in [8, 5].

6 Discussion and Future Work
In this paper we have provided an overview of our tool TemPsy-Check, a practical and scalable
solution for trace checking of pattern-based temporal properties written in TemPsy . TemPsy-
Check relies on an efficient mapping of requirements written in TemPsy into regular OCL
constraints on a conceptual model for execution traces. We have applied TemPsy-Check for
the verification of real properties derived from a case study of our public service partner in
the context of eGovernment business process modeling. More in general, TemPsy-Check can
be used in contexts where model-driven engineering is already a practice and where relying on
standards and industry-strength tools for property checking is a fundamental prerequisite.

As part of future work, we plan to extend TemPsy-Check to provide a more informative
output than the boolean result currently returned when violations are detected in a trace, by
adding support for interactive inspection of violations. We also plan to extend TemPsy and
TemPsy-Check to support the service provisioning specification patterns introduced in [3]
and implemented in the SOLOIST language [4].

3 We remark that the specification language of MonPoly (MFOTL) is more expressive than TemPsy (e.g.,
by supporting first-order quantification), hence the performance of MonPoly could have been negatively affected
by the more complex implementation needed to support a richer specification language.
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